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1. Introduction

Shock-absorbing platforms are used to soften the impact 
when landing cargo or heavy equipment on the Moon, Earth, 
or another planet. The most widespread platforms, given 
their simplicity, efficiency, convenience, and cheapness, are 
those equipped with gas-filled bag. During parachute land-
ing on Earth, cushions are filled with atmospheric air by the 
energy of the oncoming flow. In order to avoid the rebound 
of the cargo in the period from the moment the bottom of the 
bag touches a hard surface until the platform lands, all air 
must come out of the cushion. During this period, significant 
pressure is created in the airbag, which causes significant 
stresses and strains in the material of the airbag. The need 
to determine them is due to the necessity to calculate the 
strength, air volume in a deformed airbag, and the area of 
contact of the airbag with the soil and platform. These pa-
rameters are the data required for the design calculations of 
shock-absorbing systems.

An estimation model of the airbag is a thin membrane 
shell, which, with rare exception, allows for an accurate solu-
tion. Therefore, in practice, it is necessary to apply approx-
imate methods, typically a finite element method (FEM). 
The disadvantages of this method are the slow convergence 
of approximate solutions when splitting the grid and, as a 
result, their low accuracy. These shortcomings are not in-

herent in the spectral methods that have been advanced due 
to the use in this work. The implementation of estimation 
methods alternative to FEM is long overdue.

The task of calculating the shell is greatly complicated 
by the need to model the physically nonlinear characteristics 
of the fabric material. The peculiarity of physical laws mod-
eling fabric is a large number of constants that characterize 
the properties of the material. Determining the constants 
requires a large number of experiments on specialized equip-
ment, which significantly increases the cost of calculations. 
Therefore, the numerical-experiment-based substantiation 
of the possibility to use simpler materials whose involvement 
does not require a significant experimental base cannot be 
irrelevant.

2. Literature review and problem statement

Airbag have a variety of shapes, types, and configura-
tions. Paper [1] studied four types of airbag and showed that 
a cylindrical airbag with a vertical location is most effec-
tive in terms of slow-down-magnitude ratio. The dynamic 
reaction of the airbag of five different shapes was analyzed 
in work [2]; in study [3], the parameters of the cylindrical 
airbag were optimized. In the three works cited, simplified 
thermodynamic modeling of the landing process was ap-
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plied, which made it possible to derive analytical solutions. 
The disadvantage of this approach is that the strain of the 
airbag is not taken into consideration; this leads to faults in 
the calculation of volume and makes it impossible to calcu-
late the strength.

To calculate the strain of the airbag, a model with known 
but rather complex equations of the membrane shell theory is 
used. These equations are greatly simplified for axisymmetric 
shells but, for most practically important tasks, they do not 
allow for accurate solutions. Precise solutions, only when in-
flating such shells, are based on the use of the first Pipkin in-
tegral [4] but, to this end, the shell material must be isotropic.

A significant number of solutions reported in the lit-
erature were derived by using FEM. The comparison of 
finite-element solutions with the experimental data on in-
flating and longitudinal deformation of the cylindrical shell 
was carried out in work [5]. A Moony Rivlin material model 
was used there. In [6], the landing process is simulated using 
FEM in the LS-DYNA software package in order to further 
optimize it. The same package is used in works [7, 8] whose 
authors compare the method of corpuscular particles with 
the method of volume control and study the effect of mass 
flow, compression, and the thickness of an airbag on its effec-
tiveness. As already noted, such solutions are universal but 
inferior in accuracy to the spectral ones.

Among the limited number of works reporting the use 
of spectral methods, paper [9] is worth noting. In it, the 
Ritz method was used in counter-variational principles to 
obtain two-way assessments in the problem of stretching a 
cylindrical shell made from the Varga and Neo-Hookean ma-
terials. Note that displacements of such a shell do not have 
significant gradients and are rather smooth functions, so the 
use of a power series up to the fourth order to approximation 
displacements used in work [9] is permissible. In a more gen-
eral case, this can lead to significant computational errors.

In most of the cited works, models of rubber-like ma-
terials were used while the material of a airbag is a fabric 
(aviation tarpaulin). This material is characterized by or-
thotropy since the warp and weft have different mechanical 
characteristics. That’s first. Second, fabrics without coating 
react to the load in the direction of yarn in two stages. Since 
the yarn has a wavy shape in a stress-free state, then first 
there is a strain of the clamp at almost zero load level, and 
then, as the load level increases, an additional elastic strain 
appears. These features complicate the modeling of such ma-
terial. For example, in work [10], the function of additional 
strain energy is built in the form of a power function of two 
stresses (along the warp and weft), including nine constants. 
Paper [11] employed a simpler second-order polynomial, 
which made it easy to obtain elasticity modules at a pre-
defined level of stress. However, both in the first case and in 
the second, the resulting functions inadequately represented 
the test data. The use of the third-order orthotropic model 
(cubic dependence of strains on stresses) [12] is better at 
approximating experimental data but requires that 12 con-
stants should be determined.

Work [13] proposed a physical law in which exponential 
functions are used, it is shown that the strain energy func-
tion is available but positive definiteness of the stiffness ma-
trix with significant strains may be lacking. A good correla-
tion of the power model of the material with experimental 
data was obtained in work [14]. However, strain curves are 
built for coated fabric material and they are slightly different 
from curves for uncoated fabrics.

The biological hyper-elastic Fung material was used 
in [15] because the stretch diagrams of this material and 
textiles are very similar. There is also a systematic deriva-
tion of the relations of the geometrically nonlinear theory 
of membrane shells using Biot stresses and strains, thereby 
expanding the series of works by the author on the use of 
this pair of energetically conjugated tensors in the classical 
nonlinear theory of shells [16] and beams [17]. In addition, 
as the review of the literary data shows, spectral methods 
are hardly used by researchers although their effectiveness 
has been repeatedly proven. Examples of their successful use 
can be the solutions to problems of post-buckling behavior of 
a plate under the action of uniform pressure [18] or conver-
gence of edges [19]. These methods have good prospects and 
will be applied in the current study.

3. The aim and objectives of the study

The purpose of this work is to build and substantiate an 
adequate mathematical model of deformation in the cylin-
drical shell made of textile material and to build an spectral 
one. This will make it possible to promptly obtain high-pre-
cision calculation results with their subsequent use in the 
design practice.

To accomplish the aim, the following tasks have been set:
– to derive the ratio of “strain-displacement”, an equi-

librium equation, the boundary conditions, and their corre-
sponding variational principle of virtual work; 

– to define the physical law that most accurately simu-
lates the properties of predefined textile material; 

– to build an spectral solution; 
– to confirm the reliability of the results obtained 

through a numerical experiment.

4. The study materials and methods

Initially, based on the provisions from the general theory 
of shells and the nonlinear mechanics of continuum, the rela-
tions of “strain-displacement” are built, and the equations of 
equilibrium Biot stresses are formulated. The same equations 
are built by direct design of forces and based on the principle 
of virtual work, which confirms their reliability. Constants 
in the function of the state of the Fung’s hyper-elastic bio-
logical material are determined by the method of collocation 
according to the experimental data given in the literature. 
An spectral method is used to construct an approximate 
solution. The accuracy of the solutions is estimated by the 
magnitude of the non-binding in the equilibrium equations. 
The reliability of the solutions is confirmed by comparing 
them with the finite-element solutions obtained by using the 
ANSYS WB software.

5. Results of studying the physically and geometrically 
nonlinear axisymmetric deformation of the cylindrical shell 

5. 1. Relations of the geometrically nonlinear axisym-
metric deformation of the cylindrical shell

The midsurface of the undeformed cylindrical shell is 
set by the radius-vector r whose components in the rect-
angular Cartesian coordinate system take the following 
form (Fig. 1):
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 =  
 

cos , sin , ,
T

s s
r r z

r r
r 		 (1)

where r is the radius of the shell; s – arc coordinate.

The tangent vectors rα and the normal n vector (Fig. 1) 
are determined from the following formulas:

= ∂ = −1 1 1 3cos sin ;
s s
r r

r r e e
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∂
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(*) ,

s
 

∂
∂ ≡

∂2

(*)
(*) .

z
 is intro-

duced.
It is not necessary subsequently to distinguish the co-

variant and contravariant tensor components since ri form 
an orthonormalized basis, which, of course, coincides with 
the mutual one, that is, the first fundamental tensor of the 
surface is identical to

{ } { } { } { }= = ⋅ = = ⋅ = 1.ij i j
ij i jg gG r r r r

All the Christoffel symbols are zero; the Gauss and We-
ingarten formulas take the following form

∂ = −1 1 ;
r
n

r  ∂ = 1
1 .

r
r

n  		  (3)

Thus, the derivative of some arbitrary vector field η= 
=ηβrβ+η3n is calculated by the following formulas

η η   ∂ η = ∂ η + + ∂ η + ∂ η −      
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In the case of an axisymmetric deformation of the shell, 
the displacement vector u would have only two nonzero 
components

= +2 ,v wu r n  	 (5)

where v and w are displacements that are set by the functions 
of one variable – z, the derivative for which is hereafter de-

noted as 
∂

∂ ≡ ≡ ′
∂2 .
f

f f
z

The deformation gradient tensor, taking into consider-
ation the rules of differentiation (4), takes the following form

( )
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where k is the norming multiplier of the deformed normal 
n (Fig. 1). In the case of the volume invariability hypothe-
sis, k is determined from the condition det (F)=1

( ) ( )( )
−

   ′ ′= + + +     

12
2 2

1 1 .
w

k w v
r
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Polar decomposition of the deformation gradient tensor 
F=Q·Λ defines right stretch and proper orthogonal tensor 
components

− −Λ = ⋅ = λ + λ + λ λ1 1
1 1 1 2 2 2 1 2 ;F F r r r r nn  	 (8)
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where λ1, λ2 are the principal stretches:

λ = +1 1 ;
w
r

 ( ) ( )+ ′= +′λ 2 2

2 1 ;w v 	 	 (10)

+ ′
λ
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2

1
cos ;

v
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λ
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2

sin ;
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β is the angle of rotation of the deformed normal. 
Shell strains, depending on the measure selected, are 

written as functions of principal stretches. Hereafter, the 
following is used: 

– a logarithmic measure (Genky strains) 

α αε = λ0 ln ; 		  (12)

– the first-order measure (Biot strains)

α αε = λ −1; 		  (13)

– the second-order measure (Cauchy-Green strains)

( )α αε = λ −20.5 1 . 	 (14)

The equilibrium equations of the shell element, in the case 
of using the Biot strain measure (13), take the following form

( )

( )

 ′− β + =

 ′− β =

1
2

2

sin ;

cos ,

n

z

N
N p
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		 (15)

where α α
−

= σ∫
/2

/2

d
h

h

N r  are the static equivalents of Biot 

stresses (forces per unit length);
= λ λ β1 2 cos ,np p  = − λ λ β1 2 sinzp p  – projections of inter-

nal pressure p in terms of a deformed midsurface.
Equation (15) can be obtained in different ways. For ex-

ample, by simplifying known three-dimensional equations [20]

( )∇ ⋅ ⋅ + ρ = 0,
T

Q S f

Fig. 1. Dimensions, parameterization, and deformation of the 
cylindrical shell

n 2r

1r
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where α αβ β∇ ⋅ = ∂ ;AA r
S is the Biot stress tensor; 
ρf is the inertial load, which, in a two-dimensional state-

ment of the problem, can simulate pressure. 
Equations (15) are derived through the direct mapping 

of forces (Fig. 2): 
– onto the normal n

( ) ( )+ β + β − β −

 − + =  

2 2 1 2 1

1
1 2 1 2

sin sin

2 sin 0;
2 n

N dN dr d N dr

dr
N dr p dr dr

r

– onto a vertical axis

( ) ( ) ( )+ β + β − β +

+ =
2 2 1 2 1

1 2

cos cos

0.z

N dN dr d N dr

p dr dr

Considering β = βsin ,d d  β =cos 1,d  =2 2sin ,
2 2
dr dr

r r
 for 

small quantities, as well as neglecting the terms of a higher 
order of smallness, one derives equations (15).

In addition, the equilibrium equation can be obtained 
from the principle of virtual work:

( )
Σ
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If variations of stretches (10) are substituted in (16)
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w
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and, by partial integration, to get rid of derivatives under the 
sign of variation, one obtains
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H
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z
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Due to the independence of variations, this equality 
holds only when each term in square brackets equals zero. 
Thus, one derives equilibrium equations (15) and possible 
boundary conditions at z=0 and z=H:

β = ∨ δ =2 sin 0 0;N w

β = ∨ δ =2 cos 0 0.N v 		  (17)

It should be noted that the principle of virtual work (16) 
employed an energy-conjugate pair “Biot strains” (13) – 
“Biot stresses”. In the case of other measures of strain (12) 
or (14) in (16), it is necessary to replace δλα with −

α αλ δλ1  and 
λαδλα, respectively. At the same time, work will be done by 
the Kirchhoff stresses (rotated) and the 2nd Piola-Kirchhoff 
stresses.

Thus, the relations of “displacement-strain” (10), (12) 
to (14) have been established; a boundary problem has 
been stated (equilibrium equation (15) and boundary con-
ditions (17)), as well as its corresponding weak formula-
tion (16). To close the system of equations, the relations of 
“strains-stresses” are required.

5. 2. Physically nonlinear orthotropic material
The state function of the Fung’s biological material is set 

by expression [15]

ε + ε + ε ∫= α ε + α ε + α ε ε +
2 2

1 1 2 2 4 1 222 2
1 1 2 2 4 1 22 2 ,a a aU ce 	 (18)

where α1, α2, α4, c, a1, a2 and a4 are the constants that de-
termine the properties of the material; εα=λα–1 – principal 
strains of the Biot tensor (13).

The constants in (18) were determined by the collocation 
method, as recommended in [15], according to the experi-
mental data given in [12, 21–23]. The result is the follow-
ing values: α1=–180.9 kNm, α2=–56.3 kNm, α4=–99.2 kNm, 
c=12.2 kNm, a1=15.8, a2=6.3, a4=8.1.

Dependence of the forces per unit length

( ) ε + ε+ε ε∂
= = ε ε + ε ε+ α +

ε
α

∂
2 2

1 1 2 2 4 1 22
1 1 4 2 1 1 4 2

1
1 ,a a aa a e

U
N c

( ) ε ε ε+ ε+α + α +
∂

= = ε ε + ε ε
∂ε

2 2
1 1 2 2 4 1 22

2 2 4 1 2 2 4 1
2

2
a a aa a e

U
N c 	 (19)

on strains with different ratios are shown in Fig. 3.
To compare a given material with others, hyper-elastic 

materials are to be considered:
– Varga [24]

 
= µ λ + λ + − λ λ 1 2

2 1

1
2 3 ;VU  

 
= µ − λ λ 1 2

2 1

1
2 1 ;N

 
= µ − λ λ 2 2

1 2

1
2 1 ;N 	 (20)

– Neo-Hookean

Fig. 2. Equilibrium of the deformed shell element: a – position 
of the shell element; b – top view; c – side view

a b

c
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2 2
1 2 2 2
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1
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
1 2 4

2 1

1
1 ;N
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
2 2 4
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1
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– the zero-, first-, second-order linear materials

( )= µ λ λ + λ + λ2 2
0 1 2 1 22 ln ln ln ln ;U

( )= µ λ+λ


1 1 22 2ln ln ;N  ( )= µ λ+λ


2 2 12 2ln ln ;N 	 (22)

( )( )= µ λ + λ λ + λ − −λ + λ2 2
1 1 1 2 2 1 22 3 1 ;U

( )= µ λ + λ −1 1 22 2 3 ;N  ( )= µ λ + λ −2 2 12 2 3 ;N  	 (23)

( )( )µ
= λ + λ λ + λ − −λ + λ4 2 4 2 2

2 1 1 2 2 1 2
2 3 1 ;

2
U

( )= µ λ + λ −


2 2
1 1 22 3 ;N  ( )= µ λ + λ −


2 2

2 2 12 3 ;N  	 (24)

where µ = µh  is the shear module per unit length; α α α= λ


,N N  
−

α α α= λ


1N N  – static equivalents of the 2nd Piola-Kirchhoff 
stresses and the rotated Kirchhoff stresses.

5. 3. Spectral solution
The desired displacement functions v(z) і v(z) (z= 

=–H/2…H/2) in the case of setting nonhomogeneous essen-
tial boundary conditions (17) are built in the form of sums

( ) ( )
=

   = − + + + ϕ       ∑01 02
0

1 1
;

2 2 i i
i

z z
v z V V V z

H H

( ) ( )
=

   = − + + + ψ       ∑01 02
0

1 1
.

2 2 i i
i

z z
w z W W W z

H H
 	 (25)

where V01, V02, W01, W02 are the displacement magnitudes 
specified at the boundary; 

Vi, Vi – the coefficients to be determined using variation-
al methods; 

φi(z), ψi(z) – known basic functions. 
The basis functions taken are those functions whose de-

rivatives are orthogonal in the metric L2 [25, 26]

( ) ( ) +
   ϕ = ψ = −      2

2 2
.i i i i

z z
z z P P

H H
		  (26)

Here, Pi is the Legendre polynomials. 
Coefficients in sums (25) are determined by solving a 

system of nonlinear algebraic equations, which is followed 
from the principle of virtual work (16). The system of equa-
tions is solved by the Newton method.

5. 4. Numerical experiment
As a test problem, the cylindrical shell under internal 

pressure is considered, with its edges converging. The shell 
dimensions are H=0.77 m, r=0.53 m. The conditional thick-
ness, calculated as the ratio of density to mass per square me-
ter, is equal to h=0.804 mm. The value of the internal pres-
sure is p=100 kPa, the convergence of edges is Δ=0.35 m. In 
the case of using materials (20) to (24), the shear module 
μ=92.248 MPa (µ = 74.208 kN/m), which corresponds to the 
effort of 1.78 kN when stretching a strip 5 cm wide by 16 %.

Since an approximate solution is being built, first of all, it 
is necessary to assess the convergence and accuracy of the re-
sults. Fig. 4, a shows the convergence of the maximum deflec-
tion of the shell w, and the maximum force N1 value, depend-
ing on the number of unknown K coefficients in sums (25). 
For reference values, the corresponding values at the top 
index in the sums equal to 12 were taken. Since the solutions 
are quite smooth, the expected exponential convergence is 
observed. Fig. 4, b shows the inconsistencies in equilibrium 
equations (15). As one can see, their highest value does not 
exceed 1 % when keeping 10 terms in sums (25) (K=20), that 
is, the approximate solution can be considered almost precise.

The reliability of the results is confirmed by comparing 
the deflections and efforts obtained by the proposed method 
and FEM implemented in the ANSYS WB software [27]. 
The relative difference in determining the displacement does 
not exceed 0.2 %, stresses – 4 %.

Deformed meridians of the cylindrical shell when using 
various materials are shown in Fig. 5. As one can see, the 
use of linear materials of the first and second orders leads 
to a decrease in deflections and an increase in longitudinal 
displacements. Note that these materials are not non-com-
pressible although the Poisson coefficient is set to 0.5. For 
the rest of the materials, the non-compressibility hypothesis 
is fair, the deformation of the shells made of these materials 
is similar.

A similar pattern is observed for the distribution of forces 
per unit length (Fig. 6). For comparison, all forces were re-
duced to the static equivalents of engineering stresses, that 
is, the Piola-Kirchhoff stresses were recalculated according 
to the formula −

α αλ


1 ,N  the rotated Kirchhoff stresses – α αλ


.N

Fig. 3. Modeling of experimental data: a – dependence of 
the force N1 per unit length on strain; b – dependence of the 

force N2 per unit length on strain; 1 – state function (18); 	
2 – experimental data [22]
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As one can see, the second-order linear material produces 
significantly inflated values of tangential stresses and un-

derstated longitudinal ones. The tangential stresses in the 
shell made of the first-order linear material almost coincide 
with the stresses in the Neo-Hookean shell, but the longitu-
dinal stresses are underestimated.

The compliance of Fung material at small strains is most 
pronounced in areas near the edges of the shell (Fig. 5). In 
these zones, the shell is less loaded (Fig. 6), so the difference 
in the values of displacements and stresses is more signifi-
cant. If the task of determining the maximum strains and 
stresses is set, then replacing Fung’s material with a zero-or-
der material leads to an error in determining the maximum 
deflection of 0.2 %, and the maximum stress – 3 %.

6. Discussion of results of studying the shell strain 
deformation

The simplicity and clarity of geometrically nonlinear 
relations (15) to (17) are due to the use of an energy-con-
jugated pair of tensors of the Biot strains and stresses (13), 
which have a clear engineering interpretation: engineering 
stresses and stretch ratio. The high accuracy of the approx-
imate solution (Fig. 4) is explained by the use of an spectral 
method with a polynomial approximation of displacement 
functions (25). To obtain an almost accurate solution, it took 
the introduction of 20 unknowns, this is almost an order of 
magnitude less compared to FEM (with an element size of 
10 mm and quadratic interpolation).

The similarity in the shapes of the 
deformed shell made from different 
materials (Fig. 5) can be explained by 
similar physical properties of these ma-
terials in the predefined zone of “stress-
es-strains”. Almost all shell material is 
in the most stressed zone, except for the 
zones at the edges of the shell (Fig. 6) 
where the differences in deformations 
are greater (Fig. 5).

Features of textile behavior are 
well modeled by the Fung biological 
hyper-elastic material (18), (19). The 
disadvantage of using this material is 
the need for a significant amount of 
experimental data. It is possible to re-
place this material with simpler ones: the 

zero-order single-constant materials (22) and 
Varga (20), which does not lead to significant er-
rors in determining displacements and stresses. 
Applying the second-order material (24) signifi-
cantly overestimates the rigidity of the shell, re-
sulting in significant errors both in determining 
the displacements and determining the stresses. 
Its use in problems of this type is undesirable.

With significant compression of the shell or 
reduced pressure, negative stress values appear, 
which is unacceptable for fabrics. This limits 
the use of a given model. The formation of folds 
is modeled either by shells with nonzero bend-
ing rigidity, which significantly complicates the 
model or in a simplified way – by introducing the 
energy function of a relaxed strain [28].

The disadvantage of the current study is dis-
regarding the nonlinearity of the third type – contact. When 
landing, the airbag inevitably comes into contact with the 

Fig. 4. Convergence and accuracy of the approximate solution: 
a – dependence of the error in determining the maximum 

deflection and stresses; b – values of the left- and right-hand 
sides of equilibrium equations (15) while keeping 6, 10, and 

20 unknowns in sums (25)
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Fig. 5. Deformed meridians of the cylindrical shell: 1 – linear material of the second 
order (24); 2 – linear material of the first order (23); 3 – Neo-Hookean material 

(21), ANSYS WB; 4 – Varga material (20); 5 – Fung material (18); 6 – zero-order 
linear material (22), ANSYS WB

Fig. 6. Distribution of membrane forces in the cylindrical shell: 1 – second-
order linear material (24); 2 – linear material of the first order (23); 	

3 – Neo-Hookean material (21), ANSYS WB; 4 – Varga material (20); 	
5 – Fung material (18); 6 – zero-order linear material (22), ANSYS WB
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soil, platform, or adjacent airbag. Failure to account for these 
phenomena can significantly affect the results. 

The removal of the noted restrictions and the elimination 
of shortcomings indicate the directions of further develop-
ment of this study.

7. Conclusions

1. The geometrically nonlinear relations have been 
constructed in terms of the Biot strains and stresses, that 
is, regular stretch ratios and engineering stresses. The ad-
vantage of their use is, first, the convenience of processing 
experimental data and, second, a clear interpretation of 
the equilibrium equations, shown in this work. The main 
disadvantage of using this pair (the need to extract the 
root from the square of the deformation gradient tensor) 
is not significant, in this case. The exact expressions of 
the stretch and rotation tensors components take a com-
pact form, do not require any simplifications, and their 
subsequent use leads to the geometrically accurate equi-
librium equations, boundary conditions, and variational 
principles.

2. Fung’s material takes into consideration orthotropy and 
correlates well with the data from experiments on two-axial 
stretching of fabric materials. The discrepancy between the 
experimental and approximated stress values is less than 8 %.

3. The orthogonality of the function’s derivatives, which 
were used in the construction of spectral solutions, in the 
L2 metric leads to well-conditioned matrices in the energy 
metric of the differential operator of a given boundary 
problem. The inconsistency in the equilibrium equations 
does not exceed 1 % when keeping ten terms in the approx-
imation of displacement functions, that is, the resulting 
solutions can be considered almost accurate.

4. The reliability has been confirmed by comparing the 
results obtained with the results obtained when using FEM. 
Differences in determining the displacements do not exceed 
0.2 %, stresses – 4 %.
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