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1. Introduction

Currently, an increase in problem areas in the field of 
ocean research makes it necessary to search for new and 
improve existing formulations and solutions of problems in 
underwater acoustics. This is due to the need to deepen the 
theoretical provisions and the development of technologies 
for marine instrumentation and oceanographic research. At 
the same time, the direction of wave acoustics, which has not 
been fully investigated, seems to be interesting and useful 
in terms of the problems of the formation of acoustic fields 
in shallow seas. This direction implies the approximation 
of model concepts of traditional formulations of radiation 
problems to real situations of operation of complicated sound 
sources under conditions of multiple reflections of sound 
waves from the surface and bottom of a shallow sea.

In this regard, it seems promising to study the features of 
the formation of the acoustic field in a regular plane-parallel 
liquid waveguide simulating a shallow sea. The paper inves-

tigates the situation of using a complicated sound source to 
determine the features of the main factors of field formation. 
Note that taking into account the multimode nature of the 
source as one of the factors of changing the resistance of 
the emitter in the previous statements was not taken into 
account. At the same time, such complications should also 
include: the presence of sound scattering by the emitters, 
the phenomenon of dispersion, the actual multimode and 
variability of its structure, as well as the conclusion and use 
of functional equations to determine the partial regions, 
boundary conditions and conjugation conditions.

Thus, the problem of the formation of an acoustic field 
in a plane-parallel waveguide is subject to further research 
both in the formulation part and in the part of the solution. 
In this case, the complication of the source properties will 
obviously bring the calculated situation closer to the real 
one, and the solution algorithm will be based on the use of 
the methodology of partial regions for the acoustic field, the 
corresponding Helmholtz equations and the Fourier meth-
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The paper considers the features of the formation of an 
acoustic field by a spherical source with complicated proper-
ties in a regular plane-parallel waveguide, which is of practi-
cal importance in marine instrumentation and oceanograph-
ic research. The calculation algorithm is based on the use of 
the Helmholtz equation and the Fourier method for each par-
tial region and the conjugation conditions on their boundar-
ies. The presented calculation allows one to get rid of the ide-
alized boundary conditions on the source surface, with the 
subsequent determination of the excitation coefficients of the 
waveguide modes within the framework of the Sturm-Liouville 
problem. In this case, the attraction of the boundary condi-
tions on the surface and the bottom of the sea, as well as the 
Sommerfeld conditions, makes it possible to obtain the real dis-
tribution of the field in the vertical sections of the waveguide.

The obtained frequency dependences of the pressure and 
vibrational velocity components show their amplitude-phase 
differences, which reach 90 degrees, which partially explains 
the appearance of singular points in the intensity field in 
a regular waveguide. It has been determined that multiple 
reflections of sound waves from the boundaries of the work-
ing space and the space of the waveguide cause oscillations of 
the pressure components with a change in the amplitude level 
up to 6 dB. It was found that with an increase in the size of the 
source, a kind of resonance is formed in the working space, 
the frequency of which depends on the depth of the sea and 
corresponds to the region kr=x=5.8. It was found that when 
the acoustic field is formed in the working space, the frequen-
cy response of the impedance components is represented as a 
multiresonant dependence formed on the basis of the frequen-
cy characteristics of the lower modes and their combinations. 
Experimental studies have shown that the results of calcula-
tions of the mode composition of the acoustic field of the emit-
ter, obtained in the conditions of the pool, correspond to the 
spatial characteristics of the mode components of the acoustic 
field with an error of up to 3 dB
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od for each region and the conjugation conditions at their 
boundaries.

The main results of the work consist in the formulation 
of problems, the application of the method of partial domains 
and the determination of the distributions of acoustic pres-
sures in the vertical sections of the waveguide. At the same 
time, the boundary of the near-field region of the emitter 
(“working space”) is determined, starting from which the 
calculated pressure distributions correspond to the dia-
grams determined by the classical approaches. In addition, 
the frequency dependences of the specific impedance in the 
working space are considered and the changes in the operat-
ing mode of the emitter due to the change in the oscillatory 
mode are characterized.

The research results are important and useful for the 
practice of underwater communication systems, telemetry 
systems and hydroacoustic search facilities.

The relevance of this approach is due to the possibility 
of getting rid of the idealized boundary conditions on the 
source surface with the subsequent determination of the 
excitation coefficients of the waveguide modes within the 
framework of the Sturm-Liouville problem. At the same 
time, for each partial region, the attraction of the boundary 
conditions on the surface and the days of the sea makes it 
possible to obtain the real distribution of the field in the ver-
tical sections of the waveguide, which is important for many 
practical problems of shallow sea acoustics.

2. Literature review and problem statement

In the problems of formation and propagation of acous-
tic waves in formations of the waveguide type, an essential 
role is played by the conditions, type, spatial and energy 
characteristics of spherical sources of an acoustic signal [1]. 
The specified characteristics in most fundamental works are 
presented in a generalized way [1], which does not satisfy 
many modern problems of hydroacoustics. Thus, the tasks 
of forming underwater communication channels, developing 
underwater communication and telemetry mean require 
knowledge of the fine structure of the acoustic field in 
the near and far zones. This approach should contain new 
formulations and the use of improved solution methods. 
However, in the traditional formulation of the problem of 
sound radiation in a waveguide within the framework of 
the Sturm-Liouville problem and the positions in terms of 
eigenfunctions [2], simplified situations were also used. And 
although the works [1, 2] thoroughly define the statements 
about the operation of a spherical source at an ideal bound-
ary in the integral representation, the issues of the interfer-
ence interaction of plane and spherical waves are subject to 
further analysis and research. In addition, the development 
of the formulations of wave problems should provide for the 
detailing of the processes of propagation of acoustic distur-
bances, taking into account the back effect of the reflected 
and scattered fields on the operation of the source.

Such tasks require the involvement of a kind of substitute 
that will help, when using traditional foundations, to master 
a higher level of knowledge about the subject of research. 
The method of partial regions can act as such a substitute.

The development, implementation and use of the method of 
partial domains in the problem of acoustics continue for a long 
time and is thoroughly presented in [3]. The method involves 
the selection of areas of the working environment close to the 

canonical geometric figures and the preparation of functional 
equations according to the conjugation conditions and the 
Sommerfeld condition along the waveguide channel [1].

Nevertheless, the volume of tasks turned out to be so 
great, and the tasks themselves are so complex, that the 
slowness of mastering new results is justified.

Consequently, the expected results of using the partial 
domain method with the application in each partial domain 
of the Helmholtz equations and the Fourier method will 
obviously be:

– possibility of a deeper (in comparison with the data 
of [2–4]) study of the fine structure of the acoustic field 
in waveguides, which can be represented by the amplitude 
distribution of acoustic pressures in vertical sections of the 
waveguide;

– determination of the real coefficients of field excitation 
in the waveguide when working with a complicated source;

– determination of the frequency response of the source, 
taking into account the multimode.

Consequently, these expectations give reason to hope 
for new results and further advancement of the proposed 
approaches.

Undoubtedly, the current state of the problem of shallow 
seas requires significant detailing of the process of forma-
tion of acoustic fields when operating with both pulsed and 
monochromatic signals [3, 4], in the usual or end-to-end [5] 
setting. Nevertheless, the transition to pulsed modes should 
be based precisely on traditional solutions of problems of 
mathematical physics [6] in relation to monochromatic 
modes of operation and fully corresponds to the main ap-
proaches of the method of partial domains.

All this allows to assert that it is advisable to conduct a 
study devoted to the application of the method of partial re-
gions to determine the features of the formation of an acous-
tic field by a complicated source in a plane-parallel regular 
waveguide, taking into account multimode.

3. The aim and objectives of research

The aim of this research is to apply the partial domain 
method to study the mode of sound emission in a shallow sea, 
represented by a regular waveguide with soft acoustically 
walls. This is important for the practice of underwater com-
munication systems, telemetry systems and hydroacoustic 
search facilities.

To achieve the aim of research, the following objectives 
were set:

– to formulate the problem of sound radiation by a 
spherical source in a plane-parallel regular waveguide with 
acoustically soft boundaries;

– to select coordinate systems and determine the shape 
and number of partial areas;

– to compose a system of functional equations for the 
problem of the formation of an acoustic field;

– to solve problems and find unknown coefficients of 
field expansions;

– to make calculations and experimentally confirm them.

4. Materials and methods of research

Let’s use a shallow sea model in the form of a regular 
waveguide with soft acoustically walls. In this case, a spher-
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ical complicated sound source is used, acquiring important 
qualities of a spatial nature and multimode in order to 
approximate the traditional classical model and calculated 
situation to the real one. The algorithm for solving the prob-
lem of sound radiation by a complicated source is based on 
the use of the methodology of partial regions for the acoustic 
field, corresponding to the Helmholtz equations and the 
Fourier method for each region, as well as the conjugation 
conditions at their boundaries.

The criterion for the reliability of the proposed applica-
tion of the partial area method is:

– finding by the proposed method the distributions of 
acoustic pressures in the sections of the working space, coin-
ciding with the pressure (velocity) curves in the waveguide, 
obtained traditionally [1–3];

– determination of the distance of transformation of the 
field in the working space;

– determination of impedance characteristics by means 
of the resistivity of the medium of a spherical wave, taking 
into account the conditions at the boundaries;

– the spatial selectivity of the field in the implementation 
of a certain mode or sum of modes should be preserved when 
the field of the working area is transformed into a field in the 
waveguide.

The results of the work are the distribution of amplitudes 
and phases of acoustic pressures or vibrational velocities 
in the acoustic field of the emitter, taking into account the 
peculiarities of the formation of the field in the working 
space. Such distributions play the role of the coefficients of 
excitation of normal waves in the waveguide. In addition, 
the frequency dependences of the specific impedance were 
obtained, which characterize the dynamics of the mode com-
position of the source when the oscillatory mode of the emit-
ting sphere changes under specified operating conditions.

5. Results of the study of the radiation problem

5. 1. Statement of the problem of sound radiation by 
a spherical source in a plane-parallel regular waveguide 
with acoustically soft boundaries

The wave problem of the operation of a pulsating spher-
ical monochromatic transducer – an emitter of sound waves 
in a limited elastic medium is considered. It is believed that 
the working space of the sphere is formed between two par-
allel flat acoustically soft infinite fixed boundaries (Fig. 1).

The space is regular and has a wave resistance ρ0с0, which 
is different from the wave resistances of the outer half-spaces 

ρarсar and ρbtсbt (air and bottom). Thus, the resulting mod-
el (Fig. 1) corresponds to a simplified waveguide channel.

5. 2. Selection of coordinate systems and determina-
tion of the shape and number of partial regions

The channel is considered in rectangular O, x, y, z; O’, x’, 
y’, z’; O″, x″, y″, z″; O1, x1, y1, z1 and in spherical O’, r, φ, θ, in 
coordinate systems (z0=r cos(θ); x0=r sin(θ)). The centers O 
and O’of rectangular coordinates O, x, y, z and O’, x’, y’, z are 
separated by a distance Нw=Н/2=h, where Н is the width 
of the waveguide (sea depth), and the center of spherical 
coordinates O’ is aligned with the phase center of a spherical 
source having an outer radius a. When the waves reflected 
from the boundaries are scattered by it, the converter itself 
is impedance, has fully electroded surfaces, and emits a ze-
ro-order wave of a known amplitude p0=1.

After the supply of electrical excitation, the oscillations 
of the sphere begin exclusively with pulsating movements, 
which is due not only to its geometric shape, but also to the 
type of electroding. If the working environment were un-
limited, then the source should work exclusively at the zero 
mode and form spherical waves propagating in the form of 
concentric spherical surfaces.

However, already after the first reflection from the 
boundaries (sea surface and bottom), the wave pattern 
should change due to the appearance of a field scattered 
by the sphere and re-reflection of acoustic waves from the 
waveguide boundaries. Consequently, the superposition of 
the stray field, the direct field of the transducer and the 
waveguide reflected from the surfaces together form a cer-
tain total field in the working space.

Let’s consider the circumstances of the formation of a 
complete acoustic field (Fig. 2).

The wave pattern is considered to be centrally symmetric 
and divided by quadrants I, II, III, IV. Thus, it will be sufficient 
to solve the problem for regions I and IV (0≤θ≤π) with the sub-
sequent conjugation of the results of determining the sound po-
tential (or pressures) along the axes O’, x’, O’, y’, O’, z’, (Fig. 1). 
Consequently, the situation of the formation of the field pre-
supposes the use of the method of partial regions [4] with the 
fulfillment of the force or kinematic conditions of conjugation.

Thus, the excitation of a waveguide and the formation of 
an acoustic field in it are considered from several positions:

– the first is the formation of n, m components of the 
near field of a spherical source n=0, 1, 2, 3…, m=0, 1, 2, 3… at 
the points of its working space from the surface of the trans-
ducer (Fig. 1, region V, Fig. 2) to the conditional region of 
formation of the boundary of regions I, IV, V (it is from this 
region that the formation of normal waves with numbers n, 
m should begin);

– the second – at the boundaries of the regions, the con-
ditions of conjugation of the power or kinematic types must 
be fulfilled.

Of course, there can be no sharp separation of the field 
between quadrants I, II, III, IV, and V, and the boundary 
of I, IV, and V only defines the boundary of the region of 
smooth transition from the field in regions I, IV to field V.

Let the expected acoustic field be symmetric with re-
spect to the φ=00, which gives reason to go over to the plane 
problem and consider the situation in the above spherical 
coordinates only with respect to the angles θ.

It is clear that the problem of sound emission and field 
formation in a waveguide is reduced to determining the co-
efficients of excitation of normal waves.

Fig. 1. Model of the waveguide channel
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That is, if in a certain section of the waveguide the 
distribution of force, pressure or vibrational velocity of the 
particles of the medium is specified, then adjacent sections 
of the waveguide should also be characterized by the same 
pressure values. This follows from the conditions of conju-
gation by the method of partial domains (for example, the 
corresponding functional equations).

5. 3. Drawing up a system of functional equations for 
the acoustic field formation problem

Thus, the source for the problem of forming the acoustic 
field in a plane-parallel waveguide is the field of a multimode 
converter ( )sp

n,m , ,rΨ ϕ θ in partial regions I–IV, both for indi-
vidual modes and for their superposition:

( ) ( ) ( )sp sp sp

0 0 0
, , , , , .nm n

n m n
r r r

∞ ∞ ∞

Σ ϕ
= = =

Ψ ϕ θ = Ψ ϕ θ = Ψ θ∑∑ ∑ 	 (1)

Therefore, the field in the waveguide can be defined as a 
result of the superposition of normal waves after determin-
ing the location of the conditional boundary region between 
the near and far fields x0 (hereinafter referred to as the 
“working space of the sphere”):

( ) ( )sr sr

0
, , , .qy

q
x y z x z

∞

Σ
=

Ψ = Ψ∑ 	 (2)

Nevertheless, let’s understand that the mode composi-
tion of the field in the working space can be different from 
the composition of normal waves of the waveguide. Under 
such conditions, the procedure for solving the problem pro-
vides for:

– application of the method of partial regions by drawing 
up functional equations and finding solutions to the homoge-
neous Helmholtz equation for each partial region;

– use of the Fourier method for solving the homoge-
neous Helmholtz equation with the Dirichlet and Neumann 
boundary conditions in the framework of the Sturm-Liou-
ville problem [2, 7];

– use of the properties of orthogonality of wave functions 
on the intervals (0, H), (0, π), (0, 2π).

Let’s consider the acoustic field in the working space (ar-
eas I, IV) relative to the pressure field p(r, φ, θ) represented 
by the homogeneous Helmholtz equation.

( ) ( )∆ ϕ θ + ϕ θ =2, , , , 0.p r k p r 	 (3)

That is, the decoupling for each partial region must 
satisfy the Helmholtz equation (3), in which Δ –the Laplace 
operator, k=ω/с0 – the wave number taken for a free medi-
um. In this case, the ratio of the speeds of sound in air сar and 
water c0 corresponds to the inequality сar<с0, which excludes 
the existence of critical angles for oblique incidence of sound 
from the thickness of the water-filled waveguide.

The general solution was carried out by constructing a 
system of functional equations for pressures, relying on the 
expansion (1), (2)

( )Σ Σ= θI I , ,p p r  ≤ θ ≤ π0 / 2,  ≤ ≤ ,a r R

 

( )
= =

=
0 , /2

, 0,
x x z H

p x z  ( )= θI ,p pR W

( )Σ Σ= θІV ІV , ,p p r  π ≤ θ ≤ π/ 2 ,  ≤ ≤ ,a r R

( )
= =

=
0

ІV

, 0
, 0,

x x z
p x z  ( )= θIV ,p pR W

	

(4)

( )Σ Σ= θI V , ,p p r  ( )Σ Σ= θIV V , ,p p r  = 0,x x  ≤ ≤0 ,z H

( ) ( )Σ
Σ =

=

∂ θ
θ =

ωρ ∂
I,IV

0

,1
, ,

r a
r a

p r
v r

i r

( )
( )

I
I,IV
rs

,
,

,²

p r
Z

v r
Σ

Σ

θ
=

θ
 ( )Σ Σ= θI,IV V , ,p p r  = ,r R  ≤ θ ≤ π0 ,

where ( )Σ θI , ,p r  ( )Σ θIV , ,p r  ( )Σ θV ,p r  – the sound pressures of 
the full field in workspaces I, IV, V;

( )= θI
p pR W  – pressure reflection coefficient at oblique 

incidence of a sound wave (the angle of incidence takes 
values in the range 0≤θ≤π). Let’s note that the procedure 
for using the intervals of variation of the angles of inci-
dence-reflection requires certain comments and simplifica-
tions given below;

( )
( )

I,IV
I,IV
rs I,IV

,
,

p r
Z

v r
Σ

Σ

θ
=

θ
 – resistivity of the medium of a spherical 

wave, ( )Σ θV ,p r  – acoustic pressure, ( )Σ θI,IV ,v r  – vibrational 
velocity (recorded for the outer surface near regions I, IV 
within the range of variation of the angle 0≤θ≤π).

5. 4. Solving the problem and finding the unknown 
coefficients of the field expansions

To solve with absolute integration (with respect to 
acoustic pressures and acoustic potential), the Fourier meth-
od, orthogonality properties of wave functions, the method 
of partial regions [5], boundary conditions for acoustically 
soft boundaries are used:

( ) ( )( )
= =

= =I,IV I,IV

0
, , , , 0,

Z Z H
p x O z p x O z 	 (5)

and pairing conditions of the power type

( ) ( )( )
= =

=′ ′ ′ ′ ′ ′I IV

/2 � /2
, , , , ,

Z H Z H
p x O z p x O z

θ = π / 2,  ≤ ≤ 0.sa r x 	 (6)

Let’s define the region I, the acoustic field in which (Fig. 2) 
for the n, m-th normal wave is symmetric with respect to the 
direction (hence, m=0).

In this case, the complete field 00
f rf sc ,p p p p p= + + ± is 

formed by the combination:
1) direct field emitted by the source when operating at 

zero mode

( ) ( ) ( )= θ = −ωρ θ00 00 (1) 0
0 0 0, .p p r A h kr P 	 (7)

where ( )(1)
0h kr  – zero-order spherical Hankel function of 

the first kind that describes the diverging waves, P0(θ) – ze-
ro-order Legendre polynomial;

2) the field created by higher-order modes

Fig. 2. Quadrants of the workspace
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( )

( ) ( )

( ) ( )
 

∞ ∞

= = =

∞

=

= θ =

= −ωρ θ ϕ =

= −ωρ θ

∑∑

∑

(1)
0

1 0 , 0

(1)
0

1

,

cos( )

,

m
nm n n

n m n m

n n n
n

p p r

A h kr P m

A h kr P 	 (8)

where ( )(1)
nh kr  – spherical Hankel function of the first kind of 

n-order for the remaining widespread waves, ( )θm
nP  – Legen-

dre function of the first kind of order m and degree n is added, 
А0≠А1, А2, ..; however, seeing that in the situation of shallow 
seas, the “source-surface-source” path of the wave front at the 
beginning of radiation runs over a sufficiently short time inter-
val (fate ms), let’s consider factor (7) for the monochromatic 
regime, which can be neglected. That is, use only form (8) to 
describe the field;

3) fields reflected from the water-air interface

( )

( ) ( ) ( )

( ) ( )

0
0 0 , 0

0
0

,

cos

,

rf rf

m
nm n n

n m n m

n n n
n

p p r

i B y kr P m

i B y kr P

∞ ∞

= = =

∞

=

= θ =

= − ωρ θ ϕ =

= − ωρ θ

∑∑

∑ 	 (9)

where 
( ) ( ) ( )

=
= θ = θ = θ0, 0

,nm p nm p n p nn m
B W A W A W A

Wp(θ) – pressure reflection coefficient; уn(kr) – spherical 
von Neumann function of the second kind n-order for con-
verging waves;

4) the field scattered on the spherical surface of the 
transducer

( )

( ) ( ) ( )

( ) ( )

(1)
0 , 0

0 0

(1)
0

0

,

cos

,

sc sc

m
nm n n n m

n m

n n n
n

p p r

i C h kr P m

i  C h kr P

∞ ∞

=
= =

∞

=

= θ =

= − ωρ θ ϕ =

= − ωρ θ

∑∑

∑ 	  (10)

where Аn, Bn, Сn – unknown coefficients of expansions (7)–(10).
Thus, the total pressure field in the working space is de-

scribed using the following equation:

( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

0 0 0
1

0
0

(1)

0

0
0

(1)

0

,

.

f

n n n
n

n n n
n

n n n
n

n n n n n
n

n n n
n

p r

A j kr P A j kr P

i B y kr P  

 C h kr P

A j kr B y kr P
i  

 C h kr P

∞

=

∞

=

∞

=

∞

=

∞

=

θ =

 
θ + θ + 

 
 

= − ωρ + θ + = 
 
 
 + θ
  
  + θ +  
 = − ωρ
 
+ θ 

 

∑

∑

∑

∑

∑
	 (11)

Let’s provide comments on the determination and use of 
unknown expansion coefficients (6)–(11) Аn, Bn, Сn for the 
acoustic field in the working space, as well as for each com-
ponent psur (r, θ), let’s separately present the calculations.

Falling waves.
Note that according to the problem statement, only the 

coefficient А0=1 is known, and the other coefficients Аn, n=1, 
2, 3, …  are unknown. Let’s use the results of [8] to determine 
the ratio of the relative amplitude values of the higher-order 
modes Аn and the zero mode А0. According to [8], with the 
involvement of the source [9], this occurs by introducing a 
dimensionless correction factor Ωn, represented as:

( ) ( )
( ) ( )( )  +

=
 θ − θΩ =  = + + θ

1 �1

1, 0,

cos cos
, 1,2,3,... ,

2 1 1 cos
n e n en

e

n

P P
n

n

 	 (12)

where θе – the angular size of the non-electroded area of the 
sphere surface (by opening within θе=20°, the radius of the 
sphere is a=1.0 m). Structurally, the size of such a section can 
determine the size of the non-electroded surface around the 
technological hole intended for the introduction of electrical 
installation elements into the cavity of the sphere.

Thus, for the first five modes, according to [8, 9], 
Аn0=А00Ωn, whence:

n=0, A00=1, n=1, A10=–0.031, n=2, A20=–0.026, n=3, 

A30=–0.024, n=4, A40=–0.02.	 (13)

In such conditions, the enrichment of the mode composition 
of the transducer is caused by the deformation of its surface due 
to the incident on the transducer of waves reflected from the 
boundaries “water-bottom”, “water-air”. The mutual influence 
of the formed modes is due to the connection between the 
mechanical vibrations of the sphere and the result of the flow 
of energy from the main form of vibrations to higher ones. In 
this case, multimode should affect the magnitude and nature 
of the impedance of the transducer due to the dynamics of the 
spatial frequency vibrational state. Note that the shape of the 
spatial characteristics of the converter should remain similar to 
the traditional ones [10, 11] when implementing certain types 
of electroding and the inclusion of electrodes in the excitation 
circle from the generator.

Reflection of a wave from plane boundaries (for example, 
quadrant I).

As for the coefficients Bnm, they characterize the reflec-
tion of a spherical pressure wave from a fixed boundary, 
which is acoustically soft by its properties.

Let’s suppose that the pressure reflection coefficient must 
be applied for each vibration mode by forming the equality:

=
↔ = =0 0, 0

.nm n p nm p nn m
B B W A W A 	 (14)

To clarify the situation of finding the coefficient Wp, 
let’s use the results of [12] in accordance with the situation 
of operation on a long time interval and any location of the 
observation point of the reflection coefficient depends only 
on the densities of adjacent media:

ρ − ρ
=

ρ + ρ
0

0

.п
p

п

W 	 (15)

That is, a spherical wave is reflected from the specified 
boundary as a plane one. Based on the provisions of [12], as well 
as the fulfillment of the inequality с0>>сar and с0>>сbt, the use 
of formulas (14), (15) corresponds to the situation of propaga-
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tion of homogeneous waves without limiting the values of the 
angles θ in the range indicated in functional equations (4)–(6).

Scattered field.
Expansions (11) and limiting condition (6) are used to 

determine the unknown coefficient.
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whence, taking into account soft boundaries:
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The impedance condition that closes the group of func-
tional equations requires a preliminary determination of the 
vibrational velocity, namely, its distribution over the surface 
of the sphere. Therefore, it is necessary to use the condition of 
equality of the normal component of the speed 
of movement of material points of the surface 
of the transducer of the speed of movement 
along the normal of particles of the medium, 
which brings the situation closer to the condi-
tion of conjugation of the kinematic type.

The pressure distribution of the formu-
la (7)–(10) is determined by the distribution 
of the vibrational velocity vІ(r, θ)=V(φ, θ)) and 
is the result of a complex vibrational mode in-
stalled in the working space:
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Based on the relationship (7)–(10) from the expression 
for the total pressure (11), let’s pass to the vibrational veloc-
ity on the surface of the sphere:
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Let’s expand the left-hand side of equality (19) into a 
Fourier series in orthogonal functions ( ) ( )θ ϕcosm

nP m as 
follows:
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where q, s=0 ,1 , 2, 3, …, and Vqs – an unknown amplitude 
coefficient having a velocity content.

Let’s use the orthogonality properties: equate (19) 
and (20),
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let’s multiply the right and left sides of the resulting equality
( ) ( )′

′ θ ϕ′cosm
nP m  and integrate on the intervals of variation 

of the angles φ, θ:

According to [13, 14], as a result of integration:
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So, let’s take into account the above assumptions 
about the symmetry of the field with respect to the direc-
tion φ=0° (m=0), the results of (21), (22) and the replace-
ment of variable indexing of the addition operators. After 
carrying out these transformations, it is possible to write 
down the expression for the specific acoustic impedance 
of the medium I,IV

spZ  on the surface of the transducer for a 
certain mode:
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So, the events at the boundaries of the partial regions 
have been clarified. After using formulas (13), (15), (17), 
(21) to determine the coefficients An, Bn, Cn, Vn and substi-
tuting them in (11), (18), (23), let’s find the distribution of 
pressures, oscillatory velocities and impedance. To do this, 
let’s use the ranges of variation of angles and distances based 
on the inequalities 0≤θ≤π/2, a≤r≤R.

Finding the acoustic field in a regular plane parallel 
waveguide with acoustically soft boundaries pwg(x, z) is itself 
a well-known problem, the formulation and solution of which 
is presented in many literary sources, for example [2, 5, 13]. 
So, the general result of finding the acoustic field within the 
plane-parallel problem is found in the form of a series – the 
sum of normal waves [5]. As a basis, it is possible to take ex-
pression (2) and obtain a partial solution in the z coordinate 
for the field potential Ψ (x, z) in a rectangular coordinate 
system 0, x, y, z:
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of the ν-th mode of the waveguide, and v=0, 1, 2, 3 ... is its 
number.

In terms of eigenfunctions, the complex amplitude of the 
potential or pressure can be expressed as:
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0
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where uν+1(z)=uμ(z), ν+1=μ, μ∈N –  eigenfunctions of the 
Sturm-Liouville problem, which for the chosen initial con-
ditions form a complete orthogonal system of functions. The 
sound source, which is located in the plane x=0, is charac-
terized by certain spatial properties and forms a potential 
Ψs(z) so that:

( ) ( ) ( )1 1
0 0

,s z u z u z
∞ ∞

µ µ ν+ ν+
µ= ν=

Ψ = δ = δ∑ ∑  	 (26)

where ( )ν+
νπ =   1

2
sin .u z z

H H
Applying the orthogonality properties, equalities (25), (26) 

and the boundary conditions for acoustically soft boundaries 
z=0, z=H, let’s obtain:

( )1 sr
0

2 sin d .
H

z z z z
H Hν+

νπ δ = Ψ   ∫

Then, for the complex amplitude (25), according to [1–3]:
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Thus, the process of field formation in a given wave-
guide consists in finding the field in the working space 
and then superimposing on the result (11) the properties of 
the waveguide itself, represented by expression (27). This 
makes it possible to establish the features of the process of 
transformation of the acoustic field in the working area of 
the spherical transducer and the field in the waveguide.

Therefore, let’s describe the total pressure field in the work-
ing space using equation (11) and using the notation Fs(r, θ):
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where Fs(r, θ) – distribution of the pressure force in the 
section x0. The transition from a spherical coordinate sys-
tem (0, r, θ) to a rectangular system(0, x, z) is carried out 
according to the standard transition formulas.

In this case, the total field in the waveguide will be writ-
ten based on (7)–(11) as:

( ) ( ) ( )

( )
0

0

, , ,

, sin ,n

s s sn
n

ik x
n

n

p x z p p

nF z e
H

∞

=

∞

=

= ρ θ = ρ θ =

π = ρ θ   

∑

∑ 	 (29)

It is clear that if a certain form n is considered, expres-
sions (28), (29) acquire indexing:
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Thus, the result of the solution makes it possible to de-
termine the field in the waveguide taking into account the 
calculated coefficients of excitation of normal waves.

5. 5. Calculations and experimental confirmation
Calculations of the distribution of acoustic pressure am-

plitudes in the working space of a spherical radiator, namely, 
in the vertical sections of a regular plane-parallel waveguide 
and specific resistances of the medium to combination waves 
of a certain mode are performed. Note that the central sym-
metry of the problem allows the presentation of the results 
of field calculations for only one quadrant (in the given case, 
the first), taking into account the conditions of force-type 
conjugation at the boundaries of partial regions (Fig. 1, 2).
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The source of a monochromatic sound signal (frequency 
f=63 Hz) is located on the horizontal axis of the waveguide 
at point O – the origin of rectangular coordinates O, x, y, 
z. Sea depth H=100 m. According to calculations, based on 
the geometry of the problem, the maximum selected number 
of normal waves of the waveguide was N=4, which does not 
exceed the value permissible for the given wave conditions 

 = = λ 
2

8.
H

N

The calculation results are presented in groups.

Group 1. Wave patterns of distribution of complex pres-
sure amplitudes in the working space of a spherical radiator 
for the lower modes of sources n=0, 1, 2, 3, 4 and the total 
field (Fig. 3–9):

Group 2. Distribution of pressures in the waveguide, 
x=100 m by mode and sum of modes (Fig. 10–12).

Group 3. Bypass and plots of the distribution of pressure 
amplitudes pp in the working space along the coordinates x, z 
in the section x=100 m for modes 0, 1, 2, 3, 4 and for the sum 
of modes 0+1+2+3+4 (Fig. 13, 16).

Fig. 3. Wave pattern of the field of a pulsating spherical source in an infinite ideal medium, frequency 63 Hz, H=100 m

Fig. 4. Wave pattern of distribution of pressure amplitudes in the working space, mode “0”, frequency 63 Hz, H=100 m: 	
a – 0≤x≤100 m; b – 0≤x≤1000 m

a 

b
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Fig. 5. Wave pattern of distribution of pressure amplitudes in the working space, mode “1”, frequency 63 Hz, H=100 m: 	
a – 0≤x≤100 m; b – 0≤x≤1000 m

a 

b

Fig. 6. Wave pattern of distribution of pressure amplitudes in the working space, mode “2”, frequency 63 Hz, H=100 m: 	
a – 0≤x≤100 m; b – 0≤x≤1000 m

a 

b
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Fig. 7. Wave pattern of distribution of pressure amplitudes in the working space, mode «3», frequency 63 Hz, H=100 m: 	
a – 0≤x≤100 m; b – 0≤x≤1000 m

a 

b

Fig. 8. Wave pattern of distribution of pressure amplitudes in the working space, mode “4”, frequency 63 Hz, H=100 m: 	
a – 0≤x≤100 m; b – 0≤x≤1000 m

a 

b
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Group 4. Impedance characteristics in the form of the 
frequency dependence of the specific impedance of the medi-
um reduced to the surface (Fig. 17, 18).

As for the impedance properties, the specific impedance 
of the medium to direct and reflected spherical waves for 

sources with a radius of 1 m (Fig. 17) and 50 m (Fig. 18) was 
chosen as the external load of the source.

To check the correctness of the main provisions of the 
work and receive recommendations for determining the 
workspace and its boundaries, the main factor is the possi-

Fig. 9. Wave pattern of the distribution of pressure amplitudes in the working space, the sum of modes 0+1+2+3+4, 
frequency 63 Hz, H=100 m

Fig. 10. Wave pattern of the distribution of pressure amplitudes in the waveguide in accordance with the mode, x=100 m, 
frequency 63 Hz, H=100 m: a – mode “1”; b – mode “2”

a 

b
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bility of the sphere working in a certain fashion. This leads 
to the need to measure the angular dependences of the dis-
tributions of the pressure amplitudes on the surface or near 
the sphere.

For this, the theoretical results obtained in terms of the 
realization of individual modes by the sphere and the forma-

tion of angular distributions of the acoustic pressure ampli-
tudes pn(θ), n=0, 1, 2 – must be confirmed experimentally.

Such an experiment was carried out in the measuring 
pool of the State Enterprise “Kyiv Scientific Research Insti-
tute of Hydroelectric Instruments” according to the scheme 
in Fig. 19.

Fig. 11. Wave picture of the genealogy of pressure amplitudes in the waveguide, x=100 m in accordance with the mode, 
frequency 63 Hz, H=100 m: a – mode «3»; b – mode «4»

a 

b

Fig. 12. Wave pattern of distribution of pressure amplitudes in the waveguide (sum of modes), frequency 63 Hz, H=100 m: 	
a – x=100 m; b – x=500 m

a 

b
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Fig. 13. Bypass distribution of pressure amplitudes pp: 	
a, c, e, g, i, k – in the working space pp=p(x, h), h∈[50, 100]; 	

b, d, f, h, j, l – in the section x=100 m, pp→p(x, h), 
(50≤z≤100) m, (0≤x≤1000) m

a b

c d

e f

g h

i j

k l

Fig. 14. Bypass distribution of pressure amplitudes pp: 	
a, c, e, g, i, k – in the waveguide pp=p(x, h), h∈[50,100]; 

b, d, f, h, j, l – in the section x=100 m, pp→p(x, h), 
(50≤z≤100) m, (50≤x≤100) m

a b

c d

e f

g h

i j

k l

Fig. 15. Bypass distribution of pressure amplitudes pp: a, c, e, g, i, k – in the working space pp=p(x, h), h∈[50,100]; 	
b, d, f, h, j, l – in the section x=500 m, pp→p(x, h), (50≤z≤100) m, (0≤x≤100) m

a b c d

e f g h

i j k l
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The measurement results are presented by normalized 
angular pressure diagrams when the sphere is operating on 

vibration modes “0”, “1”, “2” at a fixed frequency, taking into 
account the scaling in frequency, the size of the working 
space and the transducer.

During the measurements, the working space corre-
sponded to the artificial conditions of the far field, and the 
method of gating the direct pulse signal in time (distance) 

Fig. 16. Bypass distribution of pressure amplitudes pp: a, c, e, g, i, k – in the waveguide ppp=p(x, h), h∈[50,100]; 	
b, d, f, h, j, l – in the section x=500 m, pp→p(x, h), (50≤z≤100) m, (0≤x≤1000) m

a b c d

e f g h

i j k l

Fig. 17. Frequency dependences: a – phase displacement 
between pressure and vibrational velocity in a free field; 
c – components of the reduced impedance Re (IMP (x)) 

and Im (IMP (x)) in a free field; b, d – components of the 
reduced impedance Re (IMP (x)) and Im (IMP (x)) in the 

working space as=1 m

a

b

c

d
Fig. 18. Frequency dependences of phase displacement: 	

a – between pressure and oscillatory speed; b – impedance 
module | IMP (x) | in the working space at as=50 m; 	

c – components of the reduced impedance Re (IMP (x)) and 
Im (IMP (x)) in the working space at as=50 m

a

b

c
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was implemented in the receiving path. The gating operation 
ensures that there is no echo in the working volume of the 
pool. The strobe is movable in the sweep of the indicator and 
registration devices (recorder and oscilloscope connected to 
the output of the bandpass filter unit 6 (Fig. 19)).

At the same time, the noise-signaling situation corre-
sponded to an inequality of the form Us/Ui≥15 dB, where 
Us – electric voltage on the useful signal recorder, Ui – electric 
voltage of the interference. The implementation of the cases of 
operation of the source in a certain mode corresponded to the 
ideology of works [10, 14] in terms of the formation of spatial 
selectivity with appropriate matching of the resistances of the 
generator and electromechanical converter [15].

Consequently, the generator 1 generates a tone signal of a 
given frequency, which is amplified in power by the amplifi-
er 2 and is fed through the caisson of block 4 to the emitter 7. 
The emitter electrodes are switched in such a way that the 
emitter can operate in a certain mode. The direct signal 
received by the hydrophone 8 is amplified, selection in time 
and frequency is performed (selection block 3) and the result 
is fed to the recording devices 9 and 10. Block 5 synchronizes 
the operation of the rotary device 4, the oscilloscope sweep, 
the start of the strobe and the start of the movement of the 
level recorder motor (Fig. 19).

As a result of the complete rotation of the emitter by 
the rotary device 4 (Fig. 19), the directivity characteristic 
is recorded in the range of 0–360 degrees (Fig. 20). In this 
case, the results of measuring the angular distributions of 
the amplitudes of the acoustic pressure at the frequency of 
the working range of research were analyzed (Fig. 20). As a 
result of the analysis of the diagrams, it was found that the 
spatial dependences of the pressure amplitudes measured in 
the working space coincide in nature with the calculated 
ones, and the error is no more than 3 dB.

Based on the obtained angular diagrams for the three 
lower modes, as well as determining the distance x=x0≈5 m, 
let’s consider that:

– gating of the direct signal and scaling of the experi-
ment sufficiently ensure the approximation of the measure-
ment conditions to the real ones;

– the measurement results determine the distance 
x0=5 m as the limit from which the field will be formed in the 
waveguide and positively characterize the chosen approach 
to solving the given radiation problem.

6. Discussion of the results of studying the acoustic 
field of a spherical complicated source in a plane-parallel 

waveguide

The formulation and solution of the radiation problem 
was performed in the representation of pressure by the series 
(16), (27), (8), (29), (30), which was used to study the pres-
sure distributions in the waveguide sections when replacing 
artificial boundary conditions with conjugation conditions, 
and impedance frequency dependences As a result, two main 
factors of the appearance of the features of the formation 
of the acoustic field are determined. These are the general 
properties of the waveguide and a kind of transient acoustic 
field, as well as the field in the working space.

In this case, each of the terms in series (16)–(18) and 
(29), (30) can be associated with a normal traveling wave. 
Such a wave moves from some source in the positive direc-
tion of the Ox axis with its own phase velocity.

As is known from [16], the process of sound emission by 
a sphere itself presupposes the existence of a near (kr<<1) 
and far (kr>>1) fields. Undoubtedly, the limit, or rather, the 
area of separation of such fields, has no clear boundaries, and, 
formally, sound waves can begin to form only from a certain 
distance from the sphere. The used method of searching for 
unknown expansion coefficients of scalar and vector fields 
makes it possible to accurately calculate and apply the 
coefficients of expansions Dv (27) taking into account the 
mode composition of the sphere vibrations. The search for 
the coefficients Dv was carried out in the understanding that 
the sphere and the space adjacent to it are considered a com-
plicated source of sound. Such a transition does not violate 
the results of the general solution, since the solution of the 
problem obtained in each formed partial domain satisfies the 
Helmholtz equation, limiting conditions, and conjugation 
conditions.

Consequently, the formation of the field in the wave-
guide will occur by using the values of the coefficients 
Dv from the workspace and using the eigenfunctions 
within the framework of the Sturm-Liouville problem. 
Thus, for a certain value of x0, in the case of coincidence 
of the calculated values of the pressure amplitudes in the 
vertical sections of the working area and the diagrams of 
the corresponding modes in the vertical sections of the 
waveguide, the coefficients Dv will uniquely correspond 
to the generated normal waves. In addition, it becomes 
possible to study the dynamics of the formation of the field 
when moving along the axis of the desired set Ox of nor-
mal waves (modes). Let’s note that in the vicinity of the 
near field, the coordinate dependences of the pressures are 
characterized by significant shearness, which leads to sig-
nificant spatial variability of the amplitudes of the mode 
composition. The number and position of nodal mode lines 

Fig. 19. Measuring circuit: 1 – master oscillator; 2 – power 
amplifier; 3 – selector; 4 – lifting and turning device; 	

5 – synchronization device; 6 – band pass filter; 	
7 – investigated spherical emitter; 8 – control hydrophone; 

9 – level recorder; 10 – 2-channel oscilloscope

Fig. 20. Angular distribution of the pressure amplitudes of 
the first three modes: curve 1 – mode n=0; curve 2 – mode 

n=1; curve 3 – mode n=2
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in this case determine the nodes and antinodes of standing 
waves in vertical sections of the field in the working space.

For an infinite space, the pressure distribution of the 
pulsating sphere is supplied by means of a system of con-
centric circles (Fig. 3), and the introduction of boundaries 
into the field should enrich the mode set of oscillations of 
the sphere.

In Fig. 4–9 for modes “0”–”4” and their sums 0+1+2+3+4 
in the first quadrant of the working space, wave patterns 
of the distribution of pressure amplitudes pp at a fre-
quency of 63 Hz are shown. Distance range (0≤x≤100) m, 
(0≤x≤1000) m.

Wave patterns are presented in different colors: red, or-
ange, light blue, blue, dark blue. The colors show the change 
in the value of relative pressure (pp/p0) from the highest 
(red) to the lowest (dark blue).

From the results of calculations (Fig. 3–9), let’s note 
that the pressure field in the working area is represented by a 
set of antinodes and alternating nodes. For a plane problem, 
for the number of nodal lines that determine the mode num-
ber mn, the situation is simplified. Therefore, at m=0, only 
the modes mn→»00»,»01»,»02»,.... variability of pressure 
distribution in the working area.

Obviously, the reason for the appearance of the features 
of the spherical source in a confined space is the dispersion, 
which characterizes the decrease in the phase velocity of the 
n mode in frequency, asymptotically approaching the value 
c=1500 m (Fig. 3 – free space).

As can be seen from Fig. 4–9, 15, when to change the scale 
of the diagram, the detail of the pressure distribution shows:

1. The pressure distribution itself is the result of a com-
plex interference-diffraction interaction of the fronts of 
spherical waves modulated by the known angular functional 
dependences (Fig. 4–9) for modes n=0, 1, 2, 3, 4:

( )→ θ ⇒"0" 1,f  ( ) ( )→ θ ⇒ θ"1" cos ,f

( ) ( )→ θ ⇒ θ"2" cos 2 ,f  ( ) ( )→ θ ⇒ θ"3" cos 3 ,f

( ) ( )→ θ ⇒ θ"4" cos 4 .f

2. The pressure and spatial characteristics of the mode 
components of a spherical oscillatory system are character-
ized by zeros at the boundaries “sea surface” (quadrant I, II) 
and “bottom” (quadrant III, IV) due to the boundary condi-
tions of the working space.

3. For any mode (sum of modes) at the point H (x, h), 
(x=0, h=H), the statement about the movement of acous-
tic energy into the soft boundary is valid, which excludes 
the perturbation in the waveguide of a plane wave. In this 
case, the flow of energy into the limit affects the distri-
bution components, decreasing in their amplitude and 
deforming in shape as the channel axis approaches the 
boundaries.

4. When the waveguide operates on one mode or using 
the total number of modes, the diagrams show a certain sep-
aration of the medium into near and far fields. In the given 
initial data for the “0” mode, the section passes along the 
coordinate x=500 m (Fig. 15, a, c, e, g, h, k).

To determine the pressure field in the waveguide, it is 
necessary for the selected nth term of series (30) to find 
the corresponding product, using a factor of the form of 

the function 
π 

  
sin ,

n
z

H
 of the corresponding situation of  

 

acoustically soft waveguide boundaries. The pressure field 
distribution calculated for this case (Fig. 10–12) shows the 
appearance of additional nodal lines corresponding to zeros 
of the pressure dependence pp of the corresponding mode.

The considered waveguide should filter out the zero 
mode in accordance with the conditions at the boundary; 
therefore, the situation of using modes other than zero, 
for example, modes “1” and “2”, is of considerable interest. 
A separate implementation of the indicated modes by a 
spherical source was provided by electrical switching of 
separate split electrodes deposited on the surface of the 
sphere.

For example, according to works [10, 15]:
– “0” mode – parallel coordinated connection of all elec-

troplated sections;
– “1” mode – by sequential counter connection of oppo-

sitely located pairs of electroplated sections;
– “2” mode – parallel-series connection, electroplated 

sections of orthogonal pairs of surfaces of the sphere.
The pp→pp(θ), pp(z) dependency diagrams are arranged 

as follows:
– calculated envelopes of pressures pp and diagrams 

of pressures pp(z) for the working space, modes “0”–”4”, 
x=100 m in Fig. 13, a, c, e, g, i, k and Fig. 13, b, d, f, h, j, l;

– calculated bypass pressures pp and pressure dia-
grams pp(z) for the waveguide, modes “0”–”4”, x=100 m 
in Fig. 14, a, c, e, g, i, k and Fig. 14,b, d, f, h, j, l;

– calculated bypass pressures pp and pressure dia-
grams pp(z) for the working space, modes “0”–”4”, x=500 m 
in Fig. 15,a, c, e, g, i, k and Fig. 15,b, d, f, h, j, l;

– calculated bypass pressures pp and pressure dia-
grams pp (z) for the waveguide, modes “0”–”4”, x=500 m 
in Fig. 16,a, c, e, g, i, k and Fig. 16,b, d, f, h, j, l.

According to Fig. 16a, c, e, g, i, k the working space 
lasts along the horizontal axis of the waveguide from 1 to 
700 m for lower modes. At the same time, there is a limita-
tion of the working space by the coordinate x=500 m. This 
shows the correspondence, starting from the indicated 
section, to the calculated values of the amplitude distri-
bution obtained in accordance with the provisions of the 
solution of the partial domains method (11), to the typical 
pressure distribution diagrams according to [5]. Therefore, 
they can be used as expansion coefficients for the field in 
the waveguide (27). The levels of the total field and mode 
components fall back towards increasing distance without 
an overall change in shape.

Thus, let’s choose the cross-sections x=100 m and 
x=500 m. For them, as can be seen from Fig. 13, 15, the by-
pass spatial pressure distributions in the working space are 
calculated. They have specific features that are manifested 
in the values of the levels of local maxima, zeros, and cer-
tain changes in the shapes of the petals of these diagrams. 
This is due to:

– differences in the selected sections of the “finest field 
structure” relative to the number of antiphase sections, 
nodes and pressure antinodes in sections x=100 m and 
x=500 m for each of the implemented modes;

– spatial losses for front expansion and re-reflection from 
the boundaries of waves formed by the source;

– differences in the phase velocities of normal waves.
Wherein (Fig. 13, a, c, e, g, i, k) the positions of the local 

minima of the bypass diagrams of the mode components 
characterize the typical directions of the angles, represented 
by the dotted line for modes “2”–”4”).
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About the impedance features. The calculation results 
(Fig. 17, 18) show that in the near field (at low frequencies 
or small arguments x(ka)), there is a significant phase dif-
ference between the pressure and the vibrational velocity. 
Such a result, obviously, can partially explain the reason 
for the appearance of personal points in the intensity field 
in the shallow sea. In this case, the general character of the 
behavior of the curves (Fig. 17, b, d) describes the frequency 
dependence of the form Re (IMP (x)) and Im (IMP (x)). 
This coincides with the curves in Fig. 17, describing the 
dependence of the impedance of a monopole in a free field 
on frequency. Consequently, the effect of equality to zero of 
the average flux of acoustic energy through any small sur-
face covering the source (monopole) can be extended to the 
design situation.

Also, in addition to the above, it should be noted the 
emergence of oscillations of the curves of active and reactive 
components of the impedance of a sphere of small radius, the 
reason for which is evidently multiple re-reflection of sound 
from the boundaries in the volume of the working area. The 
oscillation amplitudes increase with increasing frequency in 
the considered range.

With an increase in the size of the source in the work-
ing area, a resonance is clearly formed (Fig. 18, b, c), the 
frequency of which depends on the depth of the sea. That 
is, when the acoustic field is formed in the working space, 
the frequency response of the field is represented as a 
multi-resonance formation, in contrast to the emission of 
sound by a monopole. Thus, the impedance characteris-
tics should be considered both for different modes and for 
their combination, which indicates a situation where the 
inertial-elastic state of the converter changes with the 
frequency flow. In this case, the sequence of resonances of 
modes or their combinations contains resonances of two 
origins: classical (according to modes) and additional (ac-
cording to the wave characteristics of the problem under 
consideration).

The limitations inherent in the application of the 
method of partial regions are mainly in the fact that 
sometimes it is quite difficult to select partial regions in a 
shape close to the canonical. In this case, it is possible to 
reduce the areas and bring them, if possible, to an accept-
able shape and geometric and wave sizes. In this case, the 
number of functional equations for boundary conditions, 
conjugation conditions, and partial solutions of the Helm-
holtz equation increases significantly, complicating the 
complete solution of the problem.

The disadvantages of the method include the need to 
compare the size of the transducer and the wavelength at 
the operating frequency, where the wave condition for the 

smallness of the lobe region is satisfied. That is, the method 
is inherently limited in the high frequency range.

The development of research on the selected topic should 
be aimed at enriching the performances with physical fac-
tors, which should bring the results closer to the realities 
of field formation and the possibility of studying the fine 
structures of the acoustic field. One of these factors is the ap-
proach of cross-cutting problems from the field of stationary 
hydroelectric elasticity.

7. Conclusions

1. The problem of emission of sound waves by a spherical 
multimode source under the conditions of a regular wave-
guide is formulated. Its peculiarity lies in the fact that the 
influence on the source of the direct field emitted by the 
source, the field reflected by the boundaries of the wave-
guide, and the field scattered by the emitters is taken into 
account.

2. Based on the geometry of the emitter and the use of 
a plane-parallel waveguide, the coordinate systems of the 
problem (spherical and Cartesian) are selected. Five partial 
regions are identified, four of which form a symmetric sys-
tem, and the fifth connects the working space of the trans-
ducer and the waveguide.

3. For the selected partial regions, a system of functional 
equations is compiled, which determines the coordinates of 
the regions, boundary conditions and conditions for con-
jugation of regions and make it possible to determine the 
unknown expansion coefficients of acoustic fields.

4. The wave problem for the full field in the working 
space is solved using the principle of superposition of the 
direct radiated field reflected from the flat boundary and the 
field scattered by the sphere. Due to the symmetry of regions 
I–IV, the problem is solved only for quadrant I. The solution 
of the Helmholtz equation for the indicated field components 
is used, followed by the application of the superposition prin-
ciple for each point of the working space (quadrant I).

5. The results of calculating the pressures in the spaces 
of the problem determine the correspondence of the appli-
cation of the obtained excitation coefficients, in the form of 
pressure distributions at the boundary of the working space, 
to the diagrams of the vertical distributions of the wave-
guide modes. The composition and dynamics of the mode 
structure of the emitter are shown during the propagation of 
normal waves. The boundary area of the working space was 
determined for the low frequency range (31.5–63 Hz) when 
a source with a diameter of 1 m is operated in the sea with a 
depth of 100 m. The distance is about 2λ.

References

1.	 Brillouin, L. (1960). Wave Propagation and Group Velocity. Academic Press, 166. Available at: https://www.elsevier.com/books/

wave-propagation-and-group-velocity/brillouin/978-1-4832-3068-9

2.	 Brekhovskikh, L. (1976). Waves in Layered Media. Academic Press, 520. Available at: https://www.elsevier.com/books/waves-in-

layered-media/brekhovskikh/978-0-12-130560-4

3.	 Mann, J. A., Tichy, J., Romano, A. J. (1987). Instantaneous and time‐averaged energy transfer in acoustic fields. The Journal of the 

Acoustical Society of America, 82 (1), 17–30. doi: http://doi.org/10.1121/1.395562 

4.	 Mobarakeh, P. S., Grinchenko, V. T., Popov, V. V., Soltannia, B., Zrazhevsky, G. M. (2020). Contemporary Methods for the 

Numerical-Analytic Solution of Boundary-Value Problems in Noncanonical Domains. Journal of Mathematical Sciences, 247 (1), 

88–107. doi: http://doi.org/10.1007/s10958-020-04791-4 



Applied physics

79

5.	 Korzhyk, O., Naida, S., Kurdiuk, S., Nizhynska, V., Korzhyk, M., Naida, A. (2021). Use of the pass-through method to solve sound 

radiation problems of a spherical electro-elastic source of zero order. EUREKA: Physics and Engineering, 5, 133–146. doi: http://

doi.org/10.21303/2461-4262.2021.001292 

6.	 Mobarakeh, P. S., Grinchenko, V. T. (2015). Construction Method of Analytical Solutions to the Mathematical Physics Bound-

ary Problems for Non-Canonical Domains. Reports on Mathematical Physics, 75 (3), 417–434. doi: http://doi.org/10.1016/

s0034-4877(15)30014-8 

7.	 Kazak, M. S., Petrov, P. S. (2020). On Adiabatic Sound Propagation in a Shallow Sea with a Circular Underwater Canyon. 

Acoustical Physics, 66 (6), 616–623. doi: http://doi.org/10.1134/s1063771020060044 

8.	 Diubchenko, M. E. (1984). Vlyianye osesymmetrychnikh mod kolebanyi na chuvstvytelnost y kharakterystyky napravlennosty 

pezokeramycheskoi sferi. Akustycheskyi zhurnal, 30 (4), 477–481. Available at: http://www.akzh.ru/pdf/1984_4_477-481.pdf 

9.	 Leiko, O., Derepa, A., Pozdniakova, O., Starovoit, Y. (2018). Acoustic fields of circular cylindrical hydroacoustic systems with a 

screen formed from cylindrical piezoceramic radiators. Romanian Journal of Acoustics and Vibration, 15 (1), 41–46. Available at: 

http://rjav.sra.ro/index.php/rjav/article/view/49 

10.	 Aronov, B. (2009). Coupled vibration analysis of the thin-walled cylindrical piezoelectric ceramic transducers. The Journal of the 

Acoustical Society of America, 125 (2), 803–818. doi: http://doi.org/10.1121/1.3056560 

11.	 Filipova, N. Y., Korzhik, O. V., Chayka, A. S., Naida, S. A., Korzhik, M. O. (2020). Dynamics of Receiving Electroelastic 

Spherical Shell with a Filler. Journal of Nano- and Electronic Physics, 12 (4), 04034–1–04034–7. doi: http://doi.org/10.21272/

jnep.12(4).04034 

12.	 Volodicheva, M. I., Lopukhov, K. V. (1994). Vliianie sferichnosti akusticheskoi volny na koeffitsient ee otrazheniia ot ploskoi 

granitsy razdela dvukh zhidkikh sred. Akusticheskii zhurnal, 40 (5), 768–772. Available at: http://www.akzh.ru/htm/1994_5.htm

13.	 Kuperman, W., Roux, P.; Rossing, T. (Ed.) (2007). Underwater Acoustics. Marine Phisical laboratory. Springer Handbook of 

Acoustics. New York: Springer, 149–209. doi: http://doi.org/10.1007/978-0-387-30425-0_5 

14.	 Saheban, H., Kordrostami, Z. (2021). Hydrophones, fundamental features, design considerations, and various structures: A review. 

Sensors and Actuators A: Physical, 329, 112790. doi: http://doi.org/10.1016/j.sna.2021.112790 

15.	 Leiko, O., Derepa, A., Pozdniakova, O., Maiboroda, O. (2020). On the Peculiarities of Matching an Electric Generators with an 

Electromechanical Energy Transducers. IEEE 40th International Conference on Electronics and Nanotechnology, 842847. doi: 

http://doi.org/10.1109/elnano50318.2020.9088812 

16.	 Hrynchenko, V. T., Vovk, I. V., Matsypura, V. T. (2007). Osnovy akustyky. Kyiv: Naukova dumka, 640. Available at: http://

hydromech.org.ua/ru/books


