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1. Introduction

Composites are widely used in mechanical engineering, 
aircraft, rocket and other industries due to their properties 
and performance characteristics. Composites are applied ex-
tensively in the creation of transport, tourist infrastructure, 
etc. One way to reduce the material consumption of compos-
ites is to use hollow fibers. Studies confirm the advantage 
of such fibers as reinforcing elements over continuous ones 
under certain types of loads.

Composites are the basis of many materials and struc-
tures, which is an important factor in economic development.

Composite design involves many parameters that can be 
varied to create materials with predefined properties. Manu-
facturing all possible composite options and conducting field 
tests is a very expensive procedure. Therefore, before making 
test samples, their number should be significantly limited, 
discarding unacceptable ones. This can be done using mod-
ern computer-aided design systems that model composites 
in real operation. One of the modeling steps is composite 
homogenization, that is, presenting inhomogeneous material 
as homogeneous with certain “averaged” characteristics, 
called effective.

The presence of several fiber types also complicates the 
procedure for obtaining effective elastic constants. So, ana-
lytical relations for such composites are found using a large 
number of hypotheses that reduce the mathematical com-
plexity of the problem. Homogenization greatly simplifies 
calculations, since taking into account the characteristics 
and arrangement of each fiber in a mathematical model 
increases the cost of machine and time resources by orders 
of magnitude, and sometimes makes such calculations im-
possible.

The more properties of components are taken into ac-
count in the homogenization process, the more adequate the 
relations will be for the effective characteristics of the com-
posite. Thus, for some fiber types, transverse and longitudi-
nal elastic characteristics may differ by one to two orders of 
magnitude. So, considering the transtropic properties of the 
components is relevant and of considerable practical interest.

2. Literature review and problem statement

The determination of effective elastic constants of hollow 
fiber composites is addressed in the papers based on exper-
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imental and theoretical research methods. In particular, 
two-phase fiber composites are considered. Recent works 
include [1–7].

Thus, in [1], local stresses in a hollow fiber composite are 
investigated by the numerical method. It was found that the 
change in hollow fiber wall thickness affects more the trans-
verse characteristics of the composite than the longitudinal 
ones. The study [2] is devoted to comparing the results of 
experimental tests of hollow and continuous fiber-reinforced 
composites. In particular, tensile, compression, elongation 
and impact strength tests were performed. A comparison of 
continuous and hollow fibers as reinforcing elements in the 
impact strength test of composites is given in [3]. The study 
is carried out by the finite element method. The same meth-
od was used in [4] to estimate the effective longitudinal and 
transverse Young’s moduli of hollow and continuous fiber 
composites. The results of experimental studies on impact 
tests of unidirectional composites reinforced with hollow, 
continuous and mixed polyester fibers are also presented 
in [5]. The paper [6] provides a review of the creation and use 
of hollow glass and carbon fiber composites. In particular, 
such composites have been shown to exhibit high mechanical 
characteristics.

The studies confirm the advantage of hollow fiber rein-
forcement over continuous one. However, it should be noted 
that [1–6] used experimental or numerical methods, which 
does not allow for analysis of the dependence of effective 
elastic constants on the parameters of the composite compo-
nents. Each study was conducted for specific composites. In 
this case, a large number of new calculations or field tests are 
required for each new set of component parameters. This is a 
certain disadvantage compared to analytical methods, since 
using analytical formulas makes it possible to automate the 
calculation of effective elastic constants, and perform calcu-
lations by varying the input composite parameters.

In [7], general relations are obtained for calculating 
effective elastic characteristics of transtropic piezoelectric 
hollow fiber composites. The representative elementary vol-
ume method is used. However, these relations do not have a 
closed analytical form, which greatly complicates their use 
in calculating effective characteristics.

For two-component composites unidirectionally rein-
forced with hollow fibers, there are known relations for 
determining basic effective elastic characteristics. These for-
mulas were obtained by various scientists using the sequential 
regularization method and the mixture method. However, 
both groups of relations take into account only the isotropic 
properties of the composite components. It is clear that adding 
at least one more fiber type will significantly complicate the 
mathematical model of the composite behavior even under 
simple deformations. Consider also the fact that increasingly 
reinforcing fibers have transversely isotropic properties. So, 
the representative elementary volume method and double ho-
mogenization should be used for determining effective elastic 
constants of three-component composites.

The paper [8] describes an approach to determining 
effective elastic characteristics of the three-component uni-
directional composite with transtropic characteristics of the 
components reinforced with two types of continuous fibers. 
The method is based on the application of formulas obtained 
for a two-phase composite with transtropic properties of 
the components. This approach has been developed for the 
case of periodic reinforcement with hollow and continuous 
transtropic fibers [9].

[10] examines microdeformations of a composite stochas-
tically reinforced with unidirectionally oriented continuous 
fibers and spheroidal inclusions. In this case, an isotropic 
matrix and inclusions with various transversely isotropic 
properties are considered.

The mixture method for determining effective elastic con-
stants of the two-component hollow fiber composite was devel-
oped for polyreinforced composites reinforced with n hollow 
fiber types. The obtained formulas take into account the 
excellent elastic characteristics of each fiber type. But the use 
of these relations is limited by the isotropic properties of all the 
composite components. Considering the transtropic properties 
of the composite components is not a solved problem.

All this suggests that it is advisable to conduct a study 
on determining effective characteristics of the three-compo-
nent composite with transtropic components, unidirection-
ally reinforced with hollow fibers.

3. The aim and objectives of the study

The aim of the study is to determine elastic constants of 
a unidirectional composite periodically reinforced with two 
types of transtropic hollow fibers by double homogenization. 
This will make it possible to take into account a wider range 
of component properties at the design stage and obtain new 
composites with predefined properties.

To achieve the aim, the following objectives were set:
– to develop a method for determining the elastic con-

stants of three-component composites based on double 
homogenization;

– to perform the calculation of elastic constants using 
the formulas obtained for the two-component composite 
with the transtropic matrix and hollow fiber.

4. Research materials and methods

The object of research is the deformation processes of 
the three-component composite reinforced with two types 
of hollow fibers.

The hypotheses include the following: all the composite 
materials obey Hooke’s law. Perfect adhesion between the 
matrix and fiber materials is assumed.

To develop an approach to determining effective elastic 
characteristics of the studied composites, the representative 
elementary volume method is used.

To find effective elastic constants of the three-compo-
nent composite, the formulas based on the kinematic match-
ing criterion for the two-component unidirectional compos-
ite with the transtropic matrix and hollow fiber were used.

Longitudinal Young’s modulus [11]:
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where f and g are the volume content of fiber material and 
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Poisson’s ratio [11]:
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Longitudinal shear modulus [12]:
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Transverse Young’s modulus [9]:
– based on the equality of radial displacements
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– based on the equality of circumferential displacements

Poisson’s ratio [9]:
– based on the equality of radial displacements

– based on the equality of circumferential displacements

To verify the proposed model, the analytical formulas 
can be used given in [13]:
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where Vm, χi, χm, Q, N are determined by the relations:
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In relations (9)–(14): E is the longitudinal Young’s mod-
ulus, μ is the Poisson’s ratio, G is the shear modulus, V is the 
volume fraction. i denotes i-th type fiber values, m – matrix 
values. qi is the ratio of the hollow diameter to the i-th type 
fiber outer diameter.

5. Mathematical modeling of 
effective elastic characteristics of 
the three-component composite 

5. 1. Method of numerical cal-
culation of effective elastic con-
stants of the three-component 
composite 

The unidirectional composite 
reinforced with two types of hol-
low fibers by the hexagonal scheme 
is considered. The study is con-
ducted within the linear theory of 
elasticity. Perfect adhesion at the 
matrix-hollow fiber interface is as-
sumed.

The cross-section of the compos-
ite is shown in Fig. 1, a. Here, the 

whole area is divided into hexagonal cells so that the center 
of each hexagon coincides with the fiber center. Two types 
of hexagonal cells are obtained: for type I hollow fiber with 
the surrounding matrix (indicated by diagonal hatching) and 
type II hollow fiber with the surrounding matrix (indicated 
by crosshatching). Type I isotropic fiber is characterized by 
the following elastic characteristics: elastic modulus 

(1),E  Pois-
son’s ratio ν

(1). In the case of transtropic components, we have 
elastic constants: longitudinal Young’s modulus 

1(1),E  Pois-
son’s ratio ν

12(1), transverse Young’s modulus 
2(1),E  Poisson’s 

ratio ν
23(1), longitudinal shear modulus  

12(1)G . Type II isotropic 
fiber is characterized similarly by: elastic modulus 

(2),E  Pois-
son’s ratio ν

(2) (in the case of transtropic components, 
1(2),E  

ν
12(2), 


2(2),E  ν

23(2), 

12(2)G ). The isotropic matrix surrounding 

each of the two fiber types is characterized by elastic modulus 
E* and Poisson’s ratio  (in the case of transtropic components 

*
1 ,E  ν*

12, *
2 ,E  ν*

23, *
12G ).

In the first step, the hexagonal regions with type I and II fi-
bers are separately homogenized. The hexagonal cell is approx-
imated by a circle so that its area and the cell area are the same.

First, according to formulas (1), (3)–(8), effective elastic 
constants of the first region are calculated, substituting elas-
tic constants of the matrix and type I fiber in them. Then, 
according to the same formulas, effective elastic constants 
of the second region, substituting elastic constants of the 
matrix and type II fiber in them.

Thus, a “conditional” two-component composite with 
a “conditional” fiber (type I fiber regions before the first 
homogenization) and a “conditional” matrix (type II fiber 
regions, respectively) are obtained (Fig. 1, b).
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This technique is valid for high fiber reinforcement fre-
quency, when the number of unit cells is tens or more both 
in length and width. With such periodic reinforcement, the 
ratio of the type I cell area S(1) (“conditional” fiber) to the 
type II cell area S(2) (“conditional” matrix) tends to 3.

Then, the total cross-sectional area of the composite 
after the first homogenization S is:

( ) ( )= + = + + + * *
(1) (2) (1) (1) (2) (2)3 3 3 ,S n S S n S S S S 	 (15)

where 4n is the total number of cells, *
(1)S  and 

(1)S  are the 
areas of the matrix material and the first-type fiber material 
in the “conditional” fiber, *

(2),S  
(2)S  are the areas of the 

matrix material and the second-type fiber material in the 
“conditional” matrix.

Using the representation of the hexagonal cell as a circle 
containing a hollow fiber, where а(i) is the radius of the i-th 
type hollow fiber, b is the circle radius, and from (15), we 
obtain:

( ) ( )( )= π − + + − +2 2 2 2 2 2
(1) (1) (2) (2)3 3 .S n b a a b a a 	 (16)

On the other hand, the total area is S=4nπb2. Then

= + + *
(1) (2)1 ,t t t 			    (17)

where t*, 
(1),t  

(2)t  are the volume fractions of the matrix, 
first and second-type hollow fiber, respectively, in the ini-
tial three-component material and are determined by the 
relations:

+
= −

2 2
(1) (2)*

2

3
1 ,

4

a a
t

b

=

2
(1)

(1) 2 ,
4

a
t

b

=

2
(2)

(2) 2

3
.

4

a
t

b
				     (18)

The volume fraction of the first-type hollow fiber in the 
“conditional” fiber is then defined as

= 
(1) (1)4 ,q t 				     (19)

and the volume fraction of the second-type hollow fiber 
in the “conditional” matrix

= 
(2) (2)

4
.

3
q t 					     (20)

At the same time, = +
(1) 1 1t f g  for the first-type fiber, and 

= +
(2) 2 2t f g  for the second-type fiber. Here, f1, f2 are the 

volume fractions of the first and second-type fiber material, 
respectively, g1, g2 are the volume fractions of the hollow in 
the fiber of each type.

At the second stage, repeated homogenization is performed. 
The effective elastic constants of the three-component compos-
ite E1, ν12, G12, E2, ν23 are determined by the same formulas. The 
input data for the “conditional” fiber are the elastic character-
istics ( )

1 ,E  ν ( )
12 , ( )

12 ,G  ( )
2 ,E  ν ( )

23 , and for the “conditional” matrix – 
(*)
1 ,E  ν(*)

12 , (*)
12 ,G  (*)

2 ,E  ν(*)
23  obtained at the first stage.

Verification of the presented method is implemented by 
calculating effective elastic constants of fiberglass based 
on EDT-10 epoxy binder with the elastic properties: lon-
gitudinal Young’s modulus E*=2.9 GPA, Poisson’s ratio 
ν*=0.35 [14]. As reinforcing hollow fibers, aluminum-bo-
rosilicate glass fibers with a paraffin-emulsion lubricant 
and VM-1 high-modulus glass fibers with a 752 lubricant 
are taken, the elastic properties of which are, respectively: 

=
(1) 73.1E  GPA, ν =

(1) 0.25, =
(2) 100E

 
GPA, ν =

(2) 0.25.
At the first stage, the elastic constants of the “condition-

al” fiber and “conditional” matrix are calculated. For calcu-
lations, we fix =

(1) 0.05t  (g1=0.02), and take 
(2)t  in the range 

of 0.1; ..; 0.3 with a step of 0.1 (g2=0.05).
At the second stage, the elastic characteristics of the 

composite are calculated from the obtained data (transtropic 
characteristics of the “conditional” matrix and “conditional” 
fiber) at g=0 and f=0.25.

Compare the values of longitudinal Young’s modulus E1, 
Poisson’s ratio ν12, and transverse Young’s modulus E2 calcu-
lated by the developed method and formulas (9)–(11). The 
calculation results are summarized in Table 1.

Table 1
Values of longitudinal Young’s modulus E1, Poisson’s 

ratio ν12, and transverse Young’s modulus E2 calculated by 
formulas (9)–(11) and (1), (3), (5), (6)

Volume 
fraction

E1, GPa ν12 E2, GPa


(1)t 

(2)t (9) (1) (10) (3) (11) (5) (6)

0.05 0.1 9.658 9.663 0.33213 0.33212 3.849 3.356 3.329

0.05 0.2 19.368 19.375 0.32044 0.32043 4.653 5.031 5.448

0.05 0.3 29.078 29.087 0.30945 0.30937 5.591 6.067 7.276

Fig. 1. Representation of the cross-section of the 
three-component composite: a – before the “first” 

homogenization; b – after the “first” homogenization

a

b
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The data shown in Table 1 show a good agreement 
between the calculation results of the above method and 
the mixture method [13] for a composite with an isotropic 
matrix and two types of hollow fibers. Thus, the maximum 
relative calculation error of the proposed method for E1 com-
pared to formula (9) does not exceed 0.05 %. The maximum 
relative calculation error for the Poisson’s ratio ν12 compared 
to formula (10) does not exceed 0.03 %.

The above method pays special attention to determining 
the transverse characteristics, namely transverse Young’s 
modulus E2 and Poisson’s ratio ν23. Accordingly, the greatest 
errors are obtained when calculating these characteristics. 
This method has been tested for other fiber types with 
experimental data [8], and shows greater convergence of 
results than calculations by [13] and the proposed approach.

5. 2. Numerical determination of effective elastic con-
stants of the three-component composite

For the three-component composite from [14], Fig. 2–6 
graphically present the dependences of some effective elastic 
constants of the three-component composite on the volume 
content of the second-type hollow fiber 

(2)t  with a fixed vol-
ume fraction of the first-type hollow fiber =

(1) 0.05.t

The above graphs (Fig. 2, 3) suggest that the longitudinal 
Young’s modulus E1 and the Poisson’s ratio ν12 have a close to 
linear dependence on the volume content of the second-type 
hollow fiber. An increase in the volume fraction 

(2)t  increases 

the transverse Young’s modulus E2 (Fig. 4), longitudinal shear 
modulus G12 (Fig. 5) and Poisson ratio ν23 (Fig. 6).

6. Discussion of the results of applying the developed 
method

The values of effective elastic constants obtained by the 
proposed method (Table 1) agree well with the calculations 
by formulas [13]. In particular, the maximum relative calcu-
lation error for the longitudinal elastic characteristics does 
not exceed 0.05 %. In the partial case (if the same fiber char-
acteristics are taken and elastic constants are calculated by 

Fig. 2. Dependence of longitudinal Young’s modulus E1 on the 

volume fraction of the second-type hollow fiber 
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Fig. 3. Dependence of Poisson’s ratio ν12 on the volume 
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Fig. 4. Dependence of transverse Young’s modulus E2 on the 
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the proposed approach for the three-component composite), 
adequate results are also obtained.

The proposed method applies only to unidirectional 
three-component composites with hexagonal lay-up of two 
types of hollow fibers for deformations within Hooke’s law. 
A feature is the periodic reinforcement structure, i.e. when a 
cell with one fiber type is surrounded by six cells with fibers 
of another type.

The analysis of the graphical research results (Fig. 2–6) 
reveals the effect of hollow size on the effective elastic con-
stants of the studied composites. 

The advantage of the developed method is the possibility 
of using it for composites reinforced with two types of hollow 
fibers, both with isotropic and transtropic properties of the 
components. This was not taken into account earlier in [13].

It should be noted that the method is based on the 
formulas derived from the kinematic matching criterion. 
Therefore, to determine the transverse Young’s modulus E2 
and Poisson’s ratio ν23, a certain pair of formulas should be 
chosen within the proposed approach. This choice depends 
on experimental data for each individual composite, depend-
ing on the elastic properties of its components.

It is promising to obtain relations based on the energy 
criterion and improve the developed method based on five 
rather than seven formulas for determining the effective 
elastic constants. This approach gives the best result com-

pared to experimental data. However, the application of 
the representative elementary volume method with this 
approach is significantly complicated by the bulkiness of the 
mathematical model. The above approach can be generalized 
for arbitrary load types and fiber lay-up patterns.

7. Conclusions

1. The method for determining the elastic constants of 
three-component composites unidirectionally reinforced 
with two types of hollow fibers with transtropic character-
istics of the components based on double homogenization is 
developed. The method is based on the formulas obtained for 
a unidirectional two-phase composite with the transtropic 
matrix and hollow fiber. The maximum relative calculation 
error for the longitudinal Young’s modulus and Poisson’s 
ratio compared to known formulas does not exceed 0.05 %.

2. The values of effective elastic constants are calculated by 
the proposed method using the example of a three-component 
composite with isotropic properties of the components. The 
dependences of elastic characteristics on the volume content of 
the second-type hollow fiber are constructed. In particular, the 
transverse Young’s modulus E2 increases by about 10 % with 
an increase in the hollow fiber volume fraction from 0.1 to 0.3, 
while the longitudinal Young’s modulus E1 – about three times.
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