
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/9 (113) 2021

48

1. Introduction

Information protection is today an important component
of the globalization of information technology. The impor-
tance of protecting the confidentiality of user information in
information systems is not in doubt. Equally important is the
task of ensuring the integrity of information, for which cryp-
tographic hashing functions are successfully used. Hashing
is the process of converting a binary sequence of arbitrary
length into a binary sequence of fixed length. Such trans-
formations are called convolution functions or Toffoli hash
functions [1].

Cryptographic hash functions are an indispensable and
ubiquitous tool used to perform a variety of tasks, including
authentication, data integrity checking, file protection, and
even malware detection. There are many hashing algorithms
that differ in cryptographic strength, complexity, bit depth,
and other properties. It is believed that the idea of hashing,
which belongs to an employee of International Business
Machines (IBM), appeared about 50 years ago and has not
changed fundamentally since then. In the modern world,
hashing has acquired a lot of new properties and is used in
many areas of information technology.

The main application of hashing in modern cryptogra-
phy is the construction of associative arrays, the search for
duplicates in a series of data sets, the construction of unique
identifiers for data sets, storing passwords, creating a digital
signature, protecting the integrity of user information [2, 3].

A cryptographic hash function, often referred to simply
as a hash, is a mathematical algorithm that converts an ar-
bitrary array of data into a fixed-length string of letters and
numbers. Moreover, provided that the same type of hash
is used, this length will remain unchanged, regardless of
the amount of input data. The hash function can be cryp-
tographically strong only if the main requirements are sat-
isfied. Resistance to recovery of hashed data and resistance
to collisions, that is, the formation of two identical hash
values from two different data arrays. Interestingly, none of
the existing hashing algorithms formally falls under these
requirements, since finding the inverse of the hash value is
only a matter of computing power. In fact, in the case of some
particularly advanced algorithms, this process can take un-
reasonable time consumption.

Accordingly, the development of new hashing algorithms
is an urgent task in software engineering.

2. Analysis of literature data and problem statement

Hashing process based on cryptographic hash functions
is widely used in cryptocurrencies. For example, the func-
tioning of many blockchains is based on hashing algorithms
of the SHA-2 or SHA-3 families and their variations [4]. The
investigation of cryptographic hashing algorithms in this
case is considered in detail in [5], which shows the strengths
and weaknesses of most of the algorithms used today.

DEVELOPMENT OF A
HASH ALGORITHM

BASED ON CELLULAR
AUTOMATA AND
CHAOS THEORY

Y u r i y D o b r o v o l s k y
Corresponding author

Doctor of Technical Sciences*
E-mail: y.dobrovolsky@chnu.edu.ua

D m y t r o H a n z h e l o *
M a r i i a H a n z h e l o *
D e n i s T r e m b a c h *

G e o r g y P r o k h o r o v
PhD*

*Department of Computer System Systems
Y. Fedkovich Chernivtsi National University

Kotsiubynskoho str., 2, Chernovtsy, Ukraine, 58012

Information security, reliability of data transfer are today
an important component of the globalization of information
technology. Therefore, the proposed work is devoted to highlighting
the results of the design and development of a hacking-resistant
algorithm to ensure the integrity of information transfer via digital
technology and computer engineering. To solve such problems,
cryptographic hashing functions are used. In particular, elements
of deterministic Chaos were introduced into the developed cyclic
hashing algorithm. The investigation analyzes in detail the
strengths and weaknesses of known hashing algorithms. They are
shown to have disadvantages. The main ones are a large number
of matches (Hamming (x, y) and the presence of a weak avalanche
effect, which lead to a significant decrease in the reliability of the
algorithm for hacking. The designed hashing algorithm uses an
iterative Merkley-Damgard structure, augmented by the input
message to a length multiple of 512 bits. Processing in blocks of
128-bit uses cellular automata with mixed rules of 30, 105 and 90,
150 and takes into account the dependence of the generation of
the initial vector on the incoming message. This allows half of the
10,000 pairs of arbitrary messages to have an inverse Hamming
distance of 0 to 2. The proposed algorithm is four times slower
than the well-known family of "secure hash algorithms." However,
computation speed is not a critical requirement for a hash function.
Decreasing the sensitivity to the avalanche effect allows the
generation time to be approximately halved. Optimization of
the algorithm, as well as its testing was carried out using new
technologies of the Java programming language (version 15).
Suggestions and recommendations for improving this approach to
data hashing are given also

Keywords: hashing algorithm, chaos theory, cellular automata,
compression function, transformation function

UDC 004.312.26
DOI: 10.15587/1729-4061.2021.242849

How to Cite: Dobrovolsky, Y., Hanzhelo, D., Hanzhelo, M., Trembach, D., Prokhorov, G. (2021). Development of a hash algorithm

based on cellular automata and chaos theory. Eastern-European Journal of Enterprise Technologies, 5 (9 (113)), 48-55.

doi: https://doi.org/10.15587/1729-4061.2021.242849

Received date 16.08.2021

Accepted date 10.10.2021

Published date 29.10.2021

Copyright © 2021, Authors. This is an open access article under the Creative Commons CC BY license

49

Information and controlling system

set of instructions and rules for a particular application. In
particular, in [17], it is proposed to combine the features of
the operation of a specialized integrated circuit and digital
signal processing – for the hashing algorithm RIPEMD-160,
a specialized configuration of registers and an instruction set
architecture are formed. It includes 12 special and 35 gener-
al instructions. Despite the cumbersomeness of the method,
its tests show that its performance exceeds that of analogs.

So, the analysis of literature data [4–17] allows to state
the following.

Known hashing algorithms (SHA family, MD, etc.) have
disadvantages. The main ones are a large number of coinci-
dences (small Hamming distance) between hash images of
similar input data and the presence of weak avalanche effect,
which lead to a significant decrease in the reliability of the
algorithm for cracking.

Let’s formulate the requirements for the hash function [18]:
1. Determinism: the same messages with the same input

conditions always lead to the same hash image.
2. The impossibility of reproducing a preimage from a

known hash image.
3. The impossibility of finding two arbitrary messages

within a reasonable time, giving the same hash-image (Col-
lision of the 1st kind).

4. The impossibility of finding (in a reasonable time) for
a given message another arbitrary message giving the same
values of the hash image (collision of the second kind).

5. Effective avalanche effect: a change in one bit of an
incoming message should lead to a change in at least half of
the bits of the hash image [19].

Most traditional hashing systems are based on cyclical
algorithms, in which a sequence of operations is repeated, the
algorithmic sequence is known and open. This can lead to the
fact that, by analyzing a large series of data, some patterns can
be generalized, which will lead to an unacceptable decrease in
cryptographic strength. The stability of such systems depends
only on the computing power of the cryptanalyst.

3. The aim and objectives of research

The aim of research is to find a way to increase the sen-
sitivity to the avalanche effect of the data hashing algorithm
based on cellular automata by introducing elements of deter-
ministic Chaos into the cyclic algorithm.

To achieve the aim, the following objectives were set:
– develop an algorithm for splitting the original message

into blocks;
– develop an initializing block – an input vector using

the theory of cellular automata;
– develop an algorithm for cyclic compression of text by

blocks;
– create transformation functions using a one-dimen-

sional cellular automaton;
– check the avalanche effect of the developed hash function.

4. Materials and research methods

The algorithm for achieving this goal is based on the
use of the principles of generating unpredictability, which is
based on the theory of Chaos.

Cellular automata (CA) are one of the examples of simple
chaotic systems [20]. A cellular automaton consists of cells

In Ukraine, as in most countries of the world, there
are rules for information security in the banking system.
They are regulated by the decree of September 28, 2017
No. 95 [6], which requires the use of hashing security algo-
rithms SHA-224, SHA-256, SHA-384, SHA-512, “Kupina”,
or more crypto-resistant. Similar requirements are formulat-
ed in DSTU 7564: 2014 [7].

However, as mentioned in [8, 9], these algorithms have
a number of disadvantages. Their improvement occurs in
different ways.

In particular, in [8], to overcome the shortcomings of
hashing algorithms of the SHA families, a specialized hash
function is proposed that accepts 512-bit message blocks and
generates a 256-bit hash value. The random signed sequence
is added as an additional input to the hash compression
function.

The authors of [9] have improved the throughput of the
SHA3 hash algorithm by reducing the number of clock cy-
cles required to obtain the hash value. However, a decrease
in the maximum frequency was observed.

Chaos theory [10] is used in the creation of new hashing
algorithms, which is applied in several stages to encrypt im-
ages. This algorithm performs bitwise encryption using the
SHA-1 hashing algorithm.

An information block can be divided into several sub-
blocks by means of a fixed division, as suggested in [11].
This uses the SIFT operator to retrieve information about
the characteristics of key points in subblocks. Similar-
ly, using the compilation policy by the data distribution
method for the IMC implementation of the Keccak hash
algorithm (SHA), the algorithm performance is increased
by more than 70 % [12], which indicates the effectiveness of
such a method.

Analysis of a computational collision problem using
a hash algorithm based on a chaotic map using message
expansion and aggregation operation, which increases the
sensitivity between messages and hash values, which helps
to reduce the propability of conflicts [13].

To improve the security of the hash sequence during
image processing, a fractional order mapping and chaotic
scrambling are constructed to encrypt the eigenvector, and
the image information is confirmed by the Hamming dis-
tance [14].

In [15], an implementation of a message authentication
code using a random initial sequence of a linear congruen-
tial generator is presented. The applied hashing algorithm
proved to be more reliable due to the increased complexity
of the traditional SHA-160. This scheme has proven to be
effective and applicable for a variety of environments with
high security requirements [5].

Data protection in web applications is implemented with
the MD5 hash function, which provides the function and
form of password encryption. It, like the hashing algorithms
of the SHA families, has problems in the form of a colli-
sion (coincidence) attack. It can have the same hash value for
two different input messages, which is unacceptable from a
data security point of view. Improving the reliability in this
case is proposed using the SHA 512 algorithm [16]. Risk mit-
igation is provided by a new hash function that modifies the
code to recover the system and test the implementation. Pen-
etration testing was performed on a User Entry Test (UAT).
The UAT result shows an agreement of 86.00 %.

A combined method of data protection is also used, which
consists in using the features of the processor design and a

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/9 (113) 2021

50

that have a strictly defined state, and can change it discrete-
ly depending on their state and the state of neighboring cells.
How their state will change is determined by the rules (tran-
sition functions). Depending on them, the state of the cells
can vary greatly depending on the initial conditionsй.

To implement the algorithm, the iterative structure of
the Merkle-Damgard [21] was chosen as a basis. Its content
provides for splitting an incoming message of arbitrary
length into blocks of a specific length, and then working
with them using the compression function f. This function
takes 2 arrays of the same size as input, and generates a third
array of the same size.

As input parameters, as a rule, the message block itself
and the hash image of the previous step are used. The main
advantage of this structure is that if the compression func-
tion is collision resistant, then the entire hash function will
be stable [21].

One-dimensional cellular automata [9], including 30, 90,
105 and 150 rules, were used as a simple chaos generator.
With their help, new mixed rules were built, which were
subsequently used for the compression function and the gen-
eration of the input vector. These rules were chosen because
of their investigated and proven chaotic properties. All of
them belong to the 3rd class of rules, which are considered
chaotic [23].

With the help of CA cellular automata, new mixed rules
were developed, which were subsequently used for the com-
pression function and the generation of the input vector. The
chaotic properties of the CA made it possible to introduce an
element of uncertainty into the cyclic algorithm.

5. Research results of the developed hash function
algorithm based on cellular automata and chaos theory

5. 1. Development of an algorithm for splitting the
original message into blocks

Processing a message of arbitrary length to the desired
length (multiple of 512 bits) is performed similarly to MD5
and SHA-1 algorithms. Then, in accordance with the illustra-
tion of the text splitting model using the example of the phrase
“Hello, world!” shown in Fig. 1 is appended to the end of the
message with such a block of zeros so that the length of the
last message is 448. This addition makes it possible to add the
size of the original message in binary code to the last 64 bits.

Fig. 1. The illustration of a text splitting using the example 	
of the phrase “Hello, world!”

This padding will occur in any case, even if the original
message was 448 bits long.

5. 2. Development of an initialization block - an input
vector using the theory of cellular automata

In the well-known, widely used algorithms (SHA MD5),
the input vector is formed as a sum of 64 bits at the begin-

ning and at the end of the message, which, from the point of
view of chaos theory, gives a weak avalanche effect. Namely,
a change in the message by one bit gives a change in the input
vector by a maximum of one bit. Therefore, to increase the
sensitivity to the avalanche effect, the algorithm for obtain-
ing the input vector should be improved.

The mathematical model describing the quality of sensi-
tivity to the avalanche effect (avalanche criterion) is based
on the bit independence criterion, according to which when
one input bit changes, any two output bits change inde-
pendently of each other [24].

The function f: {0,1}n satisfies the bit independence crite-
rion if for any i, j, kϵ{1,2, ... n}, where j≠k, inverting the i bit
at the input causes the j and k bits at the output to change.
These changes are independent to a certain extent.

To measure the degree of independence of the two out-
put bits, the BIC correlation coefficient (aj, ak) – (Bayesian
information criterion) is introduced between the j-th and
k-th components of the output vector for the modified i-th
component of the input vector.

()
<< << ≠

= =
1 , ,

max .,j kj k n j k
BIC BIC a a

This parameter demonstrates how well the function f
satisfies the bit independence criterion.

It takes values in the interval [0, 1], and in the best
case is equal to 0, then it is possible to talk about complete
independence, in the worst case 1, when there is a complete
dependence.

In the proposed algorithm, the dependence of the output
byte from the input one has a pseudo-chaotic nature accord-
ing to the definition of a chaotic group of cellular automata.

Thus, for one iteration, the BIC correlation coefficient is
0.5. For 128 iterations, this coefficient will be equal to

ВIC(ai,aj)=(0.5)128→0.

Modern hashing algorithms provide a correlation coeffi-
cient of 0.5. That is, when hashing two identical strings that
differ by 1 bit, approximately half (0.5) bytes will be the same.

In the case of the proposed algorithm, the matches are
practically independent. This means that by controlling the
number of iterations, the sensitivity of the algorithm to the
avalanche effect can be increased to almost maximum value.
At the same time, resource costs increase significantly. On
the other hand, by reducing the number of iterations, an op-
timal level of correlation between the speed and sensitivity
of the algorithm to the avalanche effect can be achieved.

Since the compression function requires 2 arrays at the
input, and at the first stage, there is still no hash array from
the previous step, the input vector is used instead. The block
diagram of the formation of the input vector is shown in Fig. 2.

М0 – incoming message with length n bits. The incom-
ing message is padded with zero bytes so that its length is a
multiple of 512, and then used as a data source for the vec-
tor. The first 64 and last 64 bits are taken from the padded
incoming message and combined into a 128-bit array. Using
the resulting key as the initial state of the cellular autom-
aton, mixed rules 30 and 105 are applied to it, so that rule
30 applies to all odd cells, and 105 applies to even cells. As
a result of 128 iterations, a 128-bit block is obtained, which
will be used together with the first block of text for the com-
pression function.

Hello, world! – 104 bit

512 bit

 01001000 01100101 01101100 0000 10…000000 00100001

 104 bit 1 и 343 zeros 64 bit

448 bit

51

Information and controlling system

Of course, 128 iterations when creating
an input block slows down the algorithm, but
at the same time, the sensitivity to the ava-
lanche effect increases. But this, in turn, com-
plicates the “reversibility” of the process, that
is, obtaining a preimage from a hash image.

5. 3. Development of an algorithm for
cyclic compression of text by blocks

The text is padded to a multiple of 512
and splitted into blocks of 512 bits. Each such
block is divided into sub-blocks of 128 bits.

The compression function, in a specific
implementation of the algorithm, “compress-
es” 128 bits of the Mik message and the hash
sum of the previous block hi–1 into a new
hash of 128 bits. It consists of two stag-
es: direct compression with the hash of the
previous (cyclically shifted) block, and the
transformation function using a cellular au-
tomaton with 90 and 150 rules [25–27].

The result of the compression function
will be a 128-bit block, which is the key for
the next block of text. Fig. 3 shows the hash-
ing algorithm M1 (the first 512 bits) of the
message block.

Rule 90 is applied to the entire array,
then rule 150 is applied to the result. Let’s repeat the opera-
tion 64 times. As a result, a 128×128 matrix is obtained, the
diagonal of which is the HASH function h1. In this case,
large computing power is used. However, this disadvantage
is compensated for by the expected high sensitivity to av-
alanche effect. As mentioned above, the algorithm uses the
rules of cellular automata belonging to the 3rd class of rules,
which are considered chaotic [9, 23]. Their randomness, in
turn, should provide a high sensitivity of the algorithm to
the avalanche effect.

Compression of a block with a hash is provided according to
formula (1) [20], which is widely used in the theory of cellular
automata, but was not used earlier to form the initial vector:

Ci=MiÅ(hi–1<<<Sk), 		 (1)

where Сi – compressed part of input mes-
sage Mi;

hi–1 – hash-image of the previous block;
Sk –cyclic bitwise shift depending on k;
k – number of 128 bit sub-block in 512-

bit block;
S={7, 12, 17, 22}.
All text is split into blocks of 512 bits.

These blocks are split into 4 more sub-blocks
of 128 bits each. For each of these 4 blocks,
let’s apply a cyclic left shift. That is, for
the first block S1=7, for the second S2=12,
for the third S3=17 for the fourth S4=22,
according to the fact that S={7, 12, 17, 22}.

In this case, a shift vector from the well-
known MD5 hashing algorithm is used. If
necessary, it can be replaced with another
one optimized for the avalanche effect, and,
in principle, generally be an input element
of the hashing procedure, if it is used as a
library, which often happens.

After executing this function, a 128-bit compressed hash
image is obtained. The next step is to apply the transform
function.

5. 4. Creating a transformation function using a
one-dimensional cellular automaton

For it, a one-dimensional cellular automaton was cho-
sen, which is subject to rules 90 and 150, since this pair
has the best chaotic characteristics [21]. The rules are ap-
plied step by step. First, rule 90 is applied to the original
128-bit array. In the next step, rule 150 is applied to the
result. And so in turn 128 steps, which means that each
rule is applied 64 times. In Fig. 4 shows a diagram of the
execution of the function of transforming a compressed
block in 128 bits.

М0 – n bit

М0 – n bit ΔМ k bit

М = М0 + ΔМ

n

М 64 bit 64 bit

128 bit

Т

Input vector for the 1st
block

n – length of original message

Padding k bits to provide n + k be
divisible by 512

The last 64 bits is written as a length
of the message Before this zeros are
padded to get 448 bits.

Getting 64 bits from the left and from
the right of the message and
concatenate them into one 128 block.

Transformation 128 bit block by the
rules 30 and 105.

+ «1» + 0000 + 64 bitsbit

Fig. 2. Block diagram of the formation of the input vector

М М+ΔМ
 Splitting into 4
 blocks
 of 128 bits

 I block M11 Input vector

creation XOR
<<<

Т h1 XOR
<<<

IІ block M12

Creation of block HASH1

IІI block M13

IV block M14

Т h2 XOR
<<<

Т h3 XOR
<<<

Т

IІI block M13

IV block M14

h4

 2nd block
 Splitting into
 5 blocks
 of 128 bits

 IІ block M21

 ..…..

Fig. 3. Hashing algorithm M1 (first 512 bits) of a message block: 	
T – transformation using cellular automata using rules 90 and 	

150 (entanglement); XOR <<< – Shift compression

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/9 (113) 2021

52

Let’s chose just such a set of rules and their combinations,
since this pair showed the least number of collisions with this
application. All possible pairs of rules (30, 90, 105, 150) [28]
were experimentally tested, and it was confirmed that using
(90, 150) mixing “vertically” not a single collision was found
on all 8 and 16 bit numbers. This means that each number
turned into some other unique number.

As a result, a 128×128 matrix is obtained, where the ver-
tical representations of the transformation results for each of
the 128 steps. Even lines are the result of rule 90, odd lines
are the result of rule 150.

The resulting row (128-bit block) is not the last 128th
row, but the main diagonal of the matrix. This block will
be transferred to the next 128-bit block for compression. It
is converted from binary to hexadecimal and the result is a
32 byte hash sum.

Fig. 4. Diagram of the transformation function of 	
a compressed 128-bit block

By itself, the use of cellular automata of the “chaotic
group” greatly complicates the derivation of the preimage
from the result. The use of cellular automata of a chaotic
group for 128 iterations significantly complicates the deri-
vation of the preimage from the final hash-image [28].

Thus, the use of cellular automata of a chaotic group
makes it difficult to quickly recover the original text
from the hash image, since it is difficult to catch the
pattern of creating a hash function from the original.
However, this increases the computing power, which can
be reduced by decreasing the number of iterations and
possibly reducing the sensitivity to the avalanche effect.
In each specific case of using this algorithm, the user can
smoothly optimize the ratio between resource consump-
tion and sensitivity to the avalanche effect by varying
the number of iterations.

5. 5.Testing the avalanche effect of the developed hash
function

The avalanche effect is a mandatory property of cryp-
tographic hash functions, reflecting the idea of a high degree of
nonlinearity: a slight change in the input (flipping one bit) pro-
duces a significant change in the output (about half of the bytes
have changed). Usually, if function f has an avalanche effect,
then the Hamming distance between two strings that differ by
one bit (byte) is no more than half the length of the output string.

Mathematically, hash function F: {0, 1}m→{0, 1}n has an
avalanche effect, if:

“x, y Î {0, 1},

m: Hamming (x, y)=1=
=Þaverage (Hamming (F(x), F(y)))=n/2,	 (2)

where Hamming (x, y) denotes the Hamming distance be-
tween two n-bit blocks x and y, that is, the number of matches.

The results were obtained from an experiment according
to the following algorithm.

In the famous phrase “Hello, world!” in each iteration of
the processing cycle, one of the 13 composite bytes was ran-
domly selected and increased by 1 (incremented). The hash
image of the resulting string was calculated and compared
with the hash image of the previous string. The length of the
output hash image was 32 bits, that is, the required average
Hamming value for these pairs is 16. This means that about
half of the bytes should change their value when one byte in
the input message changes. In this case, Hamming Distance
is equal to the inverse Hamming distance.

The experiment was of an evaluative nature. For a more
complete experiment, in the future, strings of 512 bytes and
the number of pairs of 1 million will be used.

In Fig. 5 schematically shows the results of checking the
avalanche effect of the considered hash function. Distance
is inverse to Hamming distance – Hamming-1 denotes the
number of matches in two blocks of the same length.

Hammimg-1 (x, y)=length(x)–Hamming(x, y).
That is, if the strings do not match in any of the charac-

ters, then Hamming-1=0. And if they have matched 1 byte,
then Hamming-1=1.

For verification, a set of 10,000 pairs ()′, i iM M of arbitrary
messages was created, such that Hamming ()′ =, 1,i iM M that
is, the lines differed by one byte.

The test was carried out using a bench developed by the
authors based on the new Java 11 methods.

The test results are shown below in Table 1.

01001011…..10011 Сі

150 rule
1100001…..00100 А1

90 rule
00111100 …..1111100 А2

150 rule
1110001…..0101100 А3

90 rule
1000011…..11100000 А4

150 rule
128 times alternating. Once Rule 150, the second

time Rule 90

1001001…..001001 А126

Result
Matrix Аik

(i = 128, k = 128)

А11А22А33А44…А125,125А126,126А127,127А128,128

Result
hi - HASH
i-th block

Amount of coinсidence (x,y)

 0 2000 4000 6000 8000 10000
 Pair number, n

0

7

5

3

1

Fig. 5. The obtained distribution of coincidences between hashes
of random messages and hashes of their one-bit changes

53

Information and controlling system

For greater clarity of the result obtained, in Fig. 6 shows
the dependence of the logarithm of the number of coinci-
dences on the frequency of coincidences.

The test illustrated in Fig. 5, 6, shows that there are
1654 pairs with 0 bit coincidences. A one-bit match showed
3268 pairs, 2 coincidences showed 898 pairs, etc. It should
be noted that more than 10 coincidences showed only a few
pairs. The coincidences between the hash values of the se-
lected pairs are centered around the values 0–2. This means
that about half of 10 thousand pairs have 0–2 coincidences,
instead of the required 16.

The explanation of the obtained result is that, in contrast
to the majority of similar studies (for example [29], where
the formation of the initial vector is “in general”), the devel-
oped algorithm is based, among other things, on the correct
formation of the input vector.

Another standard way to investigate the avalanche effect
is to hash the well-known phrase “about the fox” and com-
pare the hash patterns when one byte of the phrase changes.
The results of this experiment are shown in Table 2.

Table 2

Results of an avalanche effect study based on hashing the
phrase “the quick brown fox jumps over the lazy dog” and

comparing hash images when one byte of the phrase changes

String Hash

the quick brown fox jumps
over the lazy dog

b8f1006d52624ca6ad6f1d4271271519

the quick brown fox jumps
over the lazy dog.

a6df80ef786045948051bd48f92d4859

the quick brown foS
jumps over the lazy dog

6cf2846d5f0cddebcc7e752c4952c041

The given result is presented for clarity, although it does
not represent sufficient verification statistics. The second line
differs from the first by the presence of a period at the end of the
phrase. This is not entirely correct, since the lengths of the two
original strings must be the same.

It can be seen that the hash image changes
almost completely when one bit at the input
changes, which also indicates a good ava-
lanche effect of the designed hash function.

Testing the proposed algorithm for sus-
ceptibility to the avalanche effect showed that
about half of the hash patterns out of 10 thou-
sand 32-bit pairs have a coincidence from 0
to 2, instead of the required 16.

Thus, when checking the sensitivity of the algorithm to
the avalanche effect, it turned out that out of 10,000 pairs,
only 15 showed coincidences up to a quarter of the signs, in-
stead of the required 50 % [19]. More than 80 % of the pairs
tested yielded zero to two coincidences per 32-bit hash. This
result turned out to be four times more sensitive than that of
the existing algorithms (SHA1, SHA256, and MD5) [31].

6. Discussion of the results of the development of a
hash function algorithm based on cellular automata and

chaos theory

The results obtained during the development of the hash
function algorithm based on cellular automata and chaos
theory, namely, the high sensitivity of the algorithm to the
avalanche effect, illustrated in Fig. 5, 6 and in Table 2 is ex-
plained, first of all, by an increase in the computation time.
The proposed algorithm works four times slower than the well-
known SHA family. Nevertheless, the hashing process in the
general information processing algorithm (receiving, primary
processing, packing, sending, unpacking, verifying, etc.) takes
relatively little time resources, then it is possible to assume
that the performance requirements should not be critical.
Security depends on time, that is, the safer option will take
longer to compute the hash value [5]. Decreasing the sensi-
tivity to the avalanche effect allows the generation time to be
approximately halved.

In the proposed algorithm, the original message is divid-
ed into blocks, just as it was done in [8]. Similarly to [10, 13],
the algorithm uses chaos theory. New in the proposed algo-
rithm, as shown in Fig. 2, is the compression of a block with
a hash and the formation of an input vector using the theory
of cellular automata. In particular - in blocks of 128-bit with
mixed rules CA 30, 105 and 90, 150, taking into account
the dependence of the generation of the initial vector on the
incoming message.

In algorithms like SHA, MD5, the input vector is formed
as the sum of 64 bits at the beginning and at the end of the
message. In this case, a change in the message by one bit
gives a change in the input vector by a maximum of one bit.
In the case of the proposed algorithm, increasing the sensi-
tivity to the avalanche effect is achieved by improving the
algorithm for obtaining the input vector.

The algorithm for cyclical compression of text by blocks
consists of compression with a hash of the previous (cycli-
cally shifted) block, and a transformation function using a
cellular automaton with 90 and 150 rules.

The creation of a transformation function using a one-di-
mensional cellular automaton of a chaotic group for 128
iterations makes it much more difficult to obtain a preimage
from the final hash-image.

The proposed algorithm has limitations in application
when the time provided for processing the input message
is limited. This is because it is four times slower than the

Table 1

Results of testing the avalanche effect of the considered hash function

Hamming-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Coincidence
frequency

1654 3268 898 18 2472 829 830 0 5 0 6 0 0 8 0 12 0

lg10 coincidence

Frequency

4

3

2

1

0
0 1 2 15 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 6. Dependence of the logarithm of the number of
coincidences on the frequency of coincidences

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/9 (113) 2021

54

well-known SHA family. At the same time, decreasing the
sensitivity to the avalanche effect makes it possible to ap-
proximately halve the generation time.

Of the five requirements put forward to the hash func-
tion (determinism, impossibility of obtaining a preimage,
collisions of the 1st and 2nd kind, avalanche effect) [19], three
of them were carefully checked. The collision requirement
has been checked on an assessment basis. This is an obvi-
ous flaw in the study. For correct checking of collisions of
the 1st and 2nd kind, it is necessary to carefully define the
requirements for the purity of the experiment. In particular,
how to ensure the generation of several hundred million
different lines. In a preliminary experiment, 4 million lines
were generated, which took 1 gigabyte of RAM. Thus, test-
ing the sensitivity of the algorithm to the avalanche effect
showed matches up to a quarter of the characters, instead of
the required half characters [19]. More than 80 % of tested
pairs showed from zero to two matches per 32-bit hash,
which is almost four times more sensitive than existing algo-
rithms (SHA1, SHA256 and MD5).

The development of research on improving the hash func-
tion algorithm based on cellular automata and chaos theory is
planned in the direction of correct checking of collisions of the
1st and 2nd kind. In addition, the use of new technologies of the
Java programming language (version 15) will help optimize
the output parameters of the proposed function.

7. Conclusions

1. The algorithm for splitting the original message of ar-
bitrary length into blocks to the required one (512 bits) has
been added by adding a single bit to the end of the message,
which is padded with zeros until the message length is 448.
This addition allows adding the size of the original message
in binary code to the last 64 bits.

2. It is proposed to compress a block with a hash and
form an input vector using the theory of cellular automa-

ta, in particular, in blocks of 128-bit with mixed rules CA
30, 105 and 90, 150, taking into account the dependence
of the generation of the initial vector on the incoming
message.

3. A function of text compression by blocks is proposed,
which consists of compression with a hash of the previ-
ous (cyclically shifted) block, and a transformation function
using a cellular automaton with rules 90 and 150. With its
help, a 128-bit block is obtained, which is the key for the next
block of text.

4. For the transformation function, a one-dimensional
cellular automaton is selected, which is subject to rules 90
and 150, which are applied alternately in steps of 64 times.
This pair of rules with this application showed the least num-
ber of collisions. In particular, no collisions were found on all
8 and 16 bit numbers.

5. Testing the proposed algorithm for susceptibility to
the avalanche effect showed that about half of the hash pat-
terns of 10 thousand 32-bit pairs match from 0 to 2, instead
of the required 16. The proposed algorithm works four times
slower than the well-known SHA family. At the same time, a
decrease in the sensitivity to the avalanche effect allows the
generation time to be approximately halved..

Acknowledgements

The authors would like to express their sincere gratitude
to Dyachuk Rostislav Lyubomirovich - Assistant of the De-
partment of Software for Computer Systems, Yu Fedkovich
Chernivtsi National University for the refactoring of the
algorithm code and advice on the application of new methods
of the Java 11 programming language.

The work was carried out within the framework of the
theme “Research, modeling and development of software
complex dynamic systems” at the Department of Computer
Systems Software, Yu. Fedkovich Chernivtsi National Uni-
versity. Registration number: 0121U109232.

References

1.	 Toffoli, T., Margolis, N. (1987). Cellular Automata Machines. Cambridge: MIT Press. doi: http://doi.org/10.7551/

mitpress/1763.001.0001

2.	 Jeon, J.-Ch. (2013). Analysis of hash functions and cellular automata based schemes. International Journal of Security and

Applications, 7 (3), 303–316. Available at: http://article.nadiapub.com/IJSIA/vol7_no3/28.pdf

3.	 Paar, C., Pelzl, J. (2010). Understanding cryptography. Berlin-Heidelberg: Springer-Verlag. doi: https://doi.org/10.1007/978-3-

642-04101-3

4.	 Pasyeka, M., Pasieka, N., Bestylnyy, M., Sheketa, V. (2019). Analysis of the use of the highly effective implementation of the sha-512

hash functions for the development of software systems. Cybersecurity: Education, Science, Technique, 3 (3), 112–121. doi: http://

doi.org/10.28925/2663-4023.2019.3.112121

5.	 Kuznetsov, O. O., Horbenko, Yu. I., Onopriienko, V. V., Stelnyk, I. V., Mialkovskyi, D. V. (2019). The study of cryptographic hashing

algorithms used in modern blockchain systems. Radiotekhnika, 3 (198), 54–74. doi: http://doi.org/10.30837/rt.2019.3.198.05

6.	 Pro zatverdzhennia Polozhennia pro orhanizatsiiu zakhodiv iz zabezpechennia informatsiinoi bezpeky v bankivskii systemi Ukrainy

(2017). Postanova Pravlinnia Natsionalnoho banku Ukrainy No. 95. 28.09.2017. Available at: https://zakon.rada.gov.ua/laws/

show/v0095500-17#Text

7.	 DSTU 7564: 2014 "Informatsionnye tekhnologii. Kriptograficheskaia zaschita informatsii. Funktsiia kheshirovaniia" (2014). Priniatii

prikazom Ministerstva ekonomicheskogo razvitiia i torgovli Ukrainy No. 1431. 02.12.2014. Available at: https://usts.kiev.ua/

wp-content/uploads/2020/07/dstu-7564-2014.pdf

8.	 Tiwari, H., Asawa, K. (2012). A secure and efficient cryptographic hash function based on NewFORK-256. Egyptian Informatics

Journal, 13(3), 199–208. doi: http://doi.org/10.1016/j.eij.2012.08.003

9.	 El Moumni, S., Fettach, M., & Tragha, A. (2019). High throughput implementation of SHA3 hash algorithm on field programmable

gate array (FPGA). Microelectronics Journal, 93, 104615. doi: http://doi.org/10.1016/j.mejo.2019.104615

55

Information and controlling system

10.	 Hasheminejad, A., Rostami, M. J. (2019). A novel bit level multiphase algorithm for image encryption based on PWLCM chaotic

map. Optik, 184, 205–213. doi: http://doi.org/10.1016/j.ijleo.2019.03.065

11.	 Hao, W., Liming, Z., Haowei, M., Xingang, Z., Jinping, C. (2020). Perceptual Hash algorithm for GF-2 image using SIFT and

SVD[J]. Bulletin of Surveying and Mapping, 8, 44–49. doi: https://doi.org/10.13474/j.cnki.11-2246.2020.0246

12.	 Xue, Wang, Liu, Lv, Wang, Zeng. (2019). An RISC-V Processor with Area-Efficient Memristor-Based In-Memory Computing for

Hash Algorithm in Blockchain Applications. Micromachines, 10 (8), 541. doi: http://doi.org/10.3390/mi10080541

13.	 Li, Y. (2016). Collision analysis and improvement of a hash function based on chaotic tent map. Optik, 127 (10), 4484–4489.

doi: http://doi.org/10.1016/j.ijleo.2016.01.176

14.	 Tao, F., Qian, W. (2019). Image hash authentication algorithm for orthogonal moments of fractional order chaotic scrambling

coupling hyper-complex number. Measurement, 134, 866–873. doi: http://doi.org/10.1016/j.measurement.2018.11.079

15.	 Sodhi, G. K., Gaba, G. S., Kansal, L., Bakkali, M. E., Tubbal, F. E. (2019). Implementation of message authentication code using

DNA-LCG key and a novel hash algorithm. International Journal of Electrical and Computer Engineering (IJECE), 9 (1), 352–358.

doi: http://doi.org/10.11591/ijece.v9i1.pp352-358

16.	 Sumagita, M., Riadi, I. (2018). Analysis of Secure Hash Algorithm (SHA) 512 for Encryption Process on Web Based Application.

International Journal of Cyber-Security and Digital Forensics, 7 (4), 373. Available at: https://link.gale.com/apps/doc/

A603050342/AONE?u=anon~26dfe3b7&sid=bookmark-AONE&xid=80bc955a

17.	 Safaei Mehrabani, Y. (2018). Synthesis of an Application Specific Instruction Set Processor (ASIP) for RIPEMD-160 Hash

Algorithm. International Journal of Electronics Letters, 7 (2), 154–165. doi: http://doi.org/10.1080/21681724.2018.1477182

18.	 Mittelbach, A. Fischlin, M. (2021). The Theory of Hash Functions and Random Oracles. Springer International Publishing.

doi: http://doi.org/10.1007/978-3-030-63287-8

19.	 Georgacopoulou, C. (1986). An investigation of hashing algorithms and their performance. Bradford.

20.	 Liu, Y. (2020). Modelling Urban Development with Geographical Information Systems and Cellular Automata. CRC Press. doi:

http://doi.org/10.1201/9781420059908

21.	 Ch, J. (2013). Analysis of hash functions and cellular automata based schemes. International Journal of Security and Applications,

7 (3), 303–316. Available at: http://article.nadiapub.com/IJSIA/vol7_no3/28.pdf

22.	 Belfedhal, A. E., Faraoun, K. M. (2015). Building Secure and Fast Cryptographic Hash Functions Using Programmable Cellular

Automata. Journal of Computing and Information Technology, 23 (4), 317–328. doi: http://doi.org/10.2498/cit.1002639

23.	 Martinez, G. (2013), A Note on Elementary Cellular Automata Classification. Journal of Cellular Automata, 8 (3-4), 233–259.

Available at: https://arxiv.org/pdf/1306.5577.pdf

24.	 Vergili, I., Yucel, M. D. (2001). Avalanche and Bit Independence Properties for the Ensembles of Randomly Chosen n x n S-Boxes.

Turkish Journal of Electrical Engineering and Computer Science, 9, 137–145. Available at: https://journals.tubitak.gov.tr/elektrik/

issues/elk-01-9-2/elk-9-2-3-0008-1.pdf

25.	 Mironov, I. (2005). Hash functions: Theory, attacks, and applications. Available at: https://www.microsoft.com/en-us/research/

publication/hash-functions-theory-attacks-and-applications/

26.	 Li, W., Packard, N. (1990). The Structure of the Elementary Cellular Automata Rule Space. Complex Systems, 4, 281–297.

27.	 Wolfram, S. (2002). A New Kind of Science. Champaign: Wolfram Media, 1192.

28.	 Wolfram, S. (2002). Cellular Automata and Complexity. Westview Press.

29.	 Pieprzyk, J. (1993). Design of hashing algorithms. Springer-Verlag.

30.	 Belfedhal, A. E., Faraoun, K. M. (2015). Building Secure and Fast Cryptographic Hash Functions Using Programmable Cellular

Automata. Journal of Computing and Information Technology, 23 (4), 317–328. doi: http://doi.org/10.2498/cit.1002639

31.	 Ostapov, S. E. Yevseiev, S. P., Korol, O. H. (2013). Tekhnolohii zakhystu informatsii. Kharkiv: Vyd. KhNEU, 476. Available at:

http://kist.ntu.edu.ua/textPhD/tzi.pdf

