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This paper considers the task of planning a multifactorial 
multilevel experiment for problems with high dimensionality. 
Planning an experiment is a combinatorial task. At the same time, 
the catastrophically rapid growth in the number of possible va- 
riants of experiment plans with an increase in the dimensionali­
ty of the problem excludes the possibility of solving it using accu­
rate algorithms. On the other hand, approximate methods of find­
ing the optimal plan have fundamental drawbacks. Of these, the 
main one is the lack of the capability to assess the proximity of 
the resulting solution to the optimal one. In these circumstances, 
searching for methods to obtain an accurate solution to the prob­
lem remains a relevant task.

Two different approaches to obtaining the optimal plan for 
a multifactorial multilevel experiment have been considered. 
The first of these is based on the idea of decomposition. In this 
case, the initial problem with high dimensionality is reduced to 
a sequence of problems of smaller dimensionality, solving each 
of which is possible by using precise algorithms. The decompo­
sition procedure, which is usually implemented empirically, in 
the considered problem of planning the experiment is solved by 
employing a strictly formally justified technique. The exact solu­
tions to the problems obtained during the decomposition are com­
bined into the desired solution to the original problem. The second 
approach directly leads to an accurate solution to the task of 
planning a multifactorial multilevel experiment for an important 
special case where the costs of implementing the experiment plan 
are proportional to the total number of single-level transitions 
performed by all factors. At the same time, it has been proven that 
the proposed procedure for forming a route that implements the 
experiment plan minimizes the total number of one-level changes  
in the values of factors. Examples of problem solving are given
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1. Introduction

The complete factorial orthogonal multilevel experi
ment is represented in the coordinate space of the cor-
responding dimensionality by the vertices of the hyper-
cube [1, 2]. The task of planning such an experiment is to 
find a route to traverse these vertices at minimal (cost or 
time) costs. Assume a k-factor experiment in which each 
factor can take a value at one of the m levels. The number 
of vertices of the corresponding hypercube is N = mk, and 
the number of «correct» routes to traverse these vertices 
is determined from the ratio M = N! = (mk)! (The «correct» 
route is a Hamiltonian path of traversing all N vertices 
without loops, containing N–1 transitions). The plan of the 
experiment is usually represented by a matrix in which the 
number of columns is equal to the number of factors, and 
the number of rows is equal to the number of vertices. The 
corresponding graph for the two-factor (F1, F2) three-level 
(–1; 0; 1) experiment is shown in Fig. 1. A possible option 
for traversing the vertices of the graph is given in Table 1.  
In this case, the transition from one of the vertices to any 
other corresponds is matched by a change in the factor  
and (or) a change in the level.

Table 1

An option to traverse vertices for a two-factor 	
three-level experiment

Experiment No.
Factor

F1 F2

1 –1 –1

2 –1 0

3 –1 +1

4 0 –1

5 0 0

6 0 +1

7 +1 –1

8 +1 0

9 +1 +1
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Fig. 1. Experiment graph

For example, in the above plan of a two-factor three-level 
experiment, the transition from vertex 1 to vertex 2 corre-
sponds to a change in the level of only the F2 factor, and the 
transition from vertex 3 to vertex 4 corresponds to a change 
in the levels of both factors. The costs associated with mov-
ing from one vertex to another are determined by the corre-
sponding changes in the levels of factors.

Assign the sets of values of k-factor levels for the 
i-th experiment S S Si i

k
i

1 2
( ) ( ) ( )( ), ,...,  and for the j-th expe- 

riment S S Sj j
k

j
1 2
( ) ( ) ( )( ), ,..., . Then the costs of changing the le- 

vels of factors in the transition from the i-th experiment  
to the j-th would be determined from the following formula:
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Here, C S Se
i

e
j( ) ( )( ),  is the cost of moving from the Se

i( )  level 
for the e-th factor in the i-th experiment to the Se

j( )  level for 
the same factor in the j-th experiment. At the same time, if 
one specifies a certain sequence of vertices i i iN1 2, ,..., ,( )  which 
determines the «correct» route of transitions from the initial 
vertex i1 to the final iN, then the costs of traveling this route 
would equal:
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N

= +
=

−
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It should be noted that the problem of finding the best-
cost route for traversing vertices belongs to the class of 
combinatorial ones and its computational complexity grows 
very quickly with an increase in the dimensionality of the 
problem (Table 2).

Table 2

Dependence of the number of traverse routes 	
on the problem dimensionality

Number of 
factors (k)

Number of 
levels (m)

Number of 
vertices (N)

Number of 
routes (M)

2

2

4 24

3 8 40320

4 16 2,09∙103

2

3

9 362880

3 27 ~1035

4 81 ~5 ∙10120

It is clear that this problem cannot be solved by simple 
sorting in the case of actual dimensionality.

2. Literature review and problem statement

For problems whose dimensionality is not too large (N < 25), 
the possibility to obtain an accurate solution to the problem 
of planning an experiment was shown as early as the begin-
ning of 1970s, by using any known algorithm developed for 
the traveling salesman problem [3]. Subsequently, appro
ximate decomposition algorithms for solving this problem 
were proposed, providing acceptable accuracy for problems 
whose dimensionality excludes the possibility of obtaining  
a solution by exact methods [4] but the accuracy of the solu-
tion is not discussed [5]. The same idea was implemented in 
work [6] where the restructuring procedure was carefully 
substantiated and described in detail for problems with 
low dimensionality. In [7], an approximate method is pro-
posed that implements the iterative procedure for obtaining  
a plan. The complexity of the problem is discussed in [8] for 
problems in which high dimensionality arises due to their 
multi-level nature. In [9], the absence of a general approach 
to solving the task of forming an optimal plan for problems 
with arbitrary dimensionality is stated. In work [10], the 
recommendation on using block algorithms in these problems 
for obtaining plans is formulated. At the same time, it should 
be borne in mind that all known approximate algorithms for 
solving the routing problem have the following irreparable 
drawback – structural incompleteness. Specifically, the pro-
cedure for obtaining a solution for all optimization algorithms 
has the same type of three-stage structure: the first stage is 
to obtain the initial solution to the problem; the second stage 
is to check the optimality of the solution; the third stage 
implies that once the tested solution is not optimal, then the 
transition to a new solution is performed, not worse than the 
previous one. Known approximate algorithms for solving the 
routing problem lack the second and third stages. This means 
that when deriving the next solution, there is fundamentally 
no possibility of assessing the degree of its proximity to the 
optimal solution. In addition, in the process of solving the 
problem, situations really arise where quite a lot of iterations 
in a row do not lead to the improvement of the existing solu-
tion but that, however, does not give grounds for terminating 
the solution. Therefore, actual running programs terminate 
the solving procedure either after a predetermined solving 
time has elapsed or after a specified number of iterations have 
been executed. The claims in many well-known publications 
that the approximate algorithm did lead to a solution close 
to optimal have no evidential value. They typically refer to 
specially designed test tasks whose optimal solution was 
known or obtained in advance. It follows that the task of 
finding accurate algorithms for solving the routing problem 
remains relevant. However, the direction of the search for 
precise methods of solving routing problems may need to 
be changed. Known algorithms for the exact solution to 
combinatorial problems, in order to reduce the volume of 
sorting, are focused on finding and using various techniques 
for screening out unpromising options. At the same time, in 
many cases, the number of analyzed variants is significantly 
reduced, which ensures that an accurate solution is obtained 
if the dimensionality of the problem is not too large. At the 
same time, one should point to the insufficient knowledge of 
the possibilities of rational use of an alternative resource of 
computing systems – memory involved in the implementa-
tion of sorting operations.

The above defines the purpose and objectives of the cur-
rent study.
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3. The aim and objectives of the study

The goal is to devise methods for planning a multifacto-
rial multilevel experiment with high dimensionality, mini-
mizing the total costs of implementing the experiment plan.

To accomplish the aim, the following tasks have been set:
– to devise an accurate routing method that increases 

the value of the dimensionality of the problems being solved;
– to construct a fast approximate method for solving the 

problem of planning an experiment with high dimensionality;
– to build an accurate routing method for arbitrarily high 

dimensionality, minimizing the total cost of implementing 
the plan for the case where these costs are determined by the 
number of single-level transitions.

4. The study materials and methods

The methods of combinatorics and graph theory were 
used to resolve our tasks. 

When solving the problems, we shall assume that the 
following is set:

– k – the number of factors;
– m – the number of levels for each factor;
– C S Se

i
e

j( ) ( )( ),  – the cost of moving from the Se
i( ) level for 

the e-th factor in the i-th experiment to the Se
j( ) level for the 

same e-th factor in the j-th experiment;

– C C S Sij e
i

e
j

e

k

= ( )( ) ( )

=
∑ ,

1

 – the total costs of transition from 

the i-th experiment to j-th;
– N = mk – the total number of experiments;
– iq – the number of the q-th experiment in the route of 

traversing all the set of experiments q = 1, 2, …, N.
In this case, the sequence of numbers I = (i1, i2, …, iq, …, iN) 

sets some route to traverse the entire set of experiments. 
Then the total cost of implementing plan I would be deter-
mined from ratio (2). The task is to find a route that mini-
mizes these costs.

5. Results of devising methods for solving problems  
of planning multifactorial multilevel experiments 

5. 1. Building an accurate method for constructing the 
Hamiltonian path

To solve this problem, we shall compile a matrix of costs 
for all possible one-step transitions from one experiment  
to another:
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It is assumed that the transition graph is fully accessible, 
that is, from any vertex a one-step transition to any other  
is possible. Next, for two randomly selected experiments with 
numbers i, j, we shall find the least costly transition from i  
to j using the intermediate experiment q:

C C Cij q iq q= +{ }min .1 	 (4)

Performing this operation for all pairs i = 1, 2, …, N,  
j = 1, 2, …, N, we obtain a matrix of the least expensive  
two-step transitions from all possible experiments to all 
others. Operation (4) is conveniently represented in the  
following matrix form:

C C C2 1 1= ⊕ ,	 (5)

where the ⊕  operation is performed in line with (4) for all 
elements of the matrix C2. At the same time, based on the 
results of calculations of this matrix, for its each element (i, j),  
it is necessary to remember the number q of the interme-
diate experiment, which provides the least costly two-step 
transition. Further, according to the same scheme, the matrix 
C C C3 1 2= ⊕  is calculated. Here, the numbers of the interme-
diate experiments are also to be remembered.

The following procedure:

C C Cp p= ⊕ −1 1,  p N= −1 2 1, ,..., , 	 (6)

continues until the CN–1 matrix is obtained, the last column of 
which contains the values of the least expensive (N–1)-step  
transitions, starting from some initial experiment. From 
these values, one needs to choose the smallest. The position 
of this element in the column determines the numbers of the 
initial, final, and intermediate experiments.

Let us analyze the proposed procedure. Merits:
a) the method provides an accurate solution to the problem;
b) to implement the method, the simplest matrix opera-

tions are used, the total number of which polynomially de-
pends on N. The disadvantage of the method is obvious: the 
need to memorize the numbers of intermediate experiments, 
which complicates the procedure, and, more significantly, 
the higher the dimensionality of the problem. In this regard, 
to solve problems with high dimensionality, it is advisable to 
find an approximately optimal route, using for this purpose, 
for example, the decomposition procedure.

5. 2. Devising an approximate method for constructing 
a Hamiltonian path for problems with high dimensionality

The essence of the proposed approach is to implement the 
following five-step procedure.

Step 1. All the set of experiments is broken down into 
subsets. In the task of planning the experiment, splitting 
is natural to perform by fixing for each subset the level of  
a factor (or group of factors).

Step 2. Find a rational way to traverse the subsets cor-
responding to different values of the factor selected for de-
composition.

Step 3. According to the chosen route for traversing 
subsets, for each pair of neighboring subsets, the least costly 
approach is found from one subset to another. In this case, for 
the first of these subsets, the experiment output is fixed, and, 
for the second subset, the experiment input.

Step 4. In each of the subsets, a local optimal route bet
ween the input and output experiments is found. 

Step 5. All received local routes are connected in the or-
der of passage of subsets into a single resulting route.

Consider an example. Let the optimal traverse route be 
searched for in a three-factor three-level experiment. The cor-
responding graph with vertex numbering is shown in Fig. 2.  
In this graph, the abscissa axis displays the change in the 
levels of the F1 factor, the ordinal axis – the F2 factor, the 
applicate axis – the F3 factor.
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(-1;-1;-1) (0;-1;-1) (1;-1;-1) 

Fig. 2. Graph of a three-factor three-level experiment

We introduce a table of cost values for the transition from 
one level to another for each factor.

Table 3
Cost value (a.u.)

Transition cost
Factor

F1 F2 F3

from «–1» to «0» 2 3 4

from «0» to «1» 2 3 4

from «1» to «0» 2 3 4

from «0» to «–1» 2 3 4

from «–1» to «1» 4 6 8

from «1» to «–1» 4 6 8

Differences in the values of the cost of moving from one 
level to another for different factors determine the rational 
way of decomposition. In the problem under consideration, 
decomposition by any factor reduces the initial problem 
of finding a route to traverse a three-factor set containing 
27 experiments to three simpler subtasks for finding routes 
in two-factor subsets containing 9 experiments. Let us 
evaluate the computational advantages that arise when us-
ing decomposition. In the experiment with n experiments,  

the total number of «correct» routes is M n
n
e

n
n

= » 





⋅! .2π   

For the original problem, n = 27, and

M0

27
2827

2 71
2 27 1 2 10≅ 



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⋅ ⋅ ≅ ⋅
.

. .π

For each subtask, n = 9, and

M1

9
59

2 71
2 9 3 8 10≅ 



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⋅ ⋅ ≅ ⋅
.

. .π

The difference is oh so huge but the amount of total 
sorting is still excessively large. This difference remains 
quite impressive for many effective brute force methods 
such as the method of branches and boundaries, ant colonies, 
taboo search, genetic algorithm [4, 11–13] but not for all. 
An estimate of the amount of search for one of the fastest 
heuristic algorithms (elastic network method [10]) is as fol-

lows: M n n≅ ⋅2 . At the same time, if, in the initial problem, 
M0

27 1027 2 3 6 10= ⋅ ≅ ⋅. , then, for each subtask after decompo-
sition, M1

99 2 4608= ⋅ ≅ . The expediency of decomposition is 
obvious. Let us move on to solving the problem.

Step 1. The question of the decomposing factor is solved 
by choosing the one for which the transition from one level 
to another is the costliest. At the same time, the number of 
the most expensive transitions would be minimal. In a given 
example, this is the F3 factor. As a result, the initial set of ex-
periments is divided into three subsets A(–1), A(0), A(1).

 

 (1;1;-1) 

(1;0;1) 

(1;-1;-1) 

(0;1;-1) 

(0;0;-1) 

(0;-1;-1) 

(-1;1;-1) 

(-1;0;-1) 

(-1;-1;-1) 

Fig. 3. Graph of a two-factor subset A(–1) at a fixed level 	
of the F3 factor value, F3 = –1
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(-1;1;0) 

(-1;0;0) 

(-1;-1;0) 

Fig. 4. Graph of a two-factor subset A(0) at a fixed level 	
of the F3 factor value, F3 = 0
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(-1;1;1) 

(-1;0;1) 

(-1;-1;1) 

Fig. 5. Graph of a two-factor subset A(1) at a fixed level 	
of the F1 factor value, F3 = 1

Step 2. As the initial one, let us choose an experiment 
from the subset A(–1), in which all three factors take a value 
equal to –1. The natural order of traversing the subsets is as 
follows: A(–1), A(0), A(1).

Step 3. In the problem to be solved, in accordance with 
the cost table, transitions from A(–1) to A(0) and from A(0)  
to A(1) are naturally performed by changing the level of only 
the F3 factor with the fixed values of the levels of factors  F1 
and F2. At the same time, the costs of both transitions are  
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equal to 4 regardless of what the values of the levels of factors 
F1 and F2 are in the experiments selected for the transitions. 
Taking this circumstance into consideration, we shall choose  
a pair ((1, 1, –1), (1, 1, 0)) for the transition from A(–1) to A(0), 
and a pair ((–1, –1, 0), (–1, –1, 1)) to move from A(0) to A(1).

Step 4. As a result of step 3, the initial and final ex-
periments for traversing in subsets are defined. Let us list 
them: in the A(–1) subset, the ((–1, –1, –1), (1, 1, –1)) pair; 
in the A(0) subset, the ((1, –1, 0), (–1, –1, 0)) pair; in the  
A(1) subset, the ((–1, –1, 1), (1, 1, 1)) pair.

Step 5. In each of the obtained subsets, the problem 
of finding a locally optimal route for traversing the corre-
sponding set of experiments is independently solved. These 
three tasks have some common features to consider when 
choosing a route:

1. In all cases, the same type of problem of finding a two- 
factor route between the known initial and final experiments 
with seven intermediate experiments is solved. Thus, each 
route contains eight transitions.

2. In accordance with the values of costs when passing 
routes, it is advisable to use those transitions whose execu-
tion leads to a change to the neighboring level only by one 
of the factors:

3. The cost of changing a level for the F1 factor is less than 
the corresponding costs of change for the F2 factor.

Taking into consideration these features, as well as the 
input and output experiments known for each subset, we 
obtain the following routes.

For subset A(–1):

(–1, –1, –1), (0, –1, –1), (1, –1, –1), (1, 0, 1), (0, 0, –1), 
(–1, 0, –1), (–1, 1, –1), (0, 1, –1), (1, 1, –1);

for subset A(0):

(1, 1, 0), (0, 1, 0), (–1, 1, 0), (–1, 0, 0), (0, 0, 0), (1, 0, 0), 
(1, –1, 0), (0, –1, 0), (–1, –1,0);

for subset A(1):

(–1, –1, 1), (0, –1, 1), (1, –1, 1), (1, 0, 1), (0, 0, 1),  
(–1, 0, 1), (–1, 1, 1), (0, 1, 1), (1, 1,1).

Each of these routes contains six transitions out of eight 
with a cost value of 2 a.u. and two transitions with a cost 
value of 3 a.u.

Step 6. Combining these three locally optimal routes with 
the addition of transitions between subsets produces the de-
sired optimal route, shown in Fig. 6. The problem is solved.

The effectiveness of using decomposition in the plan-
ning of an experiment is not in doubt. The most important 
advantage of decomposition is the reduction of the original 
complex (perhaps unsolvable) problem to a set of simpler, 
solvable ones. This benefit of the method in the problem of 
planning an experiment is further supported by the following 
structural features of the factor experiment.

Let us consider first a more general variant of the state-
ment of a routing problem – the traveling salesman prob-
lem [3–5]. In this problem, n points and a matrix of costs for 
moving from one point to another are specified. It is required 
to find the «right» route to traverse this set of points, mi
nimizing the total costs. When solving this problem, all the 
necessary stages are sequentially performed in accordance 
with the decomposition technique: the partitioning of the 

original set into subsets; finding the order of traversing sub-
sets and transitions between them; the calculation of locally 
optimal routes in subsets, and combining these routes into 
the desired route. It is clear that this approach does not war-
rant finding an accurate solution to the problem.

 

 

(-1;1;-1) (0;1;-1) (1;1;-1) 
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(-1;0;0) (0;0;0) (1;0;0) 

(-1;-1;0) (0;-1;0) (1;-1;0) 

Fig. 6. Optimal route to traverse 27 experiments 	
in a three-factor three-level experiment

Possible inaccuracies arise already at the initial stage – 
during clustering. The point is in the structural features of 
this procedure. It is not properly formalized. Indeed, it is not 
known how many subsets the original set should be broken 
down into; the clustering procedure itself is not canonized; 
transitions between subsets are determined by a «greedy» 
algorithm. It is clear that the mistakes of the initial stages 
lead to erroneous solutions on all the others.

The use of the same decomposition technique in the task 
of planning an experiment, of course, does not guarantee an 
accurate solution. However, the situation here is different.  
Experiments in the task of planning an experiment are 
marked by the values of the levels of factors. The partition-
ing of their set into subsets is performed according to a set 
of formal features and their fixation gives the corresponding 
unambiguous result. The costs of transitioning from one ex-
periment to another are also tied to the identifying numerical 
characteristics of those experiments. Therefore, the choice of 
a solution at each stage of the procedure relies heavily on the 
initial data of the problem. Due to these circumstances, the 
use of decomposition in the task of planning an experiment 
yields an expected good result.

However, for multifactorial and multi-level tasks of plan-
ning an experiment with high dimensionality, the problem of 
finding optimal or close to them solutions remains relevant. 
At the same time, the indisputable futility of finding strictly 
optimal solutions in a general case still leaves this problem 
open to many specific special cases.

5. 3. Devising an accurate method for finding the Ha
miltonian path for problems with equal-cost single-level 
transitions

Consider the problem of planning experiments for a spe-
cial case where the cost of moving from one experiment to 
another is proportional to the number of changes in the levels 
of factors. For example, it is natural to assume that the cost 
of a two-level transition from level «–1» to level «1» for any 
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of the factors in a three-level task is equivalent to the cost 
of moving first from level «–1» to level «0» with the sub-
sequent transition from level «0» to level «1». In this case, 
if the costs for all single-level transitions for all factors are 
approximately the same, then the total costs would be pro-
portional to the total number of single-level transitions. It is 
clear that the optimal route for traversing all the experiments 
of such an experiment corresponds to the minimum number 
of one-level changes. The total number of experiments of the 
k-factor s-level experiment is N = Sk. At the same time, if there 
is a plan for which during the transition from one experiment 
to another there is a change in only one level by one of the 
factors, then the minimum possible number of level changes 
is M = N–1 = Sk–1.

Let us now proceed to consider the problem of building 
a method for forming an optimal plan. For the convenience 
of presenting the material, we shall introduce some special 
system of designations.

Introduce:
[1]k – a column containing k ones;
[2]k – a column containing k twos;
[q]s – a column containing k qs;

A1
2 1

2
=







– a possible plan for a one-factor two-level experiment;

A

S

S

S
1

1

2

1

=

−

























...

– a possible plan for a one-factor s-level experiment;

A

S

S
S
1

1

2

1

=

−

























...

– a plan of a one-factor s-level experiment inverted with re
spect to AS

1 ;
A1

1 1 1= ( ) – a possible plan for a two-factor one-level ex
periment;

A2
2

1 1

1 2

2 1

2 2

=





















– a possible plan for a two-factor two-level experiment;

A2
2

2 2

2 1

1 2

1 1

=





















– a plan of a possible two-factor two-level experiment inver
ted in relation to A2

2;

A3
2

1 1 1

1 1 2

1 2 1

1 2 2

2 1 1

2 1 2

2 2 1

2 2 2

=































– a possible plan for a three-factor two-level experiment.
A more compact record of the last plan, taking into 

consideration the introduced designations, can be written 
through smaller plans as follows:

A
A

A3
2 4 2

2

4 2
2

1

2
= [ ]

[ ]






,

where A
A

A2
2 2 1

2

2 1
2

1 1

1 2

2 1

2 2

1

2
=



















= [ ]
[ ]







,  A1

2 1

2
=







.

Then

A4
2

1 1 1 1

1 1 1 2

1 1 2 1

1 1 2 2

2 2 2 1

2 2 2 2

=

























... ... ... ...




– a possible plan for a four-factor two-level experiment.
This plan, taking into consideration the introduced sim-

plified notation, takes the following form:

A
A

A4
2 8 3

2

8 3
2

1

2
= [ ]

[ ]






.

Similarly, plans for experiments are formed, the number 
of levels of which is more than two:

A

A

2
3

3 1
3

1 1

1 2

1 3

2 1

2 2

2 3

3 1

3 2

3 3

1

=



































=
[ ]
22

3
3 1

3

3 1
3

[ ]
[ ]

















A

A

– a possible plan for a two-factor three-level experiment.
The plan of a three-factor three-level experiment using 

the A2
3,  plan taking into consideration the introduced sim-

plifying notation, takes the following form:

A

A

A

A

3
3

9 3
2

9 3
2

9 3
2

1

2

3

=

[ ]
[ ]
[ ]

















.
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Finally, the plan of the k-factor s-level experiment is as 
follows:

A

A

A

S A

S A

k
S

S k
S

S k
S

S k
S

S k

k

k

k

k

=

[ ]
[ ]

−[ ]
[ ]

−

−

−

−

−

−

−

−

1

2

1

1

1

1

1

1

1

1

... ...

11
S























.

Using the introduced notation, we shall determine the 
exact method of constructing the optimal plan of an experi-
ment, using the principle of mathematical induction.

Let the optimal route exist and be known for the k-factor 
s-level experiment, determined by the Ak

S  plan. Build now 
the plan of the (k+1)-factor s-level experiment according to 
the following rule (let us call it rule A):

A

A

A

S A

S A

k
S

S k
S

S k
S

S k
S

S k
S

k

k

k

k

+ =

[ ]
[ ]

−[ ]
[ ]



















1

1

2

1

... ...







. 	 (7)

Let us now show that the optimality of the Ak
S
+1  plan 

built according to rule A follows from the optimality of the 
Ak

S  plan. The optimal Ak
S  plan is implemented using (Sk–1) 

one-level transitions. Let us calculate the number of such 
transitions in the Ak

S
+1  plan. It is obviously equal to:

M A S S S S S S Sk
S k k k
+

+ +  = −( ) + − = − + − = −1
1 11 1 1 1. 	 (8)

Thus, the Ak
S
+1  plan contains the minimum possible num-

ber of single-level transitions and, therefore, it is optimal.
Let us now check that rule A produces an optimal plan 

for k = 1.
Record a one-factor s-level plan:

A

S

S
1

1

2
=



















...
.

This plan contains (S–1) one-level transition and, there-
fore, it is optimal. Now, using rule A, let us build a plan for  
a two-factor s-level experiment:

A

A

A

S A

S

S

S

S
S

2

1

1

1

1

2
=

[ ]
[ ]

[ ]



















... ...
. 	 (9)

Calculate the number of single-level transitions in the  
AS

2  plan. It is equal to:

M A S S S SS
2

21 1 1  = −( ) + − = − . 	 (10)

Thus, choosing the initial optimal one-factor s-level 
plan and using the A rule, we obtain the optimal plan of  
a two-factor s-level experiment. However, if a statement is 

true for k = 1 and, given its validity for arbitrary k, it follows 
that it is also true for k+1, then, according to the principle of 
mathematical induction, this statement would hold for any k.

Thus, the rule of formation of the optimal k-factor s-level 
experiment for any values of k and s has been obtained.

Here is an example of the application of this rule to build 
an optimal plan for a three-factor three-level experiment. The 
sequence of actions is as follows. First, the optimal plan of 
a one-factor three-level experiment A1

3  is formed. Then, ac-
cording to rule A, the optimal plan of a two-factor three-level 
experiment A2

3  is determined. Finally, after that, again using 
rule A, we obtain the desired optimal plan for a three-factor 
three-level experiment.

For three factors F1, F2, F3, set the values of three le
vels – (–1, 0, 1). Further relations are given without ex
planation.

A

F

1
3

1

1

0

1

=
−













,  A

A

A

A

F F

3
3

3 1
3

3 1
3

3 1
3

2 1

1

0

1

1 1

1 0

1 1

0 1

0 0

0

=

−[ ]
[ ]
[ ]

















=

− −
−
−

−−
−



































1

1 1

1 0

1 1

.

A

A

A

A

F F F

3
3

9 2
3

9 2
3

9 2
3

3 2 1

1

0

1

1 1 1

1 1 0

1

=

−[ ]
[ ]
[ ]

















=

− − −
− −
− −−
−
−
− −
− −
−
−

−

−
−
−

1 1

1 0 1

1 0 0

1 0 1

1 1 1

1 1 0

1 1 1

0 1 1

0 1 0

0 1 1

0 0 1

0 0 0

0 0 1

0 1 1

0 1 0

00 1 1

1 1 1

1 1 0

1 1 1

1 0 1

1 0 0

1 0 1

1 1 1

1 1 0

1 1 1

− −
− −
−
−

−
−



























































































.
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The resulting plan of the A3
3 experiment is optimal. In this  

regard, the transition from one experiment to another is 
accompanied by a change in the level of only one factor to 
the neighboring level. The total number of single-level tran-
sitions is 26, as it should be in the optimal plan. Note, by the 
way, that this A3

3  plan determines the route of transitions, 
exactly coinciding with the route that was obtained earlier 
by the method of decomposition (Fig. 6).

Let us make an important point. The plan obtained us-
ing the rule A is not the only possible one. If such a plan 
is obtained, then any rearrangement of its columns gives  
a new plan that defines a new route for traversing the ex-
periments. Moreover, this new plan would still be optimal 
since rearranging the columns does not change the number of 
single-level transitions. Let us explain what has been said on 
the example of an optimal three-factor two-level experiment. 
Let us obtain a plan for such an experiment and give several 
options for its restructuring, accompanying each new plan 
with an appropriate figure (Fig. 7–10):

A

F

1
2

1

0

1

= 





,  A
A

A

F F

2
3 2 1

2

2 1
2

2 1

0

1

0 0

0 1

1 1

1 0

=
[ ]
[ ]











=


















,

A
A

A

F F F

3
2 4 2

2

4 2
2

3 2 1

0

1

0 0 0

0 0 1

0 1 1

0 1 0

1 1 0

1 1 1

1 0 1

1 0 0

=
[ ]
[ ]













=

































.

 

 

110 111 

100 101 

010 011 

000 001 

Fig. 7. Optimal route. Original variant

Rearranging the first and third columns in places, we 
obtain a new plan:

F F F1 2 3

0 0 0

1 0 0

1 1 0

0 1 0

0 1 1

1 1 1

1 0 1

0 0 1

































.

 

 

110 111 

100 101 

010 011 

000 001 

Fig. 8. Optimal route. Option 2

Let us rearrange the second and third columns in places 
now. In this case, we obtain:

F F F3 1 2

0 0 0
0 1 0
0 1 1
0 0 1
1 0 1
1 1 1
1 1 0
1 0 0





























.

 

 

110 111 

100 101 

010 011 

000 001 

Fig. 9. Optimal route. Option 3

Rearrange the first and second columns in places. The 
corresponding plan takes the following form:

F F F2 3 1

0 0 0
0 0 1
1 0 1
1 0 0
1 1 0
1 1 1
0 1 1
0 1 0





























.

 

 

110 111 

100 101 

010 011 

000 001 

Fig. 10. Optimal route. Option 4

The total number of different optimal routes is determined 
by the number of possible column permutations and is equal 
to k!. Additional opportunities arise if one selects a different 
starting vertex in the original one-factor route. The number of 
such possibilities is exactly sk. In this case, the total number of 
optimal routes becomes equal to sk∙k!. Note that the existence 
of some set of routes, equivalent in the number of single-level 
transitions, can be useful if the cost of transition for different 
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factors is different. In the example considered, the route op-
tions differ from each other in the number of transitions due to 
different factors. At the same time, the distribution by factors 
F1, F2, F3 of the number of single-level transitions for the first 
route takes the form (4; 2; 1), for the second route – (1; 2; 4), 
for the third route – (2; 4; 1), for the fourth route – (4; 1; 2).

It is clear that it is advisable to use the route in which 
more expensive transitions are used less often than less ex-
pensive ones.

6. Discussion of results of building the methods  
for planning a multifactor multi-level experiment

A method for solving the problem of planning a multifac-
torial multilevel experiment that is relevant from the point of 
view of theory and important for practice has been proposed. 
The method of solving this problem in a general statement 
is not known. An approximate approach to solving it based 
on decomposition has been considered. The method is illus-
trated by the transition from Fig. 2 through the system of 
Fig. 3–5 to the final Fig. 6. At the same time, it is shown that 
taking into consideration the peculiarities of its structure, it 
is possible to reduce the original NP-complete problem to  
a set of problems of significantly smaller dimensionality.

A special study was conducted for a practically important 
case where the costs of implementing an experiment plan are 
determined by the number of one-level transitions. To solve 
such a problem, an exact method (ratios (7) to (10)) has been 
proposed and substantiated. Based on a proven theorem, the 
computational procedure for forming a plan is extremely 

simple. Its complexity practically does not depend on the 
dimensionality of the problem.

A possible area of further research is associated with the 
construction of a method for solving the problem of planning  
a multifactorial multilevel experiment for cases where the costs 
for different single-level transitions are significantly different. 
In addition, solving this problem is of considerable interest 
under conditions when the cost values during the transition 
from one experiment to another are not clearly defined [14] or 
inaccurately set [15]. In this case, when solving the problem, 
the approaches proposed in [16, 17] could be used.

7. Conclusions

1. An exact method for solving the routing problem has 
been devised, the computational complexity of which is 
polynomial, which significantly increases the dimensionality 
of the problems actually being solved.

2. A fast approximate method for solving the problem of 
planning a high-dimensionality experiment has been built. 
The method is based on the decomposition of the original 
NP-complex problem into a set of simpler problems, the 
dimensionality of which makes it possible to use accurate 
algorithms to solve them.

3. An exact method for solving the problem of planning 
experiments for the case where the costs of implementing the 
plan are proportional to the number of single-level transitions 
have been constructed. The most important advantage of the 
method is that its computational complexity is not polynomial 
but linearly depends on the dimensionality of the problem.
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