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1. Introduction

One of the directions to improve the efficiency of modern 
telecommunication systems is the improvement of existing 
and the construction of new methods of modulation and 
interference-resistant coding for continuous signal transmis-
sion channels. The transition in telecommunication systems 
to the ensembles of multidimensional signals increases the 
speed of information transmission and ensures the trans-
mission of large flows of information. At the same time, the 
issues of ensuring a high probability of transmitting infor-

mation are resolved using powerful interference-resistant 
coding.

Signal transfer theory and interference-resistant coding 
theory have evolved independently for a long time. Increasing 
the requirements for the speed and volume of information 
transmission required the search for new promising theoretical 
principles for increasing the efficiency of modulation and de-
coding in continuous signal reception channels. One of these 
areas is research aimed at assessing the effectiveness of the use 
of code structures of multidimensional signals in combination 
with interference-resistant codes. In this case, the procedures 
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One of the directions to improve the 
efficiency of modern telecommunication systems 
is the transition to the use of multidimensional 
signals for continuous channels of information 
transmission. As a result of studies carried 
out in recent years, it has been established 
that it is possible to ensure high quality of 
information transmission in continuous 
channels by combining demodulation and 
decoding operations into a single procedure that 
involves the construction of a code construct for 
a multidimensional signal.

This paper considers issues related 
to estimating the possibility to improve 
the efficiency of continuous information 
transmission channel by changing the signal 
distance of the code structure.

It has been established that the code 
structures of such types as a hierarchical 
code construct of signals, a hierarchical code 
construct of signals with Euclidean metric, a 
reversible code construct of signals, a reversible 
code construct of signals with Euclidean metric 
have the potential, when used, to increase 
the speed of information transmission along 
a continuous channel. With a signal distance 
reduced by 10 percent or larger, it could increase 
by two times or faster.

The estimation of the effect of reducing 
a signal distance on the efficiency of certain 
types of code structures was carried out. It has 
been established that the hierarchical reversible 
code construct, compared to the hierarchical 
code construct, provides a win of up to two 
or more times in the speed of information 
transmission with a halved signal distance. 
Implementing the modulation procedure has no 
fundamental difficulties, on the condition that 
for each code of the code construct the encoding 
procedure is known when using binary codes. 
The results reported here make it possible to 
build an acceptably complex demodulation 
procedure according to the specified types of 
code structures
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a more accurate accounting of the distribution of the signal 
distance to a set of elementary signals with the predefined 
power. Which, ultimately, will make it possible to assess the 
impact of changes in a signal distance on the effectiveness of 
a continuous information transmission channel.

2. Literature review and problem statement

The issues of determining the type of a multidimension-
al signal construct and assessing its capabilities for more 
accurate accounting of the distance distribution by a set of 
elementary signals with the predefined power are tackled in 
a series of works.

Paper [14] reports the results of research on the analysis 
and synthesis of code structures intended for use in modern 
and promising telecommunication systems. The types and 
features of the application of different types of code con-
structs are presented. However, the direct assessment of 
the effectiveness of their functioning in the direction of the 
impact of a signal distance on the effectiveness of the func-
tioning of the continuous channel is not given.

Work [15] reports a study into the theory of signal-code 
structures and code coding. The cited work is good enough 
in considering the issues of applying different types of code 
constructs and defining the directions of their improvement. 
There is no direct question of estimation of the effectiveness 
of various code structures in the direction of reducing signal 
distance in it.

Paper [16] considers the issues of modeling of continuous 
communication channels if it is possible to use different code 
structures in them, but the issue of the relation between the 
channel efficiency and code construct is not considered in 
the paper. Accordingly, there are no estimates of the effec-
tiveness of the application of code structures directly.

Work [17] explores the development of multidimensional 
signals for processing using a proposed hierarchical encod-
ing algorithm based on an inseparable system. One of the 
types of a signal code construct is directly considered but 
without analyzing its effectiveness and impact on it exerted 
by the signal distance.

The authors of [18], against the background of research 
into the method of adaptive decoding of auto-orthogonal 
codes, consider certain issues of estimation of the effective-
ness of their use in telecommunication networks. However, 
the issue of analyzing the entire complex of code constructs 
and assessing the impact on their effectiveness exerted by 
the signal distance is not considered.

The issue of increasing the effectiveness of multidimen-
sional signals is considered in work [19]. When investigating 
the effectiveness of their use, the author analyzed the pos-
sibilities of using different types of code structures of such 
signals. However, there is no estimation of the impact exert-
ed on the effectiveness of the multidimensional signal by the 
signal distance of its code structure.

Paper [20[ investigated some non-standard sets of code 
structures for OFDM signals that solve the issue of taking 
into consideration the variety of different OFDM signals 
and the fluctuations in their amplitudes that affect their am-
plification. There is no analysis of the functioning and eval-
uation of the effectiveness of the code structures proposed in 
the work in terms of changes in the signal distance.

Work [21] reports a study into one of the types of promising 
code structures of a multidimensional signal. Namely, the work 

for modulation/encoding and demodulation/decoding in such 
code constructs are carried out jointly and simultaneously. It is 
obvious that with rational construction, such code structures 
should combine the positive qualities of both ensembles of mul-
tidimensional signals and interference-resistant codes, provide 
simple implementation algorithms in continuous signal recep-
tion channels. That can provide significant movement towards 
improving the efficiency of telecommunication systems.

The use of multidimensional (with a large base, com-
ponents, complex) signals can significantly improve the 
quality of message transmission along communication chan-
nels [1, 2]. The main characteristics of the signal system, that 
is, the set of signals and its mutually unambiguous mapping 
onto the dictionary of the source of messages, are the dimen-
sionality of the signal, the frequency band used, the power 
of the set of signals, and the distance between the nearest 
signals. For many important types of channels, the limit 
characteristics, for example, power at the predefined dimen-
sionality and minimum distance, are studied quite well.

However, the constructive theory of signals is developed 
mainly for a discrete, primarily binary channel, that is, 
within the coding theory. In the theory of coding, a discrete 
channel formed by a modulator of elementary signals, a con-
tinuous channel, and a demodulator of elementary signals, 
is considered the predefined one. At the same time, it is not 
possible to approach the potential characteristics of the 
continuous channel both due to the narrowing of the signal 
class and due to insufficient use in decoding information 
about signal distortion in a continuous channel. The latter 
drawback is overcome by the unifying of demodulation and 
decoding into a single procedure of reception in general, the 
so-called soft (or analog) decoding (or solution) and recep-
tion in the semi-safe channel [3, 4]. To overcome the first 
drawback, modulation, that is, the conversion of the word 
message into a signal at the input of a continuous channel 
should be considered as a single procedure that combines the 
encoding and modulation of elementary signals. The number 
of known signal constructs reflecting this approach is small.

The main approaches to the basic development of various 
code structures, the principles of their encoding and decod-
ing are set out in [5, 6]. The basics of spatial modulation of 
code structures for Gaussian channels and their classifica-
tion are considered in [7, 8]. Determining the lower limits 
for permutation codes when using them in multidimensional 
signals for transmission along continuous channels with 
damping is given in [9, 10]. Certain promising directions for 
the construction of new types of code structures, including 
Gaussian signals, are described in [11‒13].

Discrete code is also associated with the type and princi-
ples of building code structures that are used in a particular 
multidimensional signal.

One of the directions of ensuring the high quality trans-
mission of multidimensional signals in continuous channels is 
the combination of demodulation and decoding operations into 
a single procedure, which involves the creation of a code struc-
ture of a multidimensional signal. The question of assessing the 
possibility of the influence of parameters of code structures of 
multidimensional signals on the effectiveness of the use of a 
continuous channel of information transmission is a relevant 
scientific task. Currently, it is not sufficiently researched.

An important scientific task is to determine the type of 
code structures of multidimensional signals, the effective-
ness of which is associated with a signal distance. This, in the 
future, will make it possible to analyze their capabilities for 
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considers the code construct of the 
type “constellation design”. Data 
from the studies into the efficiency 
of the code structure in question 
at the projected signal distance are 
given. However, there is no con-
sideration of other types of code 
structures and the impact of their 
functioning on the effectiveness of 
the continuous transmission of in-
formation.

Paper [22] investigates the 
construction of a multiple access 
sparse code system (SCM). The 
basis of the system proposed in the 
paper is a promising signal code 
construct based on optimized uni-
tary rotations on hypercubes. The issues of signal distance 
management in assessing the use of such a structure are not 
considered. There is also no comparative analysis of existing 
code structures and the proposed system of sparse code in 
terms of solving the scientific task set in the paper.

Thus, the scientific task, resolving which is tackled in 
this article, is to determine and analyze the types of code 
structures of multidimensional signals for continuous 
channels of information transmission. The structures to 
be defined, while ensuring properties regarding simplicity 
and versatility, should provide a greater speed of infor-
mation transmission along a continuous channel due to 
more accurate accounting of the distribution of the signal 
distance.

3. The aim and objectives of the study

The purpose of this work is to assess the impact of 
signal distance of code structures of a multidimensional 
signal on the speed of information transmission along a 
continuous channel for different types of code constructs 
of a multidimensional signal.

To accomplish the aim, the following tasks have been set:
– to analyze existing types of code structures of multidi-

mensional signals in terms of estimating the possibilities of 
changing their signal distance regarding their work efficiency;

– to employ mathematical modeling methods in order 
to assess the effect of changes in the signal distance on the 
rate of information transmission in a continuous channel 
according to certain types of code structures of multidi-
mensional signals;

– to carry out the comparative analysis and evaluation of 
the effectiveness of reducing a signal distance regarding the 
speed of information transmission in a continuous channel of 
information transmission for a certain spectrum of code struc-
tures of multidimensional signals considered in this article.

4. The study materials and methods

A structural scheme of a single-channel information 
transmission system is considered, in which the code con-
struct of a multidimensional signal for a continuous channel 
of information transmission is synthesized. 

The structural diagram of the specified system is shown 
in Fig. 1 [14].

To study the code constructs of multidimensional signals 
for a continuous channel of information transmission, we 
shall apply methods from the theory of interference-resistant 
coding with correction of errors, as well as the theory of 
redundancy of radio signals. The operator methods of radio 
space transformation, statistical theory of communication, 
methods for determining a free distance of the invariant 
signal-code structures are also used.

5. Results of studying the impact of a signal distance 
of code structures on the functioning of a continuous 

information transmission channel

5. 1. Analyzing code structures to estimate the pos-
sibilities of influence exerted by a change in their signal 
distance on performance efficiency

Let us denote for a multidimensional signal the M- di-
mensionality code of length N with words and the minimum 
Hamming distance d through (N, M, d)m or, at M=MK, 
through [N, K, d]M=(N, MK, d)m. The operator f of mod-
ulation of elementary signals is mapped to the symbol  
qnϵ{0, …, M–1} of the word q=(q1, ..., qN)ϵ(N, М, d)m elemen-
tary signal xn=f(qn) from the set of elementary signals X 
of power |Х |=M, contained in the full set of possible, at the 
input of a continuous channel, elementary signals. And the 
coding operator φ to the word u of the source dictionary U of 
the word q of the code. A pair of mappings f and φ specifies 
the mapping of the dictionary onto the set of signals, deter-
mining the design of the signal system, hereinafter referred 
to as code. Here is a constructive set of signals, presented in 
the form of a Cartesian power.

Suppose that for each pair of signals a measure of distinc-
tion D (x’, x”) is defined, hereinafter referred to as a signal 
distance or simply a distance if misunderstandings are ex-
cluded. The signal distance is not necessarily a metric but in 
some cases of interest is a monotonic function of the metric. 
For many (but not all) types of channels, the signal distance 
is additive, that is, represented in the form [1]:

( ) ( )
=

=′ ′′ ′ ′′∑ 0
1

, , .
N

n n
n

D x x D x x  			   (1)

An example is the Euclidean distance square (not the 
metric) or the distances of Hamming and Lee (metrics). 
When using a code construct, the relationship between the 
minimum signal distance on the set of signals and the Ham-
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ming’s distance d is given in conditions (1) by the obvious 
ratio [1]:

( )
Î ≠′ ′ ′ ′ ′ ′

= ≥ δ′ ′′
, ,

, .min
x x A x x

D D x x d  			   (2)

In most known code structures X is one-dimensional 
real (if the channel is low-frequency) or one-dimensional 
complex, that is, a two-dimensional real set (with amplitude 
and phase modulation of elementary signals in band chan-
nels). Fundamentally, the code construct is suitable at any 
dimensionality in the set of elementary X signals. However, 
it is successful only if all nonzero distances in X are the 
same, for example, when X is the correct simplex (in partic-
ular, consists of two signals) or a set of orthogonal signals 
with the same norms. Then the signal distance between the 
two signals from A is proportional to Hamming’s distance 
between the words of the code – representations of these sig-
nals, and, with a good code, the dope is good. However, with 
a high power M of the set X, the increase of which is nec-
essary to obtain high speed, the distances on X are signifi-
cantly different. The code construct that replaces all nonzero 
distances ( )′ ′′0 ,n nD x x  with the smallest of them, which can 
be interpreted as binary distance quantization, does not 
take into consideration these differences. At the same time, 
it has two important advantages – comparative simplicity 
and versatility. Under versatility, a fundamental possibility 
of obtaining signals systems of arbitrary dimensionality and 
with arbitrary signal distances is accepted. Simplicity is 
ensured by the regularity (for example, algebraic properties) 
of codes that combine the same-type elementary signals into 
multidimensional. Code structures retain these advantages 
in one way or another but make it possible to obtain more 
powerful signal systems due to more subtle accounting of the 
distribution of distances on X.

Code structures are based on the split of many elemen-
tary signals into continuous subsets, in each of which, with 
a successful split, the signal distance between the nearest 
signals is greater than all X. The most convenient hierar-
chical structure (HS) is the one in which the ideas of the 
generalized cascade code [23‒25] are adapted for the signal 
system with arbitrary additive signal distance [26, 27]. The 
hierarchy means the set L of the breakdown of sets X into 
classes such that all classes of the same level (one partition) 
are equally powerful and can include classes of the previous 
level only entirely. That is, classes of the previous level are 
“nested” in classes of the next level, similar to the system of 
internal nested codes of generalized cascading code. The set 
of classes of the (l–1)-level, included in the class of the 1st 
level, is mapped mutually and unambiguously onto the set of 
characters of the Мl-dimension code N, Ml, dl)Ml of the l-th 
level. This is the analog of the external code of the general-
ized cascading code, where M1M2 ... ML=M. Since the signal 
distances between elementary signals of the l-level class in-
crease with a decrease in l, the transition from a code struc-
ture with one M- dimensional code to a multicode HS makes 
it possible to increase the power of the set of signals without 
reducing the minimum signal distance. This is similar to 
when the transition from cascading to generalized cascading 
code makes it possible to increase code power without reduc-
ing the minimum Hamming’s distance [24, 25].

The totality of L-convolutional codes makes it possible 
to get a convolutional analog of HS signals for continuous or 

discrete channels with additive signal distance based on the 
same hierarchy. 

First of all, in terms of assessing the effect of signal dis-
tance on the efficiency of code structure operation, we are 
interested in those designs in which the character encoding 
at all levels of the hierarchy is carried out through the signal 
distance [1, 3, 14].

For further analysis and evaluation of efficiency, consider 
the following types of code structures of multidimensional 
signals [1–3, 14]:

– hierarchical signal code construct (HS);  
– hierarchical signal code construct with Euclidean 

metric; 
– reversible signal code construct; 
– reversible signal code construct with Euclidean metric.

5. 1. 1. The hierarchical code construct of multidimen-
sional signals

Suppose that on a set of elementary signals X of power 
M=M1M2...ML a hierarchy is defined ‒ a set L of division 
into disparate classes. Each class of the l-th level of the hi-
erarchy (l-th division) includes Ml classes of the (l–1) level, 
that is, it consists of μl=M1M2….Ml signals. The numbering 
of the classes of the (l–1)-th level, which are included in the 
class of the l-th level, sets a mutually unique mapping of 
the set of classes of the (l–1)-th level onto the set of digits  
{0, ..., Мl–1}. Therefore, the set (q1n,...,qln), where it deter-
mines the only value of the n-th elementary signal, where f is 
the rule (operator) of modulation of elementary signals. We 
compare the l-th level and the minimum l-th signal distance 
in the class [1, 2]

( ) ( )
( )

+
≠′ ′ ′′ ′′

δ = ′ ′′0
1, ,...,

,..., , ...,1 ln 1 ln

, ,minl n n
ql n q

Ln q q q qn n

D x x 	 (3)

where

( )+=′ ′ ′1 ln 1,, , ,..., ,n n l n Lnx f q q q q  ( )+=′′ ′′ ′′1 ln 1,, , ,..., .n n l n Lnx f q q q q

The L level class is the same as X, so δL=δ. In the hierar-
chy, one can also include a zero level with M classes of one 
signal in each and at δ0=∞. Since the class of the next level 
can include the class of the previous level only entirely, then 
one can combine two levels by disregarding the (l–1)-th 
partitioning, so that one can take into consideration that 
δ1>δ2>...>δL=δ.

Let q1=(qi1, ..., qiN) be the word of code (N, Ml, dl)Ml of 
the l-th level, the source dictionary is represented by the 
Cartesian product of the subsection of mutually unambig-
uous mapping onto the l-level code. Under the hierarchical 
structure, authentic authors understand the totality of the 
hierarchy on the set of elementary X signals, the mapping 
of the f sets of (qin, ..., qLn) on the set of X, L level codes and 
L mapping φl. The scheme of the corresponding sequence of 
transformations (modulation) is as follows:

( ) ( )φ→ → = →1 1 ln,..., ,..., .l f
L l l nu u u q q q x

Here, the left arrow means splitting a word into sub-
sections (the word u can be a block in the sequence of 
characters of the source of information; if the power of the 
sets of blocks is less, then some dictionary words and sig-
nals are not used). Then each subword is encoded into the 
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word code (Nl, dl )Ml. The result is L code words of the same 
length N. The elementary signal modulator converts a set 
of n-characters of all words into the n-th elementary signal 
that enters the channel.

Assertion 1. The hierarchical structure sets the signal 
system with a power of the set of signals and with a minimum 
signal distance [3, 14]:

( )
≤ ≤

> δmin .l l
i l L

D d

 
			   (4)

The statement about the number of signals is obvi-
ous. It is also clear that HS sets the signal system, that is, 
the mutually unambiguous mapping of dictionary U on 
the set of signals A. To prove (4), consider a distance be-
tween the two signals ( )′ = ′ ′1,..., ,Nx x x  ( )=′′ ′′ ′′1,..., ,Nx x x
where ( )′ ′=′ 1 ,..., ,n Lnnx q qf  ( )′′ ′′=′ ′1 ,..., .n Ln nx qf q  There are at 
least one l and one n such as ≠′ ′′1 1n nq q  at x′≠x′′ and, then, 
there is { }λ = ≠ < < < <′ ′′1 1max : ,1 ,1 , .n nl q q l L n L  Then δλ 
is the least of the nonzero distances between the elemen-
tary signals included in x′ and x′′ any of such distances 

( ) ( )λ≥ δ δ′ ′′′ ′′0 1 1, , ,n nnnx qD x q  where ( )′′δ ′11 ,n nqq  is the Kroneck-
er symbol (0 or 1). Hence:

( ) ( )λ λ λ λ λ
=

≥ δ δ ≥ δ′ ′′ ′ ′′∑
1

, , ,
N

n n
n

D x x q q d  	 (5)

since the signals correspond to different words of the λ-th 
level code. Since such λ is found for any pair of different 
signals from, (4) follows from (5). 

With the predefined minimum signal distance D, the 
minimum Hamming’s distance of codes should be chosen 
equal to [1, 2]:

 =  δ 
,l

l

Dd  	 	 (6)

where ]D/δl[ is the smallest integer, not less than D/δl. 
Since at l<L, the Hamming’s distance dl necessary for 

codes of all levels, except the last, can be, especially for 
the first levels, significantly less than d=dL, which makes 
it possible to increase the power of the set of signals in HS 
compared to the code construct.

Note 2. 1: The hierarchy is set by any L equivalence rela-
tionship on X if each breaks X into equal-power classes and 
the class of the next equivalence relation includes either all 
or no elements of the class of the previous relation. Thus, 
if X is mutually unambiguously mapped onto group G (for 
example, [8, 11]) and ⊂ ⊂ =1 2... LG G G G  are its subgroups of 
orders μ1, …, μL, where μL=M1…Ml, then the adjacent class 
of group G on the subgroup Gl is mapped on the class of the 
l-level of the hierarchy. This type of HS with Hamming’s 
distance as a signal includes generalized cascading codes. If 
X is given (as the region of values) by the function of integer 
arguments, then the equivalence ratio can be defined by the 
fixation of some arguments.

Let (λ1,…., λΛ) be a permutation of indexes and qln=pλ. 
Any such order of indices corresponds to the Λ-level hier-
archy with the minimum distances δl, conditioned by (3). 
Instead of permutation, one can use another arbitrary 
mutually unambiguous match of sets (p1n,…., pΛn) and  
(q1n, …, qLn), given by L functions. We do not know the 
general method of such variable recoding, which leads to a 

successful hierarchy. Some of the recoding techniques are 
given in examples 8–10.

Note 2. 2: The signal system given by the hierarchical 
structure can be matched with other HSs, as any of the 
L! level permutations define any HS. Let qln becomes a 
symbol of the l-th level at the i-th permutation, at which, 
taking into consideration the corresponding changes in (3), 
the order of character fixation, the minimum distance 
equals δ( ).i

l  From statement 1, the score from below follows 
( )≥ δ( )min .i

l iD d  This score is true for all permutations, 
therefore ( )≥ δ( )max min .i

i l l iD x d

5. 1. 2. The hierarchical code construct of multidimen-
sional signals with Euclidean metric and rotary modulation

Let the signal be a vector of NV-dimensional real Euclid 
space composed of Nv-dimensional vectors (elementary 
signals).

The Euclid distance is not additive but its monotonous 
function is a square of the Euclid distance, which is defined 
as energy distance. The specified distance is not a distance in 
the generally accepted sense as it does not satisfy the “trian-
gle axiom” but it is additive and can serve as a signal distance 
of HS. From monotony, it follows that the optimization of 
signals at minimum energy and Euclid distances is equiv-
alent. Consider examples, given that the energy distance 
between two elementary signals [2, 3] is

( ) ( ) ( ) ( )

( )

ν

=

= − = ρ + ρ −′ ′′ ′ ′′ ′ ′′

− ρ ρ ϕ = ρ − ρ + ρ ρ φ′ ′′ ′ ′′ ′ ′′

∑ 2 2 2

0

2 2

,

2 cos2 4 sin ,

n n in in n n
i

n n n n n n

D x x x x

	  (7)

where ρn=|xn| is the norm of the vector xn, φ is half the angle 
between vectors ′nx  and ′′.nx  

Let v=1 and the one-dimensional set X take the form 
X={x=A+qna:0≤qn≤M–1}, where A and a are the constants, 
and the symbol is a positional record as an L-bit number with 
a mixed base, that is [2, 3]:

−= + + +1 2 1,... ... .n n L L n L Lnq q M M q M q 		   (8)

The l-th class of the hierarchy level is a subset with X 
corresponding to fixed, as a result of (3), (7), which, togeth-
er with (6), determines the minimum Hamming’s distance 
dl required for the l-th level code. The corresponding HS 
differs from the structure in work [12] only by the rule of 
choosing the Hamming’s distances dl. 

If all the values of each of the characters qln are consid-
ered equal, then the average energy of the elementary signal 
is minimal at A=–a(M–1)/2 and is equal to [2, 12]:

( )= −2 2 1 /12.E a M 			    (9)

Calculations show that at N=32, r=1, the codes (32, 26, 4)2 
and (32, 6, 16)2 match the signal system M=232 with a min-
imum energy distance D=12.8 at a single average energy per 
coordinate. This is 3.2 times more than with no excess binary 
signals ±1. In order to obtain with the same signal system 
using a code construct, a quaternary code (32, 16, 16)4 would 
be required, which does not exist (it exceeds Hamming’s 
boundary [26]).

Note that the design of this code construct is suitable 
at 16 amplitude-phase modulation, which is matched by 



75

Information and controlling system

two-dimensional elementary signals in the form of a pair of 
one-dimensional quaternary ones [6].

The following are the signals with the same Nv ener-
gies (at a single average energy per coordinate), that is, 
signals in the sphere, the demodulation operator of which is 
invariant under known conditions to the scale of the signal. 
To use HS to build such signals, we adopt a stronger assump-
tion that the energy of each v-dimensional elementary signal 
is equal to

ν+ + = ν2 2
1 ... .n nx x 		   (10)

Sometimes (10) also displays physical limitations on the 
signal, such as those associated with a peak factor.

Satisfying (10) the set of elementary signals X belongs 
to the radius of a sphere, that is, it is a polytope [28] (the 
polytope is understood both as the figure and the set of its 
vertices; its radius ‒ the radius of the sphere). The vertices of 
such an elementary polytope can be obtained from one of the 
second turns in the v-dimensional space, which is described 
by v–1 angles, so the corresponding modulation of elementa-
ry signals can be called rotary. Phase modulation (PM) is a 
separate case of the rotary one, at v=2. With the component 
of rotary modulation, a multidimensional signal is a set of N 
elementary signals with rotary modulation of each of them.

The polytope X allows mapping to the corresponding 
orthogonal real (or unitary complex) group of v-dimension-
al space and the hierarchy can be described by a number 
of subgroups of this group. However, in these examples, 
one can do with more obvious geometric representations, 
without attracting the concepts of groups of movements. 
First, some elementary signal хn is selected, which is taken 
as a (degenerate) elementary polytope of zero level. M1 of 
its rotations (without vertex matches) give M1-vertex poly-
tope (class) of the first level. Combining М2 turns of a poly-
tope, we get a polytope – a second-level class, and so on. The 
energy distance δl is the square of the length of the smallest 
edge of the polytope. If the angle between the vertices on 
this edge, then, as a result (7), (10), we get [3, 28]:

δ = ν ψ2
1 4 sin .l 		   (11)

At the constituent phase modulation (CPM) a 2N-dimen-
sional signal is formed by N signals of the M- dimensional PM. 
If М=M1...ML, then the suitable HS of signals of CPM (it is 
almost indifferent from the structure from work [1], as in Ex-
ample 1), in which the class of the l-th level of the hierarchy is 
obtained by Мl turns of proper (M1...Ml–1)-angle shape. The 
minimum energy distance in the class is 0 [2, 12].

( )δ = π2
18sin / ... .l lM M  		  (12)

The CPM signal is determined by a set of phases (a1, ..., аN), 
where [2, 3]:

( )
( )

= =

= + π + +0 1 1

arctg /

2 / ... / ... ,

n in n

n in Ln L

a x x

a q M q M M 	  (13)

qlnϵ{0,…, Ml–1}, ano is an arbitrary initial phase. 
Here, the sum in parentheses or part of its terms, can 

also be represented using the Chinese residual theorem if 
the corresponding МL are mutually simple [26]. At Ml=2 
or 3, the Hamming’s distance of the l-th level code is strictly 

proportional to the energy one. If, in addition, δl are treated 
as integers, then in (6) one can avoid losses for rounding. 
In this sense, two-level constructions with M=4 and 6 are 
interesting.

A signal at phase modulation of the type of PM-4 (QPSK – 
Quadrature Phase Shift Keying) quaternary PM can be 
considered as a pair of binary one-dimensional signals with 
values ±1. This makes it possible to compare the HS of PM-4 
the type of CPM with the best PM-4 the type of CPM. Let 
xn–1=–(–1)p2n–1, x2n=–(–1)p2n, and the binary set belongs 
to the code (2N, d)2, which defines the system from signals 
with a minimum energy distance D=4d1. If this code is the 
best, then no four-point CPM can give a greater number of 
signals. On the other hand [3, 12],

( )
( )( )−

= =

= −π + π ρ ⊗ ρ + πρ
1 2

2 1 2 2

arctg /

/ 4 / 2 ,

n n n

n n n

a x x

where Θ means addition modulo 2.
Comparing this expression with (13) at L=2, M1=M2=2, 

we see that q1n=p2n, q2n=p2nΘp2n–1. From where it follows 
that, in this case, the use of HS is equivalent to narrowing 
the set of all binary codes of length 2N to its subset. This 
follows the Plotkin design, which is determined through the 
direct sum of codes [26].

It is known that Plotkin design leads to good or even 
optimal codes.

Example 1: M=6, M1=3, M2=2, δ1=6, δ2=2. At D=6d1, 
codes are required here, and If D=6, then the code of the first 
level is no-redundant and, at N=2m–1, the second code can be 
a Hamming code. Then, to get D=12, codes [N, N–1, 2]3 of the 
first and second levels are required, for example, the BCH 
code [32, 21, 6]2, in this case, that is, more than at a four-
point PM at a distance greater than at binary PM.

If, at M=6, instead of (13), one uses a representa-
tion based on the Chinese residual theorem. That is, take 
an=(2p1+3p2)π/3, where p1 is a three-way, p2 binary charac-
ter, identified with the characters of the codes of two levels, 
then the hierarchies of different example constructs can 
differ only by the permutation of levels.

The hierarchy is usually the better, the more vertices 
the polytope of the first levels has, unless, of course, the 
length of the smallest edge of each polytope Х(l) is close 
to the maximum with the predefined number of vertices 
for all l.

At v=3, one of the many correct or semi-correct poly-
hedral shapes can be taken as an elementary polytope, each 
of which can usually be mapped to several hierarchies. For 
example, a cube (±1, ±1, ±1) can be represented as M2=4 of 
the first level class, each containing M1=2 opposite verti-
ces. Then δ1=4, v=12, δ2=4. Another hierarchy is given by 
two turns of the tetrahedron (М1=4, М2=2, δ1=8, δ2=4). 
Of course, the cube will not make it possible to get a signal 
system, better than the best quaternary CPM. The most 
successful are the hierarchies, which are composed of the 
vertices of the icosahedron, the dodecahedron, and the union 
of these figures (oriented so that the centers of the faces of 
one and the vertex of the other lie on the same rays from the 
origin of the coordinates) and the Archimedes semi-proper 
polyhedron [5, 28].

Icosahedron, in particular, can be considered as six turns 
of diameter (М1=2, М2=6, δ1=12, δ2=3cos2 (π/10)). And the 
dodecahedron ‒ as five tetrahedron rotations (M1=4, M2=5, 
δ1=8, δ2=16–sin2 (π/10)) [19, 20].
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A series of proper and semi-proper four-dimensional 
shapes are described by the finite groups of quaternions [20] 
that have their own subgroups.

5. 1. 3. The reversible code structure of multidimen-
sional signals

Let the set of X elementary signals be divided into R 
continuous subsets ( ) ( )−0 1,..., ,RX X  P is the code of length 
N with the symbols { }Î −0,..., 1 .np R  We shall match the 
word ( )= Î,...,i Np p p P  with the constructive class of 
signals ( ) ( ) ( )= × ×1 ... NpppX X X  and assume that in the X(p) 
class the selected signal class ( ) ( )⊆p pA X  of power M(p) 
with the minimum signal distance D(p), and the minimum 
distance between the constructive classes of signals is 
equal to ( ) ( ) ( )( )=, min , ,r p r pD D x x  x(r)ϵX(r), x(p)ϵX(p). Full set 
of signals [3, 4]:

( )

Î

=


.p

p P

A A  	 		  (14)

The design of the signal system, which is due to the set A 
and its mutually unambiguous mapping on the dictionary of 
the source shall be called a heterogeneous construct (since 
each class X(p) is kept in the Cartesian product X(P) of the 
dissimilar sets X(Pn)). It is obvious.

Assertion 2. A heterogeneous construct determines the 
signal system of power [4]:

( )

Î

= ∑ .p

p P

M M  	 	 (15)

with a minimum signal distance [2, 3]:

( ) ( ){ }
Î ≠

≥ ,

, ,
min , .p r p

r p P r p
D D D  		 (16)

Another estimate of the minimum signal distance using 
the minimum Hamming’s distance dp of the code P may be 
more convenient. Assume ( )δ = δmin , ,x x i j ≠i j  is the least 
signal distance [2, 3]

( )
( ) ( ) ( ) ( )

( ) ( )( )
Î Î

δ = 0
,

, min , ,
i i j j

n n

i j
x n n

x X x X
i j D x x ≤ ≤ −0 , 1,i j R 	 (17)

Between the subsets of the set of elementary signals. 
Then, from statement 2 and the additivity of the signal dis-
tance, we directly obtain.

Consequence. The minimum signal distance of the het-
erogeneous construct of a signal system satisfies the condi-
tion [3, 5]

( ){ }
Î

≥ δmin , .p
x Pp P

D D d 			    (18)

In a general case, the heterogeneous construct does not 
differ from reversible. To make it regular, regular methods of 
constructing P codes and  ( ) ( )⊆ .p pA X  signal classes are need-
ed. The hierarchical construct can be considered a separate 
case of a heterogeneous one, and if the character of the word 
pϵP is understood, for example, as a set ( )= 2 ,..., ,n n Lnp q q  and 
X(Pn) as a class of the first level of the hierarchy. Class A(P), 
in this case, is obtained using the code structure, and the 
P code – using an (L–1)-level HS. More powerful are the 
structures that use as P a reversible (generalized equilibri-

um) code [7], and allow, unlike HS, the breakdown of X into 
unequal classes. The reversible code [ ]−0 1,..., RP W W is the 
R-dimensional code of length [3, 5]:

−

=

= ∑
1

0

,
R

i
i

N W  			   (19)

whose each word contains Wi characters with the value 
iϵ{0,…, R–1}. The binary reversible code is equilibrium (some-
times equilibrium codes are the codes with the same number 
of nonzero characters in each word; the reversible code is 
a separate case of equilibrium in this sense; hereafter, only 
binary code is understood as equilibrium).

Below is a mutually unambiguous representation of the 
reversible code [ ]−= 0 1,..., RP P W W  on the set of permutations 
of indexes 1,…,N. The word ( )= Î,...,i Np p p P  can be mapped 
to −0 1!,..., !RW W  index permutations because permutation 

( ) { }= =:p
i nN n p i  does not change the word p. To select one 

of them, we shall map the natural permutation (1, …, N) to 
any initial word, for example, r=(ri, …, rN)=(0,…0, 1, …, 1, …, 
R–1), and let ( ) ( )= π = ,..., ,

p pp i Np r r r  where (1p, …, Np) is the 
permutation of indexes, and the action πp is to be understood 
as a change in the order of passage of code characters, ele-
mentary signals, etc. The action πp is defined unambiguously 
if we make it a condition that at ( )Î′ ′′, ,r

in n N  and <′ ′′n n it 
follows that <′ ′′.p pn n

We shall accept a constructive class of signals X(r)=X0 
and a class of signals ( ) = ⊆0 0

rA A X  corresponding to the 
initial word r, as initial classes. Since the constructive class 
X(p) is a permutation of the Descartes product X0 terms, 
that is, ( ) ( )= π 0 ,p

pX X  it is natural to accept that the signal 
class is ( ) ( ) ( ){ }= π = π Î0 0: .p

p pA A x x A  Then all signal class-
es would have the same power and minimum signal distances. 
Let the dictionary of the source be represented by the 
product U=UA×Up of the UA sub-words of power = 0AM A  
and Up, power =PM P  and → 0: ,A AF U A →: ,P PF U P  

{ }π → π Î: :pF P p P  are the mutually unambiguous repre-
sentations. A heterogeneous construct with the reversible 
code P, predetermined by the initial class of signals A0ϵX0 
and mutually unambiguous representations FA, FP, Fπ is 
called the reversible structure of a signal system (RS). In RS, 
the signal at the input of the channel ( )( )= π ,p A Ax F u  where 

( )( )ππ = ,p P PF F u  Î ,P Pu U  Î ,A Au U  ( ) Î 0A AF u A  (the product 
FπFP can be replaced by one conversion).

Let ( )′ ′′,p pD  be the distance between the constructive 
classes (that is, the nearest class signals) ( )′π 0 ,p X  ( )′′π 0 ,p X  

Î′ ′′, ,p p P  and DA be the minimum distance in the signal 
class A0. Then, from statement 2 and its consequence, we have 

Assertion 3. The reversible structure determines a signal 
system of power M=MAMP with a minimum signal distance 
with a ratio satisfying [2, 3]:

( ){ }′ ′′

Î ≠′ ′′ ′ ′′
≥ ,

, ,
min , ,p p

Ap p P p p
D D D 		   (20)

{ }≥ δmin , .A x PD D d 			    (21)

Considering (21), Hamming’s distance between the clos-
est words of code P can be taken equal to

] [= δ/ .P xd D  			  (22)

Use this ratio if R=2 (that is, the P code is equilibrium) or 
if all nonzero signal distances δx(i,j), predetermined by (17), 
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are the same or close to each other. With significantly dif-
ferent δx(i,j), it is more effective to use the reversible code in 
the form of composition or product of compositions of simpler 
codes. The reversible code [ ]−= 0 1,..., RP P W W  of length N is 
called the composition of the reversible (Ǫ+1)-dimensional 
code − =  1 0 1,..., , ,Q tP P W W N  < −1,Q R  −= + +0 1...t RN W W  
of N length with characters from { }−���� Q t  As the 
first characters Ǫ of this set, choose any, not just the first 
Ǫ elements from the {0,…, Ǫ+1} ) and (R–Ǫ)-dimensional 
code [ ]−=2 0 1,..., RP P W W  of length Nt with characters from 
{ }+ −����Q Q R  If each word of the code P1 is mapped 
to the class of power =

1 2PM P  of words of the code 
P2, generated by replacing the characters t in the word 

( )= Î 1,..., .i Np p p P  For example, in the order in which the 
numbers of their occupied places increase) the characters of 
each word ( ) Î1 2,..., .

tNt t P
It is clear that the composition power of the two codes 

is equal to =
1 2P P PM M M  and the minimum Hamming’s 

distance [2, 3] is:

{ }=
1 2

min , ,P P Pd d d  		  (23)

where 
1
,Pd  

2Pd  are the minimum Hamming’s distances of 
the codes P1 and P2.

The composition or product of compositions can be 
used as a construct (perhaps not too close to the optimal) 
reversible code with the help of equilibrium ones. The 
fact is that although few good structures of equilibrium 
codes are known, there are almost no known constructs of 
non-binary reversible codes. No less significant is the fact 
that the compositional structure of the reversible code 
P for a RS signal system makes it possible, as mentioned 
above, to take into consideration the difference between 
the distances δx(i, j) between the subsets of elementary 
signals. Indeed, let PpϵP be a class of words of the code 
P, to which the word PϵP1 is matched. The minimum 
Hamming’s distance in this class is likely to be dp2. Conse-
quently, two words Î′ ′′, pp p P  correspond to constructive 
classes of signals that ( )′ ,pX  ( )′′pX  differ no less than by dp2 
subsets of X(i) elementary signals, from which it follows 
that

( )′ ′′ ≥ δ
2

, , ,p p
P xD d

where ( )δ = δmin , ,x x i j  ≠ ,i j  { }Î + −, , 1,..., 1 .i j Q Q R
If the set { }+ −, 1,..., 1Q Q R  (that is, any suitable subset 

from the domain of determining the characters of the code P) 
corresponds to a rather distant subset of elementary signals, 
then

 = δ 2 2
/ ,P xd D  		  (24)

may be significantly smaller than the next ones from (22) 
or (22) and (23). Note that in the case in question,  
given (20),

{ }≥ δ δ
1 2

min , , .A P x P xD D d d  			   (25)

If the P code is selected, then it is also necessary to spec-
ify the design of the initial class of signals A0 In one case, 
namely when all the weights of the code are multiples of N0, 
that is,

= 0,i iW w N  = 0,N wN  −= + +0 1... ,Rw w w 	  (26)

this class can be built using HS. To this end, as the initial 
constructive class of signals, a Cartesian power is taken [3]:

=  0
0 ,NX X  	 	 (27)

where ( )( ) ( )( ) −−= × ×

0 10 1...
Rw wRX X X is the constructed set of 

elementary signals. To build a system (of the initial class A0) 
of signals in X0, the HS is suitable with N0 elementary signals 

Î  .nx X  The reversible construction of a signal system with 
a hierarchical structure of the initial signal class is to be 
called a hierarchical reversible structure (HRS). Some ways 
to construct a hierarchy on a set X  (suitable in other cases) 
are given in the following paragraph.

5. 1. 4. The reversible code construct of multidimen-
sional signals with Euclidean metric

To construct, by using HS, signals on a sphere −1 ,v

v

N
NS  that 

is satisfying the condition [2, 3, 5]:

=

=∑ 2

1

,
N

n v
n

p N  = ,n np x 	  (28)

a stronger condition (10) was introduced in the previous 
chapter. The structures from the previous chapter make it 
possible to track the execution of (28) in a more general case.

Let ( ) ( ){ }−0 1,..., RX X  be a set of elementary v-dimensional 

polytopes and ( ) ( )= .i ip X  For certainty, we assume that 
( ) ( )+< 1i ip p  (if ( ) ( )+= 1 ,i ip p  it is possible and, as a rule, it is 

advisable to combine two polytopes into one with a larger 
number of vertices). As a result of (7), (17), a minimum en-
ergy distance between polytopes [3, 5] is:

( ) ( ) ( )( ) ( ) ( )δ = − + ψ
2

2, 4 sin ,i j i j
x iji j p p p p  		  (29)

where ψij is the half of the smallest angle between the verti-
ces of polytopes. The mapping ( )= ,np

nX X  { }Î −0,..., 1np R
defines a polytope to which the n-th elementary signal xn 
belongs and thereby matches the word ( )= 1,..., Np p p  of the 
code of polytopes P to a constructive class X(p). The distance 
between the two classes ′( ),pX  ′′( )pX  [3, 5]:

( ) ( )′ ′′

=

= δ ′ ′′∑,

1

, .
N

p p
x n n

n

D p p  		  (30)

Selecting the representation code P which on a set of sets 
of radii (p1, …, pN) satisfies (28), and, by matching each word 
p of the code signal class A(p), we obtain a system of signals 
with equal energies, the parameters of which are determined 
by assertion 2 and the consequence of it. It is advisable (when 
possible) as adjacent polytopes X(i), X(i=1) to choose mutual 
ones [28, 29], orientating them so that the centers of the sur-
face nests of one and the vertex of the other lie on common 
rays from the coordinate origin. Moreover, if polytopes are 
different, a larger radius should be in a polytope with a larger 
number of vertices.

5. 2. Estimating the influence of change in a signal dis-
tance on operational efficiency for certain types of code 
structures of multidimensional signals

Mathematical modeling methods to assess the effect of 
signal distance change on the efficiency of continuous trans-
mission of information for certain types of code structures of 
multidimensional signals.
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For a hierarchical code structure, the following calcula-
tions will be made. Example 2: Assume v=2, N=3, X(0) is the 
point at the coordinate origin (degenerate polytope), X(1) 
and X(2) are the mutually rotated hexagons with radii 

( ) =1 2,p  ( ) =2 6p  and angles at the vertices [5, 28, 29]:

( ) ( )α = − π + π + π1 / 6 / 3 2 / 3,i
n n ni s t

where { }Î 1,2 ,i  { }Î 0,1 ,ns  { }Î 0,1,2 .nt  
As a result of (29), here ( ) ( )δ = δ =0,1 1,2 2,x x  ( )δ =0,2 6.x  

The four words of the polytope code P satisfy (28): (1,1,1) – it 
corresponds to a set of radii ( ) ( )=1 2 3, , 2, 2, 2p p p  and cy-
clic shifts of the word (2,0,0), that is, a set of radii ( 6 ,0,0). 
Let D=6. The energy distance between any pair of four con-
structive classes of signals X(p) is not less than D=6, which is 
checked by (29). Between the signals of each of the last three 
classes (with different dialing radii), the distance is also at 
least D=6, so all elements of these classes can be taken as sig-
nals. Such signals are 3∙6=18. In the first constructive class, 
63=216 signals. Of these, using an HS example 4, one can 
select 332=54 signal at D=6 The resulting set of M=72 sig-
nals corresponds to the most well-known 6-dimensional 
packing of equal spheres relating to their equal sphere [30]. 
Elements of this set can be encoded with four source charac-
ters ( )= 1 2 3 4, , , ,u u u u u  from which u1, u2 are three, u3 is bina-
ry, u4 is quaternary. If ≤4 2,u  then ( )= = = =1

1 2 3 2,p p p p  
that is, the word р=(1,1,1) of the polytope code is passed, 
and the angles at the vertices of polytopes (hexagons) are 
equal to ( )α = α = π + π1 / 3 2 / 3,n n n ns t  where =1 1,t u  =2 2,t u  

=3 4,t u  = = =1 2 3 3.s s s u  If =4 3,u  then = 0np  at ≠ + 21 ,n u  

+ =
21 6,up  +α = π + π + π

21 3 1/ 6 / 3 2 / 3.u u u  The resulting set 
of signals can be matched to the hierarchy and then use HS. 
The corresponding structure, however, wins a little com-
pared to the example 1 construct.

Heterogeneous constructions similar to those described 
in recent examples are unacceptable at high dimensionality. 
Let us turn to the RS when, given (19), (28) [3, 5]:

( )( )
−

=

=∑
1 2

0

,
R

i
i v

i

p W N  ( )( )
−

=

=∑
1 2

0

,
R

i
i

i

p w wv  		  (31)

where the latter formula refers to case (26), that is, to HRS. 
For a hierarchical heterogeneous code construct, we per-

form the following calculations.
Example 3. Let v=1 and the ternary set { }= ±0, 1X  

be divided into R=2 subsets ( ) { }=0 0X  (the point at the 
beginning of the numerical axis, p(0)=0) and ( ) { }= ±1X p  
(zero-dimensional sphere of radius p(1)=p), the only non-
zero distance between which is equal, considering (31), to 

( )δ = δ = =2
10,1 / ,x x p N W  where W1 is the weight of the 

equilibrium code [ ]= − 1 1,P P N W W  of length N. Since all 
W1 of nonzero signal components belong to the same bi-
nary sets X(1), for the initial signal class, a code construct 
with a character code (defining the signs of nonzero com-
ponents) ( )1, ,A AW M d  at δ = 24 .p  It follows from (2) and 
assertion 3 that such an RS would determine the signal 
system of power = A PM M M  with a minimum distance 

{ }≥ 2 2min 4 , ,A PD d p d p  where MP and dP are the power and 
Hamming’s distance of code P, =2

1/ .p n W  At N=2W1,  D=4, 
a code can be the entire set of words of length N of weight 
W1 whose power is = /2,N

P NM C  and the binary code of charac-
ters – non-redundant [5]. The power of the signal system at 
D=4 will be = = /2 /22 .N N

A P NM M M C

At dimensionality 16 of HS, example 1 with codes [4,4,1]2, 
[4,3,2]4, [4,1,4]3 produces 218∙12 signals. The structure 
of example 3 with the same dimensionality and distance 
gives (24–1)∙28=28∙15 signals. The difference, in this case, 
is insignificant because the dimensionality of the signals is 
small and is caused by the fact that the RS allows any words 
of the code P of length 4N0 weight 2N0 with the required 
Hamming’s distance, and HS – only those in which the 
weight of each four characters ( )− − −4 3 4 2 4 1 4, , ,n n n np p p p  is equal 
to two.

The HRS discussed below allows a similar simplifi-
cation when only such words of the reversible code are 
used, in which each group of w adjacent characters pn, 

{ }Î − +1,..., ,n mw w mw  ≤ ≤ =01 / ,m N N w  contains exactly 
wi of characters i.

Example 4. We split the set of five one-dimension-
al elementary signals { }= ± ±0, , 2X p p  into R=3 subsets 

( ) { }=0 0 ,X  ( ) { }= ±1 ,X p  ( ) { }= ±2 2 .X p  In designations (26), 
we accept w0=w2, w2=2w0, N=4N0 and, taking into con-
sideration (31), we obtain p2=2/3, whence, given (29), 

( ) ( )δ = δ = δ =0,1 1,2 2 / 3,x x x  ( )δ =0,2 8 / 3.x  The ternary 
permutable code [ ]= 0 0 0,2 ,P P N N N  here is obviously ad-
vantageous to construct by means of a composition of two 
equilibrium codes [ ]=2 0 0,P P N N  with symbols from {0, 2} 
and [ ]=1 0 02 ,2P P N N  with symbols from {1, t} (then replacing 
t with symbols 0 or 2 of the code P2 (chapter 5. 1. 1)) because 
the distance δx(0,2) is four times greater than δx. Let D=32/3. 
Then the Hamming’s distance of the code P2 should be equal 
to =

2
4.Pd  At N0=8, as P2, one can choose =

2
870PM  words 

of weight 8 of the Hamming’s code [16, 11, 4]2 (on the upper 
estimate from [17], ≤

2
1320PM ). The code [ ]=1 16,16P P  

must have Hamming’s distance  ] [= δ =
1

/ 16P xd D  and it can 
be an equilibrium (without zero and single words) code of 
power ( )= − = ⋅

1

52 2 1 2 31.PM  The required ternary reversible 
code of power = = ⋅ ⋅

1 2
2 31 870P P PM M M  is built. The initial 

class of signals will be built using HS, taking as a composite 
elementary polytope a three-dimensional (since one of the 
coordinates is zero) parallelogram ( ) ( ) ( ) ( )= × × ×

0 1 1 2 ,X X X X X  
that is, 8 sets ( ) ( ) ( )( )− − −3 2 10, 1 , 1 , 1 ,

s s s
p p p  where { }Î 0,1 .is  If

=1 1 ,ns q  = Å2 1 2 ,n ns q q  = Å Å3 1 2 3 ,n n ns q q q

then, from (3), we obtain

( )δ = + + =2 2 2 2
1 4 4 16 24 ,p p p p

 
{ }δ = + =2 2 2 2

2 min 4 4 ,16 8 ,p p p p

{ }δ = =2 2 2 2
3 min 4 ,4 ,16 4 .p p p p  

Thus, we need three level codes with Hamming’s dis-
tances ] [= δ/ ,l ld D  equal to d1=1, d2=2, d3=4, that is, 
codes [8,8,1]2, [8,7,2]2, [8,4,4]2, which corresponds to the 
power of MA=28+7+4=219. In total, the system of signals 
of dimensionality of 32 built with the help of HRS has  
M=MAMP=221⸱3⸱5⸱29⸱31=234,72 signals at = =216 32 / 3.D p

Codes [8,8,1]2, [8,7,2]4, [8,4,4]4, [8,1,8]3 produce a 
signal system of the same dimensionality and the same 

= =216 32 / 3,D p  as the HRS from example 4, but with a 
number of signals = =8 7 4 31,5852 4 4 3 2 ,M  that is, about three 
bits less.

Example 5. Assume N0=10, D=9. Then the codes (in level 
ascending order) [10,10,1]3, [10,10,1]3, [10,9,2]2, [10,6,3]2, 
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[10,6,4]3, where the fifth level code comes from the Galley 
ternary code and the sixth level is not used (the code con-
sists of a single word), give the initial signal class of power 

= =26 15 56,213 2 2 .AM  The above ternary code power score is, at 
dP=12, MP>216,38 whence M=MAMP>272,6.

The simulation showed that the fifth-level Reed-Solomon 
code [10,7,4]9 and the code [10,2,6]3 of the sixth level togeth-
er with the codes of the first four levels give a simplified 
version of the HRS from example 10a, at M=334∙217=270,89, 
which is not much worse. Level 5 code [40, 26.8]9, obtained 
by shortening the Reed-Solomon code over HS (81), and the 
code [40,16,2]2 of the sixth level, together with five other 
codes, produce a simplified version of the HRS example 10b 
of power M=3131∙279=2286,64, that is, significantly less.

5. 3. The comparative analysis of reducing a signal 
distance while improving the operational efficiency of a 
continuous channel of information transmission

Generalized results of estimating the signal distance reduc-
tion effect with improving the operational efficiency of code 
structure of multidimensional signal are given in Table 1. 

Table 1 lists the parameters of signal code constructs 
built using the results of solutions to the examples of the 
specified types of code structures.

The first column shows the dimensionality of a signal sys-
tem. The second – the dimensionality of elementary or, in the 
form of the sum of dimensionalities, a composite elementary 
polytope. The third – the minimum energy (Euclid square) 
distance (with a single average energy per coordinate). The 
fourth column shows the speed R in bits per coordinate. 
Then the R1 speed of the best quaternary CPM (or other PM 
specified in the footnote) with the same Nv and D upper Shan-
non speed limits RSh [1] and Kabatyansky-Levenstein speed 
RKL [30]. The last column shows the example number and the 
structure (HeS stands for a heterogeneous structure).

Table 1

Results of computing the signal distances of code constructs 
of multidimensional signals

Nv v D R R1 RSh RKL Note
30 2 6 1.159 0.7921 2.213 1.592 1, HS
64 2 12 1.096 0.895 2.240 1.639 1, HS
40 4 16 0.963 0.825 2.190 1.082 1, HS
6 2 6 1.028 0.7921 1.225 1.0655 2, HeS
6 3 2.07 1.515 0.2922 1.887 – 2, HeS

16 1+1 4 1.353 1.000 2.163 1.428 3, RS
24 1+2 12 1.024 0.792 1.664 1.1145 3, RS
32 1+1+1+1 10.67 1.085 0.9693 1.854 1.217 4, HRS
32 4 10.67 0.987 0.9693 1.854 1.217 4, HRS
60 2+2+2 9 >1.21 0.9833 2.400 1.802 4, HRS
60 6 9 1.182 0.9833 2.400 1.802 5, HRS

240 2+2+2 18 >1.42 0.9624 2.878 2.307 5, HRS
240 6 18 4.194 0.9624 2.878 2.307 5, HRS

Note: 1 – non-redundant 3-dimensional PM; 2 – non-redundant 6-di-
mensional PM; 3 – at D=8; 4 – at D=16; 5 – from [31, 32].

6. Discussion of results of reducing the signal distance 
while increasing the operational efficiency of the code 

construct of a multidimensional signal

Our analysis of the results, summarized in Table 1, 
reveals the following. The win of HRS compared to HS is 

the more noticeable the larger the dimensionality. Note, for 
comparison, that a single (binary) PM corresponds to the 
speed R=0.5 and D=8, and the two-time (quaternary) ‒ 
R=1.0, D=4.

This is explained by the fact that the HRS, due to the 
peculiarities of formation and the possibility of varying 
the changes in the components of the code construct, can 
provide all nonzero distances with the same value. First of 
all, this is an opportunity to form the correct simplex from 
two signals of a simple HRS. Or a set of orthogonal signals 
with the same norms in more complex HRS constructs. An 
additional advantage of the HRS, which is confirmed by 
the data in Table 1, is that it has the ability to replace all 
nonzero signal distances with the smallest of them. That is, 
the possibility of binary quantization of the signal distance. 
This gives significant advantages in the speed of information 
transmission. As shown by the data in Table 1.

We shall define the features of the proposed method 
of forming code structures of multidimensional signals. 
Implementing modulation procedures, as can be seen from 
their description in chapter 5. 1, 5. 2, does not encounter 
fundamental difficulties even in a general case, unless, of 
course, an acceptable encoding procedure is known for each 
code. Difficulties may rather arise due to the fact that HS 
and HRS usually require non-binary codes and even option-
ally codes over the prime number. Not much is known about 
specific codes of this type. Recently, significant progress has 
been made in the theory of non-binary codes. The new terna-
ry and quaternary codes [30‒34] are described. Attractive 
is the direction associated with the codes above the rings of 
deductions [35, 36]. Sometimes, the necessary codes can be 
built using HS. The possibilities of reversible structures are 
also limited primarily by a small number of known struc-
tures of reversible codes, especially non-binary ones. Obvi-
ously, the most promising HRS is with a reversible code in 
the form of a composition of equilibrium ones (chapter 5. 3).

Thus, this paper has established and substantiated the 
relation of a signal distance of the specified types of code 
structures and the speed of the continuous channel of trans-
mission of multidimensional signal against the background 
of maintaining a predefined level of noise immunity.

The limitations inherent in the above study include the fol-
lowing. It is possible to build an acceptable procedure of max-
imum plausible demodulation only in exceptional cases. The 
simplest approximate procedure that implements the energy 
distance D (that is, leading to the correct solution at the energy 
of interference <D/4) can be constructed as a sequence of exe-
cutables in order of reducing the levels of acceptance procedures 
in general for individual codes that determine the design of the 
signal system if each of them implements D (similar to the key al-
gorithm for generalized cascading codes [23]). At the same time, 
the acceptance in general for the HS l-level code implies mini-

mizing at the appropriate limits ([4]) of the sum ( )=
∆∑ 1

,
N

ln lnn
q  

where
 ( ) ( )+<

∆ = ∆ 1 1,,
ˆ ˆmin ,..., , ,..., ,

jn
ln ln n n ln l n Lnq j l

q q q q q
 ( )∆ 1 ,...,n n Lnq q

  
 
is the energy distance (or other measures of difference) be-
tween the n-th elementary signal ( )= 1 ,...,n n Lnx f q q  and the 
corresponding observation zn at the output of the channel, 
ˆinq  is the symbol of the word-solution of the code of the i-th 
level, i>l. With HRS, the reception in general for the revers-
ible code is initially performed, which can be interpreted as 
a code of the (L+1)-th level (with the compositional design 
of the code, demodulation begins with the P1 code). With 
RS, after solving the word of the reversible code, the task is 
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reduced to the demodulation of the initial class of signals. 
Proof of the implementation of distance D with such a simple 
algorithm is based on the fact that with the correct reception 
of words of previous levels, the value ( )∆∑ * ,ln lnq  where *

lq  is 
the transmitted word of the l-th level code, does not exceed 
the energy of the interference vector.

Thus, for the suitability of the described structures, in 
fact, it would suffice that, for each of the defining designs 
of codes, there are known coding procedures and at least 
suboptimal reception in general.

A certain disadvantage of the proposed coding methods 
devised in the present paper is that encoding procedures 
should be developed under binary codes. However, in turn, 
the development of methods for improving code structures 
such as HS and HRS implies the use of non-binary codes as 
well. In this work, the issues of applying such codes are not 
considered in detail.

Further research on the use of non-binary codes for 
the formation of code structures is proposed as a further 
promising area of research and development in this di-
rection. Additionally, certain prospects of research are 
associated with the issue of assessing the conditions of 
suboptimality of signal reception under the conditions 
of influence of additive Gaussian noise and during the 
Rayleigh attenuation of the multidimensional signal on 
the transmission path.

Such research involves the development of theoretical 
provisions for the study of the effects of noise and perturba-
tions in the formation of a code construct of a multidimen-
sional signal. And, against the background of accounting 
for the Rayleigh signal attenuation, there may be diffi-
culties in the construction of the necessary mathematical 
apparatus and its further implementation in software.

7. Conclusions

1. It was established that the code constructs that are 
based on the construction of a hierarchical structure set a 
system of signals with minimal signal and distances, which 
can be determined by the values of the minimum Hamming’s 
distances in the structure of code codes.

These types of code structures, in this work, include a 
hierarchical code construct of signals; a hierarchical code 
construct of signals with Euclidean metric; a reversible code 
construct of signals; a reversible code construct of signals 
with Euclidean metric.

By varying the values of signal distances to the mini-
mum, compared to Hamming’s distances, for certain code 
structures of multidimensional signals, it is possible to 
significantly increase the volume and speed of transmitted 
information along a continuous channel.

2. As a result of modeling, it was established that, de-
pending on the type of code structures, changes in a signal 
distance can significantly increase the speed of information 
transmission in bits per coordinate.

For a hierarchical code structure, this can be up to 
20 percent with a halved signal distance.

For a hierarchical reversible structure, with a decrease in 
the signal distance by 10 percent or more, the increase in the 
speed of information transmission can reach up to 35 percent 
or more.

3. The hierarchical reversible code construct, in compari-
son with the hierarchical code structure, ensures a win up to 
two or more times in the speed of information transmission 
with a halved signal distance. 

Implementation of the modulation procedure has no fun-
damental difficulties, on the condition that for each code of 
the code construct the encoding procedure is known when 
using binary codes. 

The simplest approximate demodulation procedure that 
implements the signaling distance can be constructed as 
a sequence of procedures in descending order of reception 
procedures in general for individual codes that determine 
the design of the system as a whole.
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