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:

the arrangement of zeros and poles in the transfer function 
of the system. 

The synthesis of the automatic control system involves 
not only the choice of its structure but also determining its 
parameters, first of all, the parameters to configure PI and 
PID controllers.

Thus, it is a relevant task to determine the configuration 
parameters for PID controllers by arranging the poles on a 
complex plane since it makes it possible to reduce the prob-
lem to solving a system of linear algebraic equations.

2. Literature review and problem statement

PID controllers are the most common among all types 
of regulators. At present, up to 90‒95 % of all controllers 
in operation employ PID control algorithms [1]. Such high 
popularity of PID controllers is due to the simplicity of their 
structure, low cost, and their suitability for solving most 
practical tasks. 

1. Introduction

The task to synthesize an automated control system for 
a particular object is one of the most important in its design. 
The purpose of synthesis is to construct a system that would 
meet certain requirements, namely: the system must be ro-
bust; demonstrate the predefined control quality indicators 
such as overshoot and regulation time. 

The system synthesis can be carried out using both fre-
quency and time methods.

Frequency methods of synthesis are based on the use of 
frequency characteristics such as Bode, Nyquist diagrams, or 
coordinates built in polar systems. They make it possible to 
synthesize controlling devices in order to achieve certain quali-
ty indicators of the control process, such as the maximum value 
of the frequency performance amplitude, resonance frequency, 
bandwidth, and margin of stability for the amplitude and phase.

Methods of system synthesis in the time domain make 
it possible to evaluate the quality indicators of the system 
according to its transition characteristic, which depends on 
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This paper reports a solution to the problem of 
determining the configuration parameters of PID 
controllers when arranging the poles of the transfer 
function of a linear single-circuit automated control 
system for a predefined set of control objects.

Unlike known methods in which the task to find 
the optimal settings of a PID controller is formed as 
a problem of nonlinear programming, in this work a 
similar problem is reduced to solving a system of lin-
ear algebraic equations.

The method devised is based on the generalized 
Viète theorem, which establishes the relationship 
between the parameters and roots of the character-
istic equation of the automatic control system. It is 
shown that for control objects with transfer func-
tions of the first and second orders, the problem of 
determining the configuration parameters of PID 
controllers has an unambiguous solution. For control 
objects with transfer functions of the third and higher 
orders, the generated problem is reduced to solving 
the redefined system of linear algebraic equations 
that has an unambiguous solution when the Rouché–
Capelli theorem condition is met.

Such a condition can be met by arranging one 
of the roots of the characteristic equation of the 
system on a complex plane. At the same time, the 
requirements for the qualitative indicators of the 
system would not always be met. Therefore, alter-
native techniques have been proposed for determin-
ing the configuration parameters of PID controllers. 
The first of these defines configuration parameters 
as a pseudo solution to the redefined system of lin-
ear algebraic equations while the second produces a 
solution for which the value of the maximum residual 
for the system of equations is minimal.

For each case, which was used to determine the 
settings of PID controllers, such indicators of the 
control process as overshooting and control time 
have been determined
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function of the automatic control system was partially con-
sidered in [12] for the oil separation process.

Thus, the issue of determining the configuration param-
eters for PID controllers remains relevant, as evidenced by 
numerous publications. The methods and algorithms offered 
by their authors are reduced to solving problems of nonlin-
ear programming, which imposes certain restrictions on the 
class of mathematical models that describe the dynamics 
of control objects. At the same time, little attention is paid 
in scientific papers to methods based on determining the 
parameters of configuration of PID controllers by arranging 
roots on a complex p-plane.

3. The aim and objectives of the study

The purpose of this work is to build a method for de-
termining the parameters of PID controllers by arranging 
poles on a complex plane (p-plane) of the transfer function 
of a single-circuit automatic control system. This will make 
it possible to develop effective algorithms for determining 
the configuration parameters of PID controllers for the pre-
defined set of transfer functions of control objects.

To accomplish the aim, the following tasks have been set:
– to form the concept for determining the configuration 

parameters of PID controllers for control objects with trans-
fer functions up to the third order inclusive;  

– to devise a procedure for determining the configu-
ration parameters of PID controllers, focused on the pre-
defined class of transfer functions of control objects.

4. The study materials and methods

We consider a single-circuit automatic control sys-
tem (Fig. 1), which consists of a control object with the 
transfer function Wоb(p) and a controlling element whose 
transfer function is Wcl(p).

Fig. 1. Single-circuit automatic control system

Let the transfer function of the object be assigned as the 
ratio of two polynomials
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and the controller has the following transfer function:
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In (1), (2), the following notations are adopted: ai, 
= 0, ;i n  bj, = 0,j m  are the parameters of the transfer func-

tion of the object; C0, C1, and C2 are the controller’s config-
uration options.

In addition, we assume n<m. 

The stability of an automatic control system and the 
quality of the control process largely depend on the configu-
ration parameters of the PID controller.

One of the first studies that addressed solving the 
problem of determining the configuration parameters for 
PID controllers was reported in [2]. The essence of the 
Sigler-Nichols method is that the two parameters, L and R, 
were determined based on the transitional characteristic 
of the object. To determine them, the inflection point was 
determined on the acceleration curve and a straight line was 
drawn through it, which is tangent to the acceleration curve. 
Such a straight line cut from the axis of abscissa the value of 
L while the angle of inclination to the same axis defined the 
value for R. The Sigler-Nichols method can only be used for 
a limited class of objects; it is largely subjective in determin-
ing the L and R parameters. Further research on solving the 
task of finding optimal configuration parameters for PID 
controllers was carried out in two directions – the time [3] 
and frequency domains [4].

A characteristic feature of works [3] and [4] is that the 
task of determining the optimal configuration parameters of 
PID controllers is stated as a problem of nonlinear program-
ming. In addition, the authors confined themselves to objects 
with transmission functions of the first order with a delay.

A method for determining the configuration parameters of 
PID controllers in the time domain is based on minimizing the 
function of the control rms error [5]. The configuration param-
eters for a PID controller, obtained in this way, typically ensure 
the stability of the automatic control system but the transition 
processes in such a system are oscillatory in nature, whose in-
tensity of attenuation is unsatisfactory in most cases. Therefore, 
it is necessary to introduce an additional component to the cri-
terion of optimality based on the speed of change in the control 
error with a certain weight coefficient, whose value is selected 
on the basis of the intuition of the researcher followed by the 
subsequent repeated machine experiments.

The task of determining the configuration parameters of 
PID controllers in the temporal domain is a nonlinear opti-
mization problem; solving it requires genetic algorithms [6], 
neural network technologies [7], and the so-called bacteria 
reproduction algorithm [8] (Bacterial Foraging Optimiza-
tion Algorithm, BFOA-algorithm), which is proposed by the 
authors of work [9].

The use of so many algorithms for finding a minimum of 
the control rms error indicates the difficulty of solving the 
task, which is even more complicated when considering the re-
strictions for the configuration parameters of PID controllers.

The second direction in determining the configuration 
parameters of PID controllers is based on the use of frequen-
cy characteristics of automatic control systems. Among the 
methods used, the most common is the method of extended 
amplitude-phase characteristics [10] and the method of de-
termining the configuration parameters of PID controllers 
using conventional frequency characteristics [11]. The dis-
advantage of frequency methods is that they are graphic-an-
alytical, which causes certain difficulties in their computer 
implementation.

A method for determining the parameters of PID con-
trollers by arranging the poles of the transfer function of 
the closed automatic control system on a complex plane is 
proposed, which makes it possible to reduce the problem to 
finding a solution to the system of linear algebraic equations.

The task of calculating the configuration parameters 
for a PID controller by arranging the poles of the transfer 
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The transfer function of the open system (Fig. 1) takes 
the following form:
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5. Results of building a method for determining the 
configuration parameters of PID controllers 

5. 1. The concept of determining the configuration 
parameters of PID controllers

Knowing the transfer function Wоs(p) of the open sys-
tem, we find the transfer function of the closed system rela-
tive to the input value u (Fig. 1)
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Expression (3) is to be recorded in a slightly different form
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where βj=bm–j, = 0, ;j m  αi=αn–i, = 0, .i n
The denominator of the transfer function Wyu(p) con-

tains the product of two polynomials. Multiplication of two 
polynomials is reduced to finding the product of their coeffi-
cients [13] according to the following formula:
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where C3=C4=...=Cm+2=0; βm+1=βm+2=0.
Thus,

= β0 0 0;s C
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Thus, the denominator of transfer function (4) is the sum 
of two polynomials
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Considering the Q1(p) and Q2(p) values, we find that
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Characteristic polynomial (6) is recorded by the de-
scending powers

( ) + +
−

+ − +

= π + π + + π +

+π + + π + π





1 1
0 1

1 1,

n n m
n m

m
n m n n

Q p p p p

p p  	  	 (7)

where π0=αn; π1=αn–1; …; πn–m=αm ; πn–m+1=sm+αm-1…; 
πn=s1+α0; πn+1=s0.

Summarizing the result, we can write down:
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For ratio (8), the following condition must be met:

− − ≥2 0.n m  					      (9)

If n–m–2<0, then the πi value should be calculated using 
the following formula:

+ − −π = + α1i n i n is  at = +0, 1.i n 			    (10)

We assume that p1, p2, …, pn+1 roots of characteristic 
polynomial (7) contain no multiples. 

Then, in accordance with Vieta’s theorem, we obtain the 
following system of relations between the roots of character-
istic equation (7) and its coefficients:
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In the system of equations (11), its right-hand sides are 
the functions of the controller configuration parameters, 
which makes it possible to select the C0, C1, and C2 values 
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so that the quality of the control process meets certain 
criteria. 

In this case, we shall consider the following. For the 
automatic control system (Fig. 1) to be stable, it is necessary 
and sufficient that all the roots of characteristic equation (6) 
should belong to the left semi-plane of the p-plane (the com-
plex plane of roots).

Therefore, first, the C0, C1, and C2 values must be such to 
ensure that the system is robust; second, the system should 
have the desired properties [14] – the degree of stability η 
and fluctuations μ. 

The degree of stability is determined by the near-
est left real root to the imaginary axis minη = Re ,kk

p  
{ }∈ 1,2, , .k n  Designate the nearest left complex-coupled 

root as = −α ± ζ .cс сp j  Then 
ζ

µ =
α

.с

с

In a general case, when the n<m condition is met, the 
characteristic polynomial (6) of the automatic control sys-
tem has n+1 simple roots. Therefore, in accordance with 
ratios (11), we obtain a system of linear algebraic equations 
whose dimensionality is n+1. Such a system contains three 
unknown C0, C1, and C2, that is, the system of equations (11) 
belongs to the class of redefined equations [15]. In the case 
where the characteristic polynomial of the controlled object 
has a second power, then the system of equations (11) is a 
second-order system with three unknowns. Such a system 
is indeterminate [15]. And, only for the characteristic sec-
ond-order polynomial, we obtain a system of three equations 
with three unknowns.

If we form matrix A of the coefficients of unknowns in 
the system of equations (11), then the rank of such a matrix

( ) ( )rang min= +1, 3 ,A n  		  (12)

where matrix A has a dimensionality of (n+1)×3. 
Matrices for which condition (12) is met are the matrices 

of full rank [15]. The system of linear algebraic equations with 
matrices of full rank for n=1 is indeterminate and always com-
patible but does not have a single solution. If n=2, then, for the 
non-special matrix A, we obtain a single solution. The redefined 
system (n>3) is only compatible if the Rouché–Capelli theo-
rem [16] is met, that is, the following equality should hold:

( ) [ ]( )rang rang= ,A A B 		   (13)

where B is the vector of free terms of the right-hand sides of 
equation system (11).

5. 2. Procedure for determining the configuration 
parameters of PID controllers focused on the predefined 
class of transfer functions of control objects 

5. 2. 1. An object’s first-order transfer function
Assume the transfer function of a controlled object is as 

follows:

( ) =
+

,
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k
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where k is the transmission coefficient;
T – an object’s time constant. 
The dynamic properties of the controller are character-

ized by transfer function (2). 
In the considered case, the transfer function of the closed 

system (Fig. 1) takes the following form:
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From formula (5), we find: s0=C0β0; s1=C1β0; s2=C2β0. 
Since βj=bm–j, ai=an–1, where m=0, n=1, then β0=b0=k; 
a0=a1=1, a1=a0=T.

Given that n=1, the power of a characteristic polynomial 
is equal to two. So

( ) = π + π + π2
0 1 2.Q p p p  		  	  (15)

Since n–m–2<0, therefore, to determine the coefficients 
πi, i=0, 1, 2 of the characteristic polynomial Q(p), we use 
formula (10). Then: π0=s2+α1, π1=s1+α0, π2=s0. 

If we take into consideration the corresponding values s0, 
s1 and s2, and α0 і α1, we obtain

( ) ( ) ( )= + + + +2
2 1 01 .Q p kC T p kC p kC 		  (16)

Of course, in this simple case, the characteristic poly-
nomial (16) could be obtained directly from transfer func-
tion (12). The built algorithm for determining the character-
istic polynomial shows its superiority over the technique of 
multiplication of polynomials (opening brackets) in the cases 
where we have high-power polynomials in the numerator and 
denominator of transfer function (3).

For characteristic polynomial (15), the following system 
of equations is constructed:

π
+ = −

π
1

1 2
0

,p p

π
=

π
2

1 2
0

.p p

Hence, we find

( )π + = −π0 1 2 1,p p

π = π0 1 2 2.p p

Considering values for π0, π1, and π2, the following ratios 
have been derived:

( )( ) ( )+ + = − +2 1 2 1 1 ,kC T p p kC

( )+ =2 1 2 0.kC T p p kC 			    (17)

We have two equations and three unknowns. One of 
them can be chosen arbitrarily. Let C2=0. Then, from the 
system of equations (17), we find:

( )( )= − + +1 1 2

1
1 ,C T p p

k
			   (18)

=0 1 2

1
.C Tp p

k
 				     (19)

Thus, formulas (18) and (19) make it possible to deter-
mine the setting parameters for a PI-controller by arranging 
the roots p1 and p2 of the characteristic equation on the com-
plex p-plane. Obviously, to ensure that the system is robust, 
the roots p1 and p2 must be left.
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Accept = −α + ζ1p j  and = −α − ζ2 ,p j  
where α>0 і ζ>0. Then, as it follows from 
formulas (18) and (19), we have:

( )= α −1

1
2 1 ,C T

k
		   (20)

( )= α + β2 2
0

1
.C T

k
  	  (21)

In most cases, the transition process can 
be considered complete if the component of 
the transition process, which is determined 
by the degree of stability η, is damped. That 
means that α=η and the degree of damping 

is 
ζ

µ =
α

 or 
ζ

µ =
η

.  Hence, ζ=μη. 

Taking into consideration the found val-
ues, formulas (20), (21) take the following 
form:

( )= η −1

1
2 1 ,C T

k
		   (22)

( )= η µ +2 2
0

1
1 .C T

k
 		   (23)

In a general case, the time of control tp can be approxi-
mately estimated [14] by the following formula:

ln=
η χ
1 1

,pt

where χ=0,05÷0,1.
After selecting the desired tp value, one can find the de-

gree of stability of the system:

lnη =
χ

1 1
.

pt  
			    (24)

A numerical experiment was carried out. The program-
ming environment MATLAB (The MathWorks, USA) was 
used to develop a program for building the transition charac-
teristics of the system at a single jump-like input action. The 
parameters of the system’s transfer function were as follows: 
k=2.5; T=12 s; tp=18 s; and the values C0 and C1 were calcu-
lated from formulas (22), (23).

The results from the numerical experiment are given 
in Table 1.

Table 1 

Values of the PI-controller configuration parameters and the 
control process quality indicators 

The degree of 
fluctuation, µ 

Configuration  
parameter

Control quality  
indicator

C0, s-1 C1
Over-

shoot, σ, %
Control 

time, tp, s

0.2 0.35 3.00 2.64 28.32

0.4 0.19 1.50 4.04 29.12

0.6 0.15 1.00 6.30 28.64

0.8 0.15 0.75 9.08 26.40

Analysis of Table 1 shows that the synthesized automatic 
control system allows for a satisfactory quality of control – 
the overshoot value does not exceed the permissible norms. 
The control time is slightly higher than the specified value. 
This is because (24) is approximate.

5. 2. 2. An object’s second-order transfer function 
Now a more complicated case is being considered. Let the 

transfer function of the control object be as follows:

( ) +
=

+ +
0 1

2
0 1 2

.ob

b p b
W p

a p a p a  	  (25)

The dynamic properties of the controller are character-
ized by transfer function (2). 

The characteristic equation of a closed system is to be 
written in the form of ratio (7). Since n=2, ratio (7) is a 
third-power polynomial:

( ) = π + π + π + π3 2
0 1 2 3.Q p p p p 			   (26)

Next, we find the polynomial’s coefficients (26). The left-
hand side of inequality (9) at n=2 and m=1 will be negative. 
Therefore, the values πi, i=0, 1, 2, 3 are calculated from for-
mula (10). We obtain

π = + α0 3 2,s  π = + α1 2 1,s  π = + α2 1 0,s  π =3 0,s

where = β0 0 0,s C  = β + β1 0 1 1 0,s C C  = β + β2 1 1 2 0,s C C  = β3 2 1.s C
Since β0=b1, β1=b0; α0=a2, α1=a1, α2=a0, then 

π = +0 2 0 0,С b a

π = + +1 1 0 2 1 1,С b С b a

π = + +2 0 0 1 1 2,С b С b a

π =3 0 1.С b

 t, s 

Fig. 2. Transitional characteristics of the system at different μ values
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Ratios (11) for a third-power polynomial are:

( )π + + = −π0 1 2 3 1,p p p

( )π + + = π0 1 2 1 3 2 3 2,p p p p p p

π = −π0 1 2 3 3.p p p

Considering the values of πі, i=0, 1, 2, 3, we obtain 

( )( ) ( )+ + + = − + +2 0 0 1 2 3 1 0 2 1 1 ,С b a p p p С b С b a

( )( )+ + + = + +2 0 0 1 2 1 3 2 3 0 0 1 1 2,С b a p p p p p p С b С b a 	 (27)

( )+ = −2 0 0 1 2 3 0 1.С b a p p p С b

Assume that one root of polynomial (26) is left and real, 
and the other two are the left and complex-coupled ones: 
p1=–αc, 1, p2=–αc, 2+jζc, 2, p3=–αc, 2–jζc, 2. Then

+ + = −α − α1 2 3 ,1 ,22 ,с сp p p

+ + = α α + α + ζ2 2
1 2 1 3 2 3 ,1 ,2 ,2 ,22 ,с c c cp p p p p p

( )= −α α + ζ2 2
1 2 3 ,1 ,2 ,2 .с c cp p p

The results make it possible to write down a system of 
equations (27) in the following form:

( )( )+ α + α = + +2 0 0 ,1 ,2 1 0 2 1 12 ,с сС b a С b С b a

( )( )+ α + ζ + α α = + +2 2
2 0 0 ,2 ,2 ,1 ,2 0 0 1 1 22 ,c cс cС b a С b С b a 	 (28)

( )( )α + α + ζ =2 2
,1 2 0 0 ,2 ,2 0 1.с c cС b a С b

We obtained a system of three linear algebraic equations 
with three unknowns. From the last equation of system (28), 
we determined

( )( )α
= + α + ζ,1 2 2

0 2 0 0 ,2 ,2
1

.с
c cС С b a

b
		   (29)

The C0 value is put in the second equation of system (28). 
As a result, we have a system of two equations with two 
unknowns

( )( )+ α + α = + +2 0 0 ,1 ,2 1 0 2 1 12 ,с сС b a С b С b a

( )( )
( )( )

+ α + ζ − α α =

= α + α + ζ + +

2 2
2 0 0 ,2 ,2 ,1 ,2

2 20
,1 2 0 0 ,2 ,2 1 1 2

1

2

.

c cс c

с c c

С b a

b
С b a С b a

b

After obvious algebraic transformations, the transition 
to the following system of linear algebraic equations is car-
ried out:

+ =11 1 12 2 1,A C A C B 			    (30)

+ =21 1 22 2 2.A C A C B  			    (31)

where A11=–b0; A12=(αc, 1+2αc, 2)b0–b1: = − 2
12 1 ;A b

( ) ( )( )= α + ζ + α α − α α + ζ2 2 2 2
22 0 1 ,2 ,2 ,1 ,2 ,1 0 ,2 ,22 ;c cс c с c cA b b b  

( )= − α + α1 1 0 ,1 ,22 ;с сB a a  

( )
( )( )

= α α + ζ +

+ − α + ζ + α α

2 2
2 0 ,1 0 ,2 ,2

2 2
1 2 0 ,2 ,2 ,1 ,22 .

с c c

c cс c

B a b

b a a

Solving the system of equations (30), (31) produces:

−
=

−
22 1 12 2

1
11 22 12 21

,
A B A B

С
A A A A

−
=

−
11 2 21 1

2
11 22 12 21

.
A B A B

С
A A A A

The known C2 value is used to find C0 from formula (29).
The next step in calculating the parameters of the con-

troller is to select the value for the roots of the characteristic 
equation in such a way that, first, the system is robust, and, 
second, the system should demonstrate the desired quality 
indicators of the control process.

The first condition is met automatically by arranging the 
roots of the characteristic equation in the left semi-plane of 
the p-plane.

To form the conditions for meeting the second require-
ment, consider the p-plane (Fig. 3), which hosts the roots of 
characteristic polynomial (24).

Let the following ratio between the αc,1 and αc,2 values 
hold (Fig. 3).

αα = α,2 ,1.c ck  		   			   (32)

At kα>1, the real root is closer to the imaginary Imp 
axis (Fig. 3, a); in the case where kα<1 (Fig. 3, b) ‒ a com-
plex-coupled root. As before, the degree of system stability η 
is determined from formula (24), and the degree of fluctua-

tion is 
ζ

µ =
α

,2

,2

.c

c

Since αc, 1=η, and αc, 1=kααc, 1, then αc, 2=kαη. If we 

consider (24), we obtain: lnα =
χ,1

1 1
c

pt
 and, according-

ly, lnαα =
χ,2

1
.c

p

k
t

 Knowing αc, 2, we derive the values 

lnαζ = µ
χ,2

1
.c

p

k
t

Let the parameters of transfer function (25) be taken as 
follows: b0=4, b1=7; a0=20, a1=6, a2=1. The other parame-
ters were kα=1,2 and kα=0,8, tp=20, χ=0,05.

 

a                                     b 
 

Fig. 3. Arranging the roots of a characteristic polynomial 	

on the −p  plane



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/2 ( 113 ) 2021

86

For values of the degree of fluctuations µϵ{0,2; 0,4; 0,6; 
0,8}, by using the software developed in the MATLAB pro-
gramming environment, we built the plots of the transition 
characteristics of the system at a single jump-like input 
value (Fig. 4). Since, for this case, kα>1, the closest to the 
imaginary axis is the real root p1.

Fig. 4 shows that increasing the degree of fluctuation μ 
entails an increase in overshoot (Table 2). 

In the case where kα=0,8 (kα<1), the transition charac-
teristics of the system for different values of μ (Fig. 5) are 
constructed. This is the case when the closest to the imagi-
nary axis is the left complex-coupled root.

Analysis of the results given in the Table 2 shows that 
the overshoot value increases at kα<1. The maximum value 
of σ increased from 14.7032 % at kα=1.2 to 27.8766, that is 
the increase in σ was 10.2 %. The control time, in this case, 
increased in comparison with the case where kα>1.

Table 2 

Values of the PI-controller configuration parameters and the 
control process quality indicators at kα =0,9

The degree 
of fluctua-

tion, µ 

Configuration parameter
Control process quality 

indicator

C0, s-1 C1 C2, s
Overshoot, 

σ, %
Control 

time, tp, s

0.2 0.0125 0.0358 0.4218 2.0598 54.2400

0.4 0.0250 0.0418 0.4172 12.6662 54.2400

0.6 0.0375 0.0518 0.4097 20.9134 74.6400

0.8 0.0498 0.0658 0.3992 27.8766 80.4000

5. 2. 3. An object’s third-order transfer function 
We shall apply the method built for determining the pa-

rameters of setting the controller with transfer function (2) 
when the object (Fig. 1) is characterized by 
the following transfer function:

( ) + +
=

+ + +

2
0 1 2

3 2
0 1 2 3

.ob

b p b p b
W p

a p a p a p a
	 (33)

Using an earlier constructed algorithm, 
we find a characteristic polynomial of the 
system depicted in Fig. 1. The power of such 
a polynomial is equal to four. So

( ) = π + π + π + π + π4 3 2
0 1 2 3 4.Q p p p p p  (34)

Since n=3, m=2, then n–m–2<0. That is 
why the value for πi, i=0,...,4 are found from 
formula (10). We obtain

π = +0 2 0 0,C b a  

π = + +1 1 0 2 1 1,C b C b a  

π = + + +2 0 0 1 1 2 2 2,C b C b C b a  

π = + +3 0 1 1 2 3,C b C b a  π =4 0 2.C b

Applying the Viète theorem to polynomi- 
al (34), a system of equations is built that relates 
the roots of polynomial (34) to its coefficients

π
+ + + = −

π
1

1 2 3 4
0

,p p p p

+ + +
π

+ + + =
π

1 2 1 3 1 4

2
2 3 2 4 3 4

0

,

p p p p p p

p p p p p p
 
	  (35)

π
+ + + = −

π
3

1 2 3 1 2 4 1 3 4 2 3 4
0

,p p p p p p p p p p p p

π
=

π
4

1 2 3 4
0

.p p p p

The roots of characteristic polynomial (34), 
which are the functions of the controller’s set-
ting parameters (Fig. 1), can be arranged in 
different ways in the lines of the p-plane. As 
an option, we can assume that there are two 
real and two complex-coupled left roots. Their 
arrangement is shown in Fig. 6.

 

 t, s 

Fig. 5. Transition characteristics of the system at kα=0,9

 

 t, s 

Fig. 4. Transition characteristics of the system at kα=1,2
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Fig. 6. Arranging the roots of polynomial (34) on the p-plane

The following ratios are established between the roots of 
characteristic polynomial (34):

αc, 2=kααc, 1, 

αc, 3=kα, 1αc, 1.

The degree of fluctuation of the system is calculated as 
the ratio of the imaginary part of the complex-coupled root 

to its real part 
ζ

µ =
α

,3

,3

.c

c
Considering the value for αc,3, ζc, 3=μkα, 1αc, 1

Choosing certain values of kα and kα,1 allows us to obtain 
the desired arrangement for the roots of polynomial (33) on 
a complex p-plane. 

To arrange the roots as shown in Fig. 6, one calculates 
the following values:

( )α α+ + + = −α + +1 2 3 4 ,1 ,12 1 ,cp p p p k k

( ) ( )( )α α α α

+ + + + + =

= α + + + + µ
1 2 1 3 1 4 2 3 2 4 3 4

2 2 2
,1 ,1 ,12 1 1 ,c

p p p p p p p p p p p p

k k k k

( )( )( )α α α α

+ + + =

= −α + + µ +
1 2 3 1 2 4 1 3 4 2 3 4

3 2
,1 ,1 ,12 1 1 ,c

p p p p p p p p p p p p

k k k k

( )α α= α µ +4 2 2
1 2 3 4 ,1 ,1 1 .cp p p p k k

Taking into consideration the values of the left-hand 
sides in the system of equations (34), the following ratios 
are obtained:

( )α απ α + + = π0 ,1 ,1 12 1 ,c k k

( ) ( )( )α α α απ α + + + + µ = π2 2 2
0 ,1 ,1 ,1 22 1 1 ,c k k k k  		  (36)

( )( )( )α α α απ α + + µ + = π3 2
0 ,1 ,1 ,1 32 1 1 ,c k k k k

( )α απ α µ + = π4 2 2
0 ,1 ,1 41 .c k k

Taking into consideration the πi, = 0,3,i  values, the sys-
tem of equations (36) takes the following form:

( )( )α αα + + + = + +,1 2 0 0 ,1 1 0 2 1 12 1 ,c C b a k k C b C b a

( ) ( ) ( )( )α α α α+ + + + µ + =

= + + +

2 2 2
,1 2 0 0 ,1 ,1

0 0 1 1 2 2 2

2 1 1

,

ca C b a k k k k

C b C b C b a

( ) ( )( )( )α α α αα + + + µ + =

= + +

3 2
,1 ,1 2 0 0 ,1

0 1 1 2 3

2 1 1

,

c k C b a k k k

C b C b a

( )( )α αα + µ + =4 2 2
,1 ,1 2 0 0 0 21 .c k k C b a C b

Upon obvious transformations, we obtain:

+ + =11 0 12 1 13 2 1,A C A C A C B

+ + =21 0 22 1 23 2 2,A C A C A C B

+ + =31 0 32 1 33 2 3,A C A C A C B

+ + =41 0 42 1 43 2 4,A C A C A C B 		   (37)

where A11=0; A12=b0;

( )α α= − α + +13 1 ,1 0 ,12 1 ;cA b b k k

A21=b0; A22=b1;

( ) ( )( )α α α α= − α + + + µ +2 2 2
23 2 ,1 0 ,1 ,12 1 1 ;cA b b k k k k

A31=b1; A32=b2;

( )( )( )α α α α= − α + + µ +3 2
33 0 ,1 ,1 ,12 1 1 ;cA b k k k k

A41=b2; A42=0;

( )α α= −α µ +4 2
43 ,1 ,1 0 1 ;cA k k b

( )α α= − α + +1 1 0 ,1 ,12 1 ;cB a a k k

( ) ( )( )α α α α= − α + + + µ +2 2 2
2 2 0 ,1 ,1 ,12 1 1 ;cB a a k k k k

( )( )( )α α α α= − α + + µ +3 2
3 3 ,1 ,1 0 ,12 1 1 ;cB a k a k k k

( )α α= − α µ +4 2
4 0 ,1 ,1 1 .cB a k k

Analysis of the system of equations (37) showed that 
condition (13) is not met and it is incompatible. One of the 
possible solutions to the redefined equation (35) is to mini-
mize the residual function [15]

( ) = −
2
,J C AC B 			    (38)

relative to vector ,C  which yields the following:

( )−
=

1* ,T TC A A A B 			    (39)

where 

( )= 0 1 2, , .TC C C C

Note that the MATLAB software contains a built-in lsqr 
function that uses iterative procedures based on the bidiago-
nalization of Golub and Kohan [17], which is equivalent to the 
method of conjugate gradients but has better convergence. The 
method generates a sequence of approximations of the desired 
variables { },kC  such that the residual is 

2
,kr  decreased mo-

notonously. In fact, the built-in lsqr function generates a pseu-
do-solution to equation (37) in a form similar to formula (39), 
the only difference is that such a built-in function is oriented 
to solving systems of linear equations of great dimensionality.

Another approach to solving the system of equations (37) 
is to search for a corrective matrix  ΔA to the right-hand side 
of the matrix equation
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= ,AC B 				     (40)

such that the following system of equations 

( )+ Δ = ,A A C B

is compatible, and the ΔA matrix is to meet the criterion of 
“smallness” [17, 18]. 

Under such a statement of the problem, it is unclear 
what values the elements of the ΔA matrix should accept in 
order to satisfy the criterion of “smallness”. In addition, if 
rang(a)<n, then the correction problem has no solution.

Alternatively, in [19], it is proposed to minimize the sum 
of squares of residuals

( ) ( )
= = =

 
= −  

∑∑ ∑
2

2
1 1 0

1
,

2

m m n

b kj lj b j
k l j

J C a a C  	  (41)

where ak0=Bk, al0=Bl, Cb0=–1, Cbj=Cj–1, j=1,2,3, akl are the 
elements of matrix A, =, 1, .k l m

Introduce designations: ( )α = −0
0 0,kl k la a  

( )α = −1
1 1,kl k la a  ( )α = −2

2 2,kl k la a …, ( )α = − ,j
kl kj lja a  …, 

( )α = − ln .n
kl kna a  Since n=3, then

( ) ( )
= =

= α∑∑
2

2
1 1

1
,

2

m m
T

b kl b
k l

J C C  	  (42)

where 

( ) ( ) ( ) ( )( )α = α α α α0 1 2 3, , , ;
T

kl kl kl kl kl  

( )= 0 1 2 3, , , .
T

b b b b bC C C C C

The essence of expression (41) is that the 
following residuals are formed

= + + −1 0 2 1 3 2 ,k k k k kz a C a C a C B

= + + −1 0 2 1 3 2 .l l l l lz a C a C a C B

Then

( )
=

− = −∑
0

,
n

k l kj lj b j
j

z z a a C  n=3

The sum of the squares of the difference in residuals zk–zl 
leads to expression (41). 

We minimize ( )2J C  for the desired values Cb1, Cb2, Cb3 
by using the condition of the minimum function of many 
variables

( )∂
=

∂
2

0,
bj

J C

C
 j=1, 2, 3.

As a result, we obtain the following system of linear 
equations:

( ) ( )

= =

α α =∑∑
1 1

0,
m m

jT
kl b kl

k l

C  = 1, ,j n  n=3. 	  (43)

To compare the efficiency of calculating the parameters 
for the PID algorithm from formula (39) and by solving the 
system of linear algebraic equations (43), the MATLAB 

environment was employed to construct the software for 
problems (39) and (43).

For values a0=6, a1=4, a2=7, a3=1: b0=1, b1=3, b2=5. The 
parameters of the characteristic polynomial of transfer func-
tion (34) of the object are selected so that the conditions of 
stability are met. The degree of stability η=αc,1 is taken from 
the condition that the value αc,1 is to the left of the pole of 
transfer function (33), which is closer to the imaginary axis 
of the p-plane. When one takes into consideration the select-
ed values of the parameters of the characteristic polynomial 
of transfer function (33), the nearest pole to the imaginary 
axis would accept the following value: p1=–0.1532. There-
fore, we chose αc,1=0.9. Other values for the algorithm were: 
kα=1.25, kα,1=1,4. The values for the degree of fluctuation 
μ are taken so that the closed system (Fig. 1) is robust – 
µϵ{0.2;0.4;0.6;0.8}. 

First, the parameters for the PID algorithm were calcu-
lated from formula (39), which determines the pseudo-solu-
tion to equation (40). The calculation results are shown in 
Fig. 7 and are given in Table 3.

Table 3

Values of the PID-control algorithm configuration parameters 
and the control process quality indicators (pseudo-solution)

The degree 
of fluctua-

tion, µ

Configuration parameter
Control quality 

indicator

C0, s-1 C1 C2, s
Overshoot, 

σ, %
Control 

time, tp, s

0.2 1.8502 10.0020 2.9422 18.0940 6.56

0.4 2.6534 11.7046 4.4507 14.0835 4.88

0.6 4.3080 15.0451 7.1863 10.1275 4.68

0.8 7.2934 20.7133 11.3213 7.2728 3.16

Now, the parameters for the PID algorithm can be found 
as a solution to the system of equations (43).

Plots of the transitional characteristics of an automatic 
control system (Fig. 1) are shown in Fig. 8.

 

 t, s 

Fig. 7. Transition characteristics of the system built by using formula (39)
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The result of our calculations has established parameters 
for setting up the control PID algorithm, as well as the con-
trol quality indicators (Table 4).

Table 4

Values of the control PID-algorithm configuration 
parameters and the control process quality indicators at 

kα=1.25 and kα,1=1.4

The 
degree of 
fluctua-
tion, µ

Configuration parameter
Control quality indi-

cator 

C0, s-1 C1 C2, s
Over-

shoot, σ, %
Control 

time, tp, s

0.2 0.6384 14.9563 11.6415 5.3042 3.57

0.4 1.6535 16.4731 12.1286 5.0910 3.55

0.6 3.4759 19.1962 13.0030 5.0417 3.42

0.8 6.3440 23.4819 14.3792 5.1255 3.27

The comparative analysis of the two methods for calcu-
lating the configuration parameters of the PID algorithm 
reveals that the transformation of the initial problem to the 
system of equations (43) provides better quality indicators 
than the pseudo-solution (39) to equation (40). Thus, in the 
first case, the overshoot and control time do not exceed 18 % 
and 6.6 s; in the second case, 5.3 % and 5.6 s, which is much 
better than in the first case.

Now we can consider the possibility of achieving the 
compatibility of the equation system (40) by determining 
such a value for αc,1 that the Rouché–Capelli theorem con-
ditions are met.

Since the rank of matrix A is equal to three, and the rank 
of the extended matrix [ ]A B  ‒ to four, we shall find such 
a value for αc,1 that the rank of the extended matrix has a 
dimensionality of 3. The extended matrix is square, the size 
of 4×4. Taking into consideration that rang(A)=3, and when 
adding column B to matrix A, we obtain an extended square 
matrix, the rank of which is equal to four, the determinant 
of the matrix [A|B] will be different from zero. The determi-
nant of the extended matrix will be the function of the αc,1 
variable. The opening of the determinant of the extended 
matrix generates a polynomial of the fourth power of the αc,1 

variable, equating it to zero produces the 
following algebraic equation:

η α + η α + η α + η α + η =4 3 2
0 ,1 1 ,1 2 ,1 3 ,1 4 0,с с с с (44)

where ηi, = 0,4i  are the coefficients deter-
mined by the values of the parameters of 
transfer function (33) and the values of roots 
p2, p3, p4 of the characteristic equation (34) 
of the closed system.

Assume the roots of equation (44) in-
clude several positive ones. The computa-
tional experiments have shown that the 
choice of the αc,1 value, which ensures meet-
ing the Rouché–Capelli condition, is carried 
out under the following condition:

( )
( )

( )( )
α >

α = α
,1

0
,1 ,1

0
min .

i
c

i
с с  			   (45)

Condition (45) is selected for reasons 
of ensuring the stability of the automatic 
control system whose structural diagram is 
shown in Fig. 1. 

The result of calculating the configuration parameters 
for the PID algorithm according to our method is shown in 
Fig. 9 and given in Table 5.

Table 5

Values of the control PID-algorithm configuration parameters 
and the control process quality indicators at kα=1,25 	

and kα,1=1,4

The 
degree of 
fluctua-
tion, µ

Configuration parameter
Control quality indi-

cator

C0, s-1 C1 C2, s
Overshoot, 

σ, %
Control 

time, tp, s

0.2 20.0825 38.7476 21.9305 4.3549 2.87

0.4 24.6923 45.2681 24.2164 4.1443 2.75

0.6 34.9573 60.1487 29.5614 3.6241 2.53

0.8 60.0640 97.8943 43.6146 2.6198 1.28

Now, assume b0=0. The other parameters of transfer 
function (33) were: b1=3, b2=1; a0=6, a1=4, a2=7, a3=1. The 
parameters for transfer function (31) are selected so that the 
control object is robust, that is, the following ratio holds: 
a1a2–a0a3>0. The parameters at which the values of the roots 
can be changed on the p-plane were: kα=1.25 and kα,1=1.4.

The computational experiments have shown that when 
determining the parameters of the PID algorithm, it is nec-
essary to take into consideration not only the compatibility 
of equation system (40) but also the requirements for the 
stability of the automatic control system. Under such an 
integrated approach to solving the problem of calculating 
the configuration parameters for the PID algorithm, it is 
necessary to choose the method that primarily ensures the 
stability of the automatic control system.

Applying the method for transforming the system of 
equations (40) to a compatible form has shown that the left 
root, αc,1, is close to the imaginary axis, which, first, does 
not allow for the necessary margin of system robustness, 
and, second, a value for the setting parameter C0 is close to 
zero. This low C0 value causes an unacceptably large static 
error of control.

 

 t, s 

Fig. 8. Transition characteristics of the system shown in Fig. 1
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Therefore, to calculate the configuration parameters for 
the PID algorithm, a method was chosen that is based on 
solving the system of equations (43). 

The closest to the imaginary axis was the real left root 
|αc,1|=0,9.

For the set of values of the degree of fluctuation 
µϵ{0,2;0,4;0,6;0,8}, the values of the parameters of the con-
trol algorithm were calculated and the quality indicators of 
the control process were determined (Table 6).

The transitional characteristics of a closed automatic 
control system (Fig. 1) with a single jump-like input value 
u(t) are shown in Fig. 10. 

The analysis of our results shows that the transition 
process in the automatic control system is oscillatory, 

which is explained by the presence of a pair of left com-
plex-coupled roots.

Table 6

Values of the PID-controller configuration parameters and 
the control process quality indicators at kα=0.6 and kα,1=1.4

The degree 
of fluctua-

tion, µ

Configuration parameter Control quality indicator

C0, s-1 C1 C2, s
Over-

shoot, σ, %
Control 

time, tp, s

0.2 7.1794 9.9807 6.8063 8.7975 4.15

0.4 7.6444 10.2079 6.5755 10.2172 4.07

0.6 8.4196 10.5866 6.1909 12.8001 3.90

0.8 9.5048 11.1167 5.6525 17.0439 3.62

 

 t, s 

Fig. 9. Transition characteristics of the system that were obtained using condition (43)

 

 
 t, s 

y(
t) 

Fig. 10. Transitional characteristics of the system at kα=1.25 and kα,1=1.4



Industry control systems

91

Consider the case where b0=b1=0, and b2=k, where k is 
the transfer factor of the object. For this case, equation sys-
tem (37) takes the following form:

( )α αα + + − =,1 0 ,1 12 1 0,c a k k a

( ) ( )( )α α α α= α + + + µ + −2 2 2
2 2 ,1 0 ,1 ,1 22 1 1 ,cС b a k k k k a 	 (46)

( )( )( )α α α α= α + + µ + −3 2
1 2 ,1 ,1 0 ,1 32 1 1 ,cC b k a k k k a

( )α α= α µ +4 2 2
0 2 0 ,1 ,1 1 .cC b a k k

The first equation of system (46) does not contain the 
desired values C0, C1, and C2. This means that the values of 
quantities kα and kα,1, which determine the arrangement of 
roots p2, p3 and p4 on the p-plane (Fig. 6), cannot be select-
ed arbitrarily; one of them, kα or kα,1, depends on the other. 
Assume that the selected value is kα,1. Then, from the first 
equation of system (46), we determine

α α= − −
α

1
,1

,1 0

2 1.
c

a
k k

a

The kα value determines the position of the root p2 on the 
p-plane. To ensure the stability of the automatic control sys-
tem (Fig. 1), the root p2 must be left. This means that kα>0, 
or 

α> +
α

1
,1

,1 0

2 1.
c

a
k

a
 The latter condition can be 

satisfied with a certain choice of the αc,1 value.
From other equations of system (46), we 

find

( )α α= α µ +4 2 20
0 ,1 ,1

2

1 ,c

a
C k k

b

( )( )( )( )α α α α

=

= α + + µ + −

1

3 2
,1 ,1 0 ,1 3

2

1
2 1 1 ,c

C

k a k k k a
b

( ) ( )( )( )α α α α

=

= α + + + µ + −

2

2 2 2
,1 0 ,1 ,1 2

2

1
2 1 1 .c

С

a k k k k a
b

For the selected values a0=3, a1=8, a2=2, 
a3=1; k=5, αc,1=0,4, kα,1=1,2, using the soft-
ware developed in the MATLAB environ-
ment, at values µϵ{0.2; 0.4; 0.6;0.8},  we built 
the plots of transition processes (Fig. 11) and 
determined quality indicators of the control 
process (Table 7).

Table 7

Values of the control PID-algorithm configuration parameters 
and the control process quality indicators at kα,1=1.2

The degree 
of fluctua-

tion, µ

Configuration parameter Control quality indicator

C0, s-1 C1 C2, s
Overshoot, 

σ, %
Control 

time, tp, s

0.2 0.0751 0.3464 1.0404 0 18.87

0.4 0.0838 0.3747 1.0570 0 17.87

0.6 0.0983 0.4219 1.0846 2.38 16.38

0.8 0.1185 0.4880 1.1234 7.07 14.75

In conclusion, we consider the case where the roots of 
characteristic polynomial (34) are real numbers, located in 
the left semi-plane of the p-plane, and the transfer function of 
an object is described by formula (33). As before, we believe 
that there are the following ratios between the roots of the 
characteristic equation: p1=–αc,1, p2=–kααc,1, p3=–kα,1αc,1, 
p4=–kα,2αc,1, where αc,1>0, kα>0, kα,1>0, kα,2>0.

The system of equations (36) takes the following form:

( )+ − α = α −1 0 2 1 0 ,1 1 0 ,1 1 1,с сC b C b b q a q a

( )+ + − = −2 2
0 0 1 1 2 2 0 ,1 2 0 ,1 2 2,c cC b C b C b b a q a a q a  	  (47)

+ − α = α −3 3
0 1 1 2 2 0 ,1 3 0 ,1 3 3,c cC b C b C b q a q a

− α = α4 4
0 2 2 0 ,1 4 0 ,1 4,c cC b C b q a q

where

α α α= + + +1 ,1 ,21 ,q k k k

α α α α α α α α α= + + + + +2 ,1 ,2 ,1 ,2 ,1 ,2,q k k k k k k k k k

α α α α α α α α α= + + +3 ,1 ,2 ,1 ,2 ,1 ,2,q k k k k k k k k k

α α α=4 ,1 ,2.q k k k

The system of algebraic equations (47) is represented in 
a matrix-vector form:

АС=В.

The elements of matrix A and vector B are as follows:

=11 0,A  =12 0,A b  = − α13 1 0 ,1 1;сA b b q

=21 0,A b  =22 1,A b  = − α2
23 2 0 ,1 2;cA b b q

=31 1,A b  =32 2,A b  = − α3
33 0 ,1 3;cA b q

=41 2,A b  =42 0,A  = − α4
33 0 ,1 4.cA b q

 

 t, s 

Fig. 11. Transition characteristics of the automatic control system (Fig. 1)
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= α −1 0 ,1 1 1,сB a q a

= α −2
2 0 ,1 2 2,cB a q a

= α −3
3 0 ,1 3 3,cB a q a

=4B α4
0 ,1 4.ca q

So, we have a rectangular matrix of size n×m, where 
n=4 and m=3. Since the condition n>m holds, the system of 
equations (47) is redefined [20]. Fig. 10 shows the transition 
characteristics of a closed system (Fig. 1) for the following 
data: a0=6, a1=4, a2=7, a3=7: b0=1, b1=3, b2=5. The pa-
rameters of the algorithm kα, kα1, kα2, which determine the 
position of the roots on the p-plane were as follows: kα=1.1, 
kα1=1.2, kα2=1.3. The value αc,1 was selected from the set 
αc,1ϵ{0,9;0,8;0,7}. 

The configuration parameters of the control PID algo-
rithm are calculated by solving the system of algebraic linear 
equations (47) using the built-in lsqr function, which is part 
of the MATLAB software [21]. Transitional characteristics 
of the system are shown in Fig. 12.

Thus, our results confirm the possibility of determining 
the configuration parameters of controllers by arranging the 
roots of a characteristic polynomial on a complex p-plane.

6. Discussion of the study results on calculating the 
configuration parameters of PID controllers by arranging 

poles on the p-plane

One of the possible directions of searching for a solution 
to the problem of determining the configuration parameters 
of PID controllers is a method based on the generalized Viète 
theorem, which makes it possible to reduce the formed prob-
lem to solving the system of linear algebraic equations, which 
is a significant advantage over those methods where the solu-
tion is based on the methods of nonlinear programming [6–9].

In the case where the transfer function of the control 
object is of the first and second orders, the problem of deter-

mining the configuration parameters of a PID controller is 
solved unequivocally as the solution to the systems of linear 
algebraic equations (17) and (27).

If the transfer function of the automatic control system is 
of the third and higher orders, then we obtain the redefined 
system of linear algebraic equations, which, in a general 
case, does not have an unambiguous solution. Only when the 
conditions of the Rouché-Capelli theorem are met, one can 
derive a solution to the algebraic equation system relative to 
the configuration parameters of the PID controller. For an 
object’s third-order transfer function, the condition of the 
Rouché–Capelli theorem can be satisfied by selecting the 
degree of stability of the system. This method of calculating 
the configuration parameters of the PID controller does not 
always guarantee the achievement of the necessary quality 
indicators of the control process.

Other alternatives may be to search for a pseudo-solution 
to the redefined system of linear algebraic equations, or a 
method that provides for a minimum of the criterion (42).

Our conclusions are based on the numerical experiments, 
the results of which are represented in the form of Ta-
bles 1–6. The quality of the control process was determined 

by constructing the plots of transitional charac-
teristics (Fig. 2‒12). 

The analysis of our results shows that the over-
shoot and control time are within the permissible 
limits (overshoot does not exceed 30 %).

Further research into related topics implies de-
termining the parameters for setting up industrial 
controllers for multiconnected systems.

7. Conclusions 

1. A concept of the method for calculating the 
configuration parameters of PID controllers has 
been proposed. It is shown that for the control ob-
ject’s transfer functions of the first and second or-
ders, the problem has an unambiguous solution. In 
the case where the order of the transfer function of 
the control object is of the third and higher orders, 
we obtain the redefined system of linear algebraic 
equations relative to the parameters of the control-
ler configuration. For such a case, three methods 
for calculating the configuration parameters of 
PID controllers have been built. An appropriate 

method is selected by considering the requirements for the 
stability of the automatic control system and the quality 
indicators of the control process.

2. A procedure has been devised that makes it possible 
to select the necessary method of solving the problem in 
iterative mode, based on the order of the transfer func-
tion, requirements for the stability of the system, and 
indicators of the control process. The effectiveness of the 
method for calculating the configuration parameters of 
PID controllers for the predefined set of transfer func-
tions of an object has been evaluated. Based on the tran-
sition characteristics of the automatic control system, the 
indicators of the control process have been determined: 
overshoot and time of control. According to the results of 
simulation modeling for the predefined class of transfer 
functions of objects, it was established that the overshoot 
is in the range of 0 to 27.9 %, which corresponds to the 
current norms.

 

 t, s 

Fig. 12. Transition characteristics of the system (Fig. 1)
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