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1. Introduction

In resonance vibratory machines, low-mass inertial 
vibration exciters induce the intense vibrations of plat-
forms [1]. This increases the reliability and durability of 
vibration exciters.

The simplest structure is inherent in the inertial vibra-
tion exciters whose operation is based on the Sommerfeld 
effect [2]. In such vibration exciters, the unbalanced mass 
itself gets stuck at one of the resonant frequencies of a 
vibratory machine’s oscillations, which excites intense 
resonance oscillations. In addition, the unbalanced mass 
itself adapts to the change in the resonance frequency of 
the vibratory machine, caused by a change in the load on 
platforms. Therefore, such vibration exciters do not need 
an automatic control system and have the simplest design. 
This additionally increases the reliability and durability 

of vibration exciter performance, as well as the vibratory 
machine in general.

There is a general issue related to assessing the energy 
efficiency of resonance vibratory machines and determining 
ways to improve it [1]. Solving problems associated with this 
issue makes it possible to increase the energy efficiency of 
resonance vibratory machines at the design stage.

2. Literature review and problem statement

Resonance vibratory machines whose operation is based 
on the Sommerfeld effect were investigated for the following 
cases:

– a two-mass vibratory machine and a vibration exciter 
in the form of a pendulum rigidly mounted onto the shaft of 
a low-power DC electric motor [3]; 
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This paper reports determining the energy efficiency of a 
vibratory machine consisting of a viscoelastically fixed plat-
form that can move vertically, and a vibration exciter whose 
operation is based on the Sommerfeld effect. The body of the 
vibration exciter rotates at a steady angular speed while 
there are the same loads in the form of a ball, a roller, or a 
pendulum inside it. The load, being moved relative to the 
body, is exposed to the forces of viscous resistance, which 
are internal within the system.

It was established that under the steady oscillatory 
modes of a vibratory machine’s movement, the loads are 
tightly pressed to each other, thereby forming a combined 
load. Energy is productively spent on platform oscillations 
and unproductively dissipated due to the movement of the 
combined load relative to the body.

With an increase in the speed of the body rotation, 
the increasing internal forces of viscous resistance bring 
the speed of rotation of the combined load closer to the 
resonance speed, and the amplitude of platform oscilla-
tions increases. However, the combined load, in this case, 
increasingly lags behind the body, which increases unpro-
ductive energy loss and decreases the efficiency of the vibra-
tory machine.

A purely resonant motion mode of the vibratory machine 
produces the maximum amplitude of platform oscillations, 
the dynamic factor, the total power of viscous resistance 
forces. In this case, the efficiency reaches its minimum value. 

To obtain vigorous oscillations of the platform with 
a simultaneous increase in the efficiency of the vibratory 
machine, it is necessary to reduce the forces of viscous resis-
tance in supports with a simultaneous increase in the inter-
nal forces of viscous resistance.

An algorithm for calculating the basic dynamic charac-
teristics of the vibratory machine’s oscillatory motion has 
been built, based on solving the problem parametrically. The 
accepted parameter is the angular speed at which a com-
bined load gets stuck. The effectiveness of the algorithm has 
been illustrated using a specific example
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– a three-mass vibratory machine and a vibration exciter 
in the form of a wind wheel with unbalanced mass [4]; 

– a single-mass vibratory machine and a vibration excit-
er in the form of a pendulum rigidly mounted onto the shaft 
of an induction electric motor [5].

It was found that unbalanced masses get stuck at one of 
the platform’s resonance oscillation frequencies. In this case, 
the electric circuit of the electric motor is overloaded [3, 5] 
while the unbalanced mass wind wheel demonstrates a low 
efficiency coefficient due to the peculiarities of converting 
air energy into mechanical motion [4].

The Sommerfeld effect, considered undesirable, was 
discovered and investigated in rotary machines with passive 
auto-balancers in the following cases:

– a rigid rotor executing spatial movement, which is 
statically balanced by a two-pendulum [6] or two-ball [7] 
auto-balancer; 

– a flexible rotor executing spatial movement, which is 
statically balanced by a two-pendulum auto-balancer [8];

– a flat rotor model on isotropic supports, balanced by a 
two-ball auto-balancer [9]; 

– a rigid rotor executing spatial movement, which is dy-
namically balanced by two two-pendulum auto-balancers [10].

It was found that under certain conditions, loads (balls 
or pendulums) get stuck at one of the resonance frequencies 
of rotor oscillations, which prevents the onset of auto-bal-
ancing. However, at the same time, the body of the auto-bal-
ancer is guaranteed to accelerate; the electric circuit of the 
electric motor does not experience significant overloads.

In [11], it was proposed to use passive auto-balancers 
as two-frequency vibration exciters. At the same time, slow 
resonance oscillations excite loads in the auto-balancer when 
stuck at resonance speed. Rapid oscillations are induced by 
an unbalanced mass attached to the body of the auto-bal-
ancer. In such a technical solution, loads are accelerated 
indirectly by an electric motor – due to the forces of viscous 
resistance acting on loads being moved relative to the body 
of the auto-balancer.

The feasibility of a vibration exciter in the form of a 
passive auto-balancer was tested for single- [12], two- [13], 
three-mass [14] vibratory machines with the translational 
movement of platforms in directions perpendicular to the 
platform planes. Paper [15] proved the applicability of the 
technique for a single-mass vibratory machine with angular 
platform oscillations. Study [16] proved the feasibility, as 
a vibration exciter, of a two-ball auto-balancer elastically 
mounted on a platform moving straight in its plane.

The disadvantage of the studies reported in [6‒16] is 
the lack of research into the energy efficiency of vibratory 
machines whose vibration exciter is made in the form of a 
passive auto-balancer. In particular, energy consumption 
for driving the oscillations of platforms was not estimated, 
to ensure the rotation of unbalanced mass at the resonance 
oscillation frequency of the platform or platforms. In addi-
tion, the efficiency of vibratory machines was not evaluated. 
Conducting such a study could make it possible to devise 
recommendations on the choice of electric motor power, in-
creasing the efficiency of the vibratory machine.

3. The aim and objectives of the study

The purpose of this work is to determine the energy 
consumption and evaluate the efficiency of a resonance sin-

gle-mass vibratory machine whose vibration exciter operates 
based on the Sommerfeld effect. This is necessary to choose 
the power of the vibratory machine electric motor, and to 
improve the efficiency of the vibratory machine at the design 
stages.

To accomplish the aim, the following tasks have been set:
– to build a physical-mathematical model of the vibrato-

ry machine and to analyze energy costs during its operation; 
– to find analytically the energy costs and efficiency of 

the vibratory machine; 
– to construct a calculation algorithm and test its effec-

tiveness.

4. The study materials and methods

To build a mechanical-mathematical model of the vibra-
tory machine, we used the results of work [12], as well as the 
elements of classical mechanics [17]. To search for the steady 
movement modes of the vibratory machine with the desired 
accuracy, a small parameter is introduced and elements of 
the perturbation theory are applied [18]. Energy efficiency 
assessment is based on known procedures [19] for calculat-
ing the power spent on platform oscillations and dissipating 
when loads move relative to the body of the vibration exciter.

The results of the theoretical research are illustrated by 
the computational experiment. In this case, the problem of 
finding modes at which loads get stuck is solved paramet-
rically. For our computation, the PTC Mathcad software 
algebra system is used.

5. Results of studying the energy efficiency of a 
resonance single-mass vibratory machine whose 

operation is based on the Sommerfeld effect 

5. 1. The physical-mathematical model of a sin-
gle-mass vibratory machine and analysis of energy costs 

5. 1. 1. Description of the physical-mathematical model
The vibratory machine (Fig. 1) includes a platform, mass 

M, and a vibration exciter – a ball, a roller (Fig. 1, b), or a 
pendulum (Fig. 1, c). The platform moves rectilinearly verti-
cally and rests on a viscoelastic support with the coefficient 
of rigidity k and viscosity b. The position of the platform is 
determined relative to the stationary axes X, Y (not shown in 
the diagram) where the Y axis is parallel to the direction of 
movement of the platform. In the static equilibrium position 
of the platform, its y coordinate is zero.

The body of the vibration exciter has a mass of Mc and 
revolves around a shaft, point K, at a constant angular speed 
ω. The center of the mass of the body is at point K. Two 
mutually perpendicular axes XK, YK originate from point K 
and are parallel to the axes X, Y. The position of the body 
with respect to the axes XK, YK is determined by the angle 
ωt, where t is time.

A vibration exciter consists of N identical loads. The 
mass of one load is m. The center of load mass can move in a 
circle of radius R with the center at point K (Fig. 1, b, c). The 
position of load number j relative to the body is determined 
by the angle ϕj, =/ 1, / .j N  The load, when moving relative to 
the body, is exposed to the force of viscous resistance, which 
has the module ϕ − ω′| |,W jb R  =/ 1, /,j N  where bW is the coef-
ficient of a viscous resistance force: a bar by the magnitude 
denotes the time derivative t.
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In further studies, the force of gravity is not taken into 
consideration. 

The differential equations of motion of a single-mass 
vibratory machine in a dimensional form are as follows [12]:

Σ + + + =′′ ′ ′′ 0,yM Y bY kY S

( )κ ϕ + ϕ − ω + ϕ =′′ ′ ′′2 2 cos 0,j W j jmR b R mRY  

=/ 1, /,j N 		   (1)

where MΣ=M+Mc+Nm+µ is the mass of the entire system; 
κ is the dimensionless coefficient equal, for a ball, to 7/2; for 
a roller, 3/2; for a pendulum, 1+JC/mr2; 

=
= ϕ∑ 1

sin ,
N

y jj
S mR  		  (2)

– projection of the total unbalanced mass of loads onto the 
Y axis.

5. 1. 2. Energy cost analysis
The instantaneous powers of the viscous resistance forces 

acting on the platform and on the load, respectively, are equal to

( ) = ′ ′,pP t bY Y  ( ) ( )( )= ϕ − ω ϕ − ω′ ′2 ,c W j jP t b R  

=/ 1, / .j N  			   (3)

Full power spent on the system movement

( ) ( ) ( ) ( )Σ =
= + = + ϕ − ω′ ′∑

22 2

1
.

N

p c W jj
P t P t P t bY b R  	 (4)

The energy spent on platform fluctuations is useful. The 
energy spent on the movement of loads in relation to the 
body of the vibration exciter is a loss of energy. Efficiency 
is defined as

Ση = / ,pP P  			   (5)

where a bar above a value indicates a value that is averaged 
over a certain period. 

Introduce the dimensionless variables and time

= / ,y Y y  = / ,x xs S s  = / ,y ys S s  τ = ω ,t  		  (6)

where ỹ, s,̃ ω̃ are the characteristic scales to be selected later.
Then,

⋅ ⋅ τ ⋅
= = ω

τ τ
 ,

d d d d
dt d dt d

 
⋅ ⋅
= ω

τ


2 2
2

2 2 ,
d d
dt d

		   (7)

and motion equations (1) take the following form

Σω + ω + + ω =      2 2 0,yM yv b yv kyv ss

( )κ ω ϕ + ω ϕ − ω ω + ω ϕ =       2 2 2 2/ cos 0.j W j jmR b R ymRy 	 (8)

Formula (4) takes the following form

( ) ( )Σ =
τ = ω + ω ϕ − ω ω∑    

22 2 2 2 2

1
/ .

N

W jj
P b y y b R 	 (9)

Divide the first equation in (8) by M̃̃ M̃Σω̃2ỹ, and the sec-
ond – by κmR2ω̃2, we obtain

Σ Σ Σ

+ + + =
ω ω


  

  2 0,y

b k s
y y y s

M M M y

ω ϕ + ϕ − + ϕ =  κ ω ω κ


  
 

cos 0,W
j j j

b y
v

m R
 =/ 1, / .j N 	 (10)

Introduce the following characteristic scales

= ,s NmR  Σ Σ= =  ,y s M NmR M  Σω = ω = ,r k M  	(11)

where ωr is the resonance frequency of platform oscillations.
Introduce the following dimensionless parameters

Σ

=
ω

,
2 r

b
h

M
 

ω
=

ω
,

r

n  
Σ

ε =
κ

,
Nm
M

 Σβ =
ω2 .W

r

b M
Nm

	 (12)

Then the dimensionless differential equations of mo-
tion (10) take the following form

+ + + =  2 0,yy hy y s

( )ϕ + εβ ϕ − + ε ϕ =  cos 0,j j jn y  =/ 1, / .j N 		  (13)

Note that

=

= ϕ∑
1

1
cos ,

N

x j
j

s
N

 
=

= ϕ∑
1

1
sin .

N

y j
j

s
N

		  (14)

Introduce the following system of differential equations

+ + + =  2 0,yy hy y s  ( )ϕ + εβ ϕ − + ε =   0,xn ys 	 (15)

where

=

ϕ = ϕ∑
1

1
,

N

j
jN

 ( )= ϕcos ,xs s  ( )= ϕsin .ys s 		  (16)

The system is designed to search for jam modes in the 
case when the loads are tightly pressed against each other 
and form a combined load. In (16), a steady parameter s is the 
module of total dimensionless unbalanced mass.

Fig. 1. Model of a single-mass vibratory machine, the 
kinematics of movement: a – platform; b – a ball or a roller; 

c – pendulum

a

b c
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Dimensionless powers consumed during platform fluctu-
ations and load movements are

( )τ =  22 ,pp hy  ( ) ( )=
τ = εβ ϕ −∑ 

2

1
.

N

c jj
p n  		  (17)

Divide equation (9) by MΣω̃3ỹ2 to obtain

( ) ( ) ( )

( ) ( )

Σ
Σ =

Σ Σ Σ

Σ

τ
τ = = + ϕ − =

ω ω ω

= τ + ⋅ τ
ω εβ

∑ 
   

 

2
22

3 2 2 1

2

2

1
.

NW
jj

W
p c

P b Rb
p y n

M y M M y

b R
p p

M y
 	 (18)

Convert

( )
Σ

Σ Σ Σ

ω
⋅ = ⋅ ⋅ =

ω β ω 

2 2 2 2

22

1 1
.W W r

W

b R b R M Nm
M y M b M NNmR

Then

( ) ( ) ( )Σ τ = τ + τ
ε
1

p cp p p
N

 			   (19)

– a rule based on which dimensionless powers are added.
Balls or rollers of radii r, tightly pressed to each other, 

induce, respectively, such the largest dimensional and di-
mensionless total unbalanced mass [14]

( ){ } =  
2

max / sin arcsin / ,S mR r N r R  

( )= max / .s S NmR  			   (20)

In the case of pendulums, additional information is need-
ed to calculate the greatest unbalanced mass.

5. 2. Determining analytically the energy costs and 
efficiency of the vibratory machine 

5. 2. 1. Approximate analytical determination of the 
steady modes of vibratory machine movement

To approximately determine the steady modes of move-
ment of the vibratory machine, we use the method of a small 
parameter. The accepted small parameter is ε – the ratio of 
the mass of loads to the mass of the system. 

In the zero approximation (ε=0), the second equation in 
system (15) takes the form:

ϕ = 0.  				    (21)

A solution to it

ϕ = Ωτ + γ 0,  ( )Ω γ −0, const . 		   (22)

Find from (16):

( ) ( )τ = Ωτ + γ0 0cos ,xs s  ( ) ( )τ = − Ω Ωτ + γ 2
0 0cos ,xs s

( ) ( )τ = Ωτ + γ0 0sin ,ys s  ( ) ( )τ = − Ω Ωτ + γ 2
0 0sin .ys s 	 (23)

Then the first equation in (15) takes the following 
form

( )+ + = Ω Ωτ + γ  2
02 sin .y hy y s 		   (24)

The partial solution to the heterogeneous equation (24) 
corresponds to the steady motion and takes the form

( ) ( ) ( )τ = Ωτ + γ + Ωτ + γ0 0 0 0 0sin cos ,s cy y y  		  (25)

where

( )
( )

Ω − Ω
=

− Ω + Ω

2 2

0 22 2 2

1
,

1 4
s

s
y

h
 

( )
Ω

= −
− Ω + Ω

3

0 22 2 2

2
.

1 4
c

sh
y

h
	 (26)

Thus, despite the circular asymmetry of the supports, the 
platform in a zero approximation executes perfect harmoni-
ous oscillations. 

In a zero approximation, the amplitude of resonance 
oscillations and a dynamism coefficient are, respectively, 
equal to

( )
( )

Ω
Ω = + =

− Ω + Ω

2
2 2
0 0 22 2 2

,
1 4

s s

s
A y y

h

( )
( )

Ω =
− Ω + Ω

22 2 2

1
.

1 4
dC

h
		   (27)

The amplitude and a dynamism coefficient at purely res-
onance oscillations

( ) ( )≈ =max 1 / 2 ,A A s h  ( ) ( )≈ =max 1 1/ 2 .d dC C h 	 (28)

Equations (27), (28) show that reducing the viscosity of 
the supports (h) increases both the oscillation amplitude and 
the dynamic coefficient. 

Build an energy balance for the second equation in (15):

( ) ( )
( ) ( )

( )

( ) ( )

( ) ( )
( )

  ϕ τ + εβ ϕ τ − +    ϕ τ − =   +ε τ τ  
 = ε Ω − β Ω − − Ω = 
 Ω = ε Ω − β Ω − + =
 − Ω + Ω 

∫
 




0 0

00
0 0

2
0

2 5

22 2 2

1

2 / 2

0.
1 4

T

x

c

n
n

T y s

n n sy

s h
n n

h
	 (29)

It follows from (29) that the steady modes of movement 
are possible in two cases. 

In the first case, the loads rotate synchronously with the 
body (Ω=n).

In the second case, the loads get stuck at angular speeds, 
which are the roots of the following equation

( )
( )

Ω
β − Ω − =

− Ω + Ω

2 5

22 2 2
0.

1 4

s h
n

h
 			   (30)

Equation (30) was studied in paper [12]. According to 
the reported results, in the case of small forces of viscous re-
sistance in the supports, there are three characteristic speeds 
of rotor rotation. In this case, 1<n1<n*<n2 and:

– if 0<n<n1, then there is such a single frequency of load 
jam that 0<Ω1<1;

– if n1<n<n*, then there are such three frequencies of 
load jam that 0<Ω1<1<Ω2<Ω3<n;

– if n*<n<n2, then there are such three frequencies of 
load jam that 1<Ω1<Ω2<<Ω3<n;

– if n>n2, then there is such a single frequency of load 
jam Ω3 that 1<<Ω3<n.
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Use (30) to find the rotor rotation speed as a function of 
the speed at which a combined load gets stuck

( )
( )

Ω
Ω = Ω +

 β − Ω + Ω  

2 5

22 2 2
.

1 4

s h
n

h
 			  (31)

Bifurcation load jamming speeds are the roots of the 
following equation:

( )Ω Ω =/ 0.dn d  				    (32)

In equation (32), there are only two valid positive roots [12].

5. 2. 2. Approximate analytical determination of ener-
gy costs and efficiency of the vibratory machine

The average dimensionless power consumed over time 
interval T=2π/Ω spent to overcome the forces of viscous 
resistance in the platform supports is approximately deter-
mined from the following formula

( ) ( ) ( )

( ) ( )

Ω = τ ⋅ τ τ =

Ω
= Ω + =

− Ω + Ω

∫  
0 00

2 6
2 2 2

0 0 22 2 2

1
2 d

.
1 4

T

p

s c

p hy y
T

s h
h y y

h
		  (33)

At purely resonance fluctuations, the platform spends 
the following power

( ) ( )= = 2
max 1 / 4 .p pp p s h 			   (34)

Equation (34) shows that in order to obtain more ener-
getic oscillations of the platform, it is necessary to reduce the 
forces of viscous resistance in the supports. 

With accuracy to the magnitudes of the first order of 
smallness inclusive, when the j-th load moves relative to the 
body of the vibration exciter, the following dimensionless 
power is consumed

( ) ( ) ( )
( ) ( ) ( )

Ω = εβ ϕ − ⋅ ϕ − τ ≈

≈ εβ Ω − ⋅ Ω − τ = εβ Ω −

∫

∫

 
0

2

0

1
, d

1
.

T

cj j j

T

p n n n
T

n n d n
T

	  (35)

The total loss of energy when N loads (the combined 
load) move relative to the body of the vibration exciter is

( ) ( )Ω = εβ Ω − 2
, .cp n N n  			   (36)

Adding the nondimensionalized powers, averaged in line 
with rule (19), produces 

( ) ( ) ( )

( )
( )

Σ

Ω
Ω = Ω + =

ε
Ω

= + β Ω −
− Ω + Ω

2 6
2

22 2 2

,
,

.
1 4

c
p

p n
p n p

N
s h

n
h

 			   (37)

Equation (37) shows that when the power is determined, 
the values of one order of smallness are obtained, that is, the 
accuracy is not lost. 

Substitute n(Ω) from (31) in (37) to derive the total 
power under a jamming mode

( ) ( )( )
( ){ }
( )

Σ ΣΩ = Ω Ω =

 Ω β − Ω + Ω + Ω  =
 β − Ω + Ω  

22 6 2 2 2 2 4

222 2 2

,

1 4
.

1 4

p p n

s h h s h

h
 		  (38)

The power spent at purely resonance fluctuations is

( )Σ Σ

 
= = + β 

2 4

max 1 1 .
4 4
s s

p p
h h

 			   (39)

Equation (39) shows that the total power increases with 
a decrease in viscous resistance forces (h and β). 

Efficiency

( ) ( )
( )

( )
( )Σ

 β − Ω + ΩΩ   η Ω = =
Ω  β − Ω + Ω + Ω  

22 2 2

22 2 2 2 4

1 4
.

1 4

p
hp

p h s h
	 (40)

Efficiency at resonance

( ) ( )η = η = β + β2
min 1 4 / 4 .h s h  		  (41)

Equation (41) shows that in order to obtain vigorous 
fluctuations of the platform with the simultaneous increase 
in the efficiency of the vibratory machine, it is necessary to:

– reduce viscous resistance forces in supports (h); 
– increase the forces of viscous resistance acting on the 

loads moved relative to the body (β) so that the product βh 
increases.

5. 3. An algorithm for calculating the energy costs 
and efficiency of the vibratory machine and the test of its 
performance

5. 3. 1. Algorithm for performing calculations
Computations are carried out step by step:
1. Equation (32) is used to determine two critical (bifur-

cation) frequencies of load jamming Ωc1, Ωc2:Ωc2>Ωc1.
2. Formula (31) defines two corresponding bifurcation an-

gular rotation speeds of the rotor n1=n(Ωc1), n2=n(Ωc2):n1<n2, 
and an additional characteristic speed n*=n(1).

3. For each jam mode, formula (27) is used to calculate 
parametrically the corresponding oscillation amplitudes

( ) ( )Ω = Ω1 ,A A  [ ]Ω ∈ Ω 10, ;c

( ) ( )Ω = Ω2 ,A A  [ ]Ω ∈ Ω Ω1 2, ;c c

( ) ( )Ω = Ω3 ,A A  [ )Ω ∈ Ω + ∞2, .c  			   (42)

Based on the calculation results, the plots (nj(Ω), Aj(Ω)), 
/j=1,2,3/ are built in the plane (n, A).

4. For each jamming mode, formula (38) is used to cal-
culate, in a parametric form, the corresponding total power:

( ) ( )Σ ΣΩ = Ω1 ,p p [ ]Ω ∈ Ω 10, ;c

( ) ( )Σ ΣΩ = Ω2 ,p p  [ ]Ω ∈ Ω Ω1 2, ;c c

( ) ( ) [ )Σ ΣΩ = Ω Ω ∈ Ω + ∞3 2, , .cp p  		  (43)

Based on the calculation results, the plots (nj(Ω), p̅Σj(Ω)), 
/j=1,2,3/ are built in the plane (n, p̅Σ).
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5. For each jamming mode, formula (40) is applied to 
calculate the corresponding efficiency in a parametric form:

( ) ( )η Ω = η Ω1 ,  [ ]Ω ∈ Ω 10, ;c

( ) ( )η Ω = η Ω2 ,  [ ]Ω ∈ Ω Ω1 2, ;c c

( ) ( ) [ )η Ω = η Ω Ω ∈ Ω + ∞3 2, , .c 		   (44)

Based on the calculation results, the plots (nj(Ω), η j(Ω)), 
/j=1,2,3/ are built in the plane (n, η).

5. 3. 2. Testing the effectiveness of the calculation 
algorithm

We test the algorithm performance at the following es-
timation data:

β=100; h=0.01; ε=0.05; N=1; s=1.	  (45)

Equation (32) is used to find two bifurcate (critical) 
speeds at which a combined load gets stuck

Ω =1 1.00035;c  Ω =2 1.03573.c  			   (46)

From (31), we find two bifurcation angular rotation 
speeds of the rotor and an additional characteristic speed

( )= Ω =1 2 1.05657;сn n  ( )= =* 1 1.25;n n  

( )= Ω =2 1 1.25031.сn n  		  (47)

Equations (28), (39), and (41), respectively, are applied 
to find the highest dynamism coefficient, the highest aver-
age power, and the lowest efficiency:

=max 50,dC  Σ =max 31.25,p  η =min 80 %. 	  (48)

The study results are shown in Fig. 2.

Fig. 2 demonstrates that all quantities that characterize 
a certain jamming mode change monotonously. With an 
increase in the rotational speed of the rotor from 0 to n2, the 
oscillation amplitude increases monotonously, as well as the 
average total power of the first jamming mode. At the same 
time, the efficiency of the vibratory machine is monotonous-
ly reduced (from 97 to 80 percent).

If we take into consideration that the rotational speed 
of an induction electric motor can equal 500; 750; 1,000; 
1,500; 3,000 rpm, then wide possibilities arise for the design 
of resonance machines, the platforms of which oscillate at 
8÷50 HZ frequencies. For the considered example, during 
the vibratory machine operation, the specification speed of 
the electric motor must be changed by no more than 25 per-
cent. Such a change could allow the machine to work at both 
minimal and maximum amplitudes of the near-resonance 
oscillations.

6. Discussion of results of studying the energy 
efficiency of the resonance single-mass vibratory 

machine

Analysis of the energy consumption of the vibratory 
machine shows that during its operation the energy is spent 
on the oscillations of the platform and dissipated through 
the movement of the combined load relative to the body of 
the vibration exciter (3). However, the internal forces of 
viscous resistance not only dissipate energy but also set the 
loads into motion. Thus, in the considered vibration exciter, 
a kind of frictional transmission is implemented. The move-
ment of loads from the electric motor is transmitted by the 
forces of viscous resistance acting on the load when it moves 
relative to the body. At the low speeds of rotor rotation, 
these forces are not sufficient, therefore, the combined load 
gets stuck at speeds somewhat smaller than the resonance. 
That reduces the platform oscillation amplitude. With an 
increase in the rotational speed of the rotor, greater forces 
of viscous resistance accelerate the combined load more. The 
speed of rotation of the load is approaching the resonance 
and the amplitude of oscillations of the platform increases. 
However, the combined load, at the same time, increasingly 
lags behind the body, and, therefore, the unproductive loss 
of energy increases while the efficiency of the vibratory ma-
chine decreases.

Under a pure resonance motion mode of the vibratory 
machine, an (almost) maximum value of the platform oscil-
lation amplitude is achieved, as well as the dynamism coeffi-
cient (28), and the total average power of viscous resistance 
forces (39). In this case, the efficiency reaches (almost) the 
minimum value (41).

To obtain vigorous fluctuations of the platform with a 
simultaneous increase in the efficiency of the vibratory ma-
chine, it is necessary:

– to reduce viscous resistance forces in supports (h); 
– to increase the forces of viscous resistance acting on 

loads moved relative to the body (β) so that the product βh 
increases.

Effective is the algorithm of calculations, built on the 
parametric solution to the problem of determining the basic 
dynamic characteristics of the oscillatory movement. In this 
case, the accepted parameter is the angular speed at which a 
combined load gets stuck.

Fig. 2. Dependence plots of the following dimensionless 
quantities on the rotor rotation speed: a – oscillation 

amplitudes (AFC); b – average total power; c – efficiency

a b

c
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The algorithm could be used to quickly calculate the 
main dynamic parameters of the vibratory machine, to se-
lect the structural parameters of the vibratory machine by 
sequential attempts, etc.

It should be noted that the physical-mathematical model 
of the vibratory machine does not take into consideration 
other energy losses, for example, in an induction electric mo-
tor. In addition, the energy balance considers the values of 
the lowest order of smallness in relation to the small param-
eter. However, these shortcomings do not affect the overall 
results and conclusions of this work.

In the future, it is planned to investigate the energy 
efficiency of two- and three-mass vibratory machines whose 
operation is based on the Sommerfeld effect.

7. Conclusions

1. In the considered vibration exciter, a kind of frictional 
transmission is implemented. The movement of loads from 
the electric motor is transmitted by the forces of viscous 
resistance acting on the load moved relative to the body. 
However, these forces dissipate energy at the same time. 
Our analysis of the energy consumption by the vibratory 
machine shows that during its operation the energy is spent 
on the oscillation of the platform and dissipated through the 
movement of the combined load relative to the body of the 
vibration exciter.

2. At the low speeds of rotor rotation, the internal 
forces of viscous resistance are not enough, and, therefore, 
the combined load gets stuck at speeds somewhat smaller 
than the resonance. This reduces the platform oscillation 
amplitude. With an increase in the rotational speed of 
the rotor, greater forces of viscous resistance accelerate 
the combined load more. The speed of load rotation is 
approaching the resonance while the amplitude of oscil-
lations of the platform increases. However, the combined 
load, in this case, increasingly lags behind the body, and, 

therefore, the unproductive loss of energy increases while 
the efficiency of the vibratory machine decreases. Under a 
pure resonance motion mode of the vibratory machines, an 
(almost) maximum value of the platform oscillation ampli-
tude is reached, as well as the dynamism coefficient, and 
the total average power of viscous resistance forces. In 
this case, the efficiency reaches an (almost) minimum val-
ue. To obtain vigorous fluctuations of the platform with 
a simultaneous increase in the efficiency of the vibratory 
machine, it is necessary to:

– reduce viscous resistance forces in supports (h);   
– to increase the forces of viscous resistance acting on 

loads when moved relative to the body (β) so that the prod-
uct βh increases.

3. Effective is the algorithm of calculations, built 
on the parametric solution to the problem of determin-
ing the basic dynamic characteristics of the oscillatory 
movement. In this case, the accepted parameter is the 
angular speed at which a combined load gets stuck. Using 
the algorithm, it was established that with an increase 
in the rotational speed of the rotor from 0 to the second 
bifurcation velocity, the oscillation amplitude increases 
monotonously, as well as the average total power of the 
first jamming mode. At the same time, the efficiency of 
the vibratory machine is monotonously reduced (from 97 
to 80 percent). The algorithm could be used to quickly 
calculate the basic dynamic parameters of the vibratory 
machine, to select the structural parameters for the vibra-
tory machine by sequential attempts, etc.
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