D-

Розкрита природа виникнення додаткових похибок двохстепеневого гіроскопа з рідинностатичним підвісом в полі ультразвукового променя на резонансному рівні при льотній експлуатації. Проведений порівняльний аналіз результатів напівнатурних випробувань з теоретичними дослідженнями явища, який дав задовільний збіг. Пояснено механізм виникнення хвильового співпадання в підвісі гіроскопа, побудована розрахункова модель, сформульовані умови прояву «акустичної прозорості»

ET-

-0

Ключові слова: хвильове співпадання, кут співпадання, акустична прозорість, поплавковий підвіс, хвильовий розмір

Раскрыта природа возникновения дополнительных погрешностей двухстепенного гироскопа с жидкостатическим подвесом в поле ультразвукового луча на резонансном уровне при летной эксплуатации. Проведен сравнительный анализ результатов полунатурных испытаний с теоретическими исследованиями явления, которые дали удовлетворительное совпадение. Объяснен механизм возникновения волнового совпадения в подвесе, построена расчетная модель и сформулированы условия проявления «акустической прозрачности»

Ключевые слова: волновое совпадение, угол совпадения, акустическая прозрачность, поплавковый подвес, волновой размер

1. Введение

Исследования относятся к области прикладной механики и посвящены изучению погрешностей инерциальных пилотажно-навигационных приборов в эксплуатационных условиях гиперзвукового полета [1]. Изучается влияние проникающего ультразвукового излучения на резонансном уровне волнового совпадения [2]. Уменьшение погрешностей бортовой аппаратуры послужит основой для совершенствования тактико-технических характеристик летательных аппаратов [3].

В обозримом будущем надежные гиперзвуковые технологии на основе гиперзвуковых прямоточных воздушно реактивных двигателей со временем займут свое место не только в оборонной промышленности США, но и в целом ряде других стран. Пентагон твердо придерживается позиции перспективности разработки гиперзвуковых систем оружия, непререкаемой способности гиперзвуковых технологий в обеспечении военного доминирования США при решении общенациональных задач в сфере безопасности.

Оборонное научное агентство DARRA начало практическую реализацию проекта XS-1 – нового беспилотного шаттла. Это будет гиперзвуковой аппарат с большим военным потенциалом. Внедренные в этом проекте технологии будут использованы для создания коммерческих и правительственных летательных ап-

УДК 629.7.054

ПОГРЕШНОСТИ ПОПЛАВКОВОГО ГИРОСКОПА НА РЕЗОНАНСНОМ УРОВНЕ В ПОЛЕ УЛЬТРАЗВУКОВОГО ЛУЧА

В. В. Карачун

Доктор технических наук, профессор* E-mail: karachun11@i.ua

В. Н. Мельник Доктор технических наук, профессор Заведующий кафедрой* E-mail: karachun11@i.ua *Кафедра биотехники и инженерии Национальный технический университет Украины «Киевский политехнический институт» пр. Победы, 37, г. Киев, Украина, 03056

паратов различного назначения, включая *гиперзвуко*вые и суборбитальные самолеты.

Активное внедрение гиперзвуковых технологий в авиационно-космическую отрасль служит обоснованием актуальности проведенных авторами исследований [4].

2. Постановка проблемы

В качестве альтернативы баллистическим ракетам, США разрабатывают гиперзвуковые летательные аппараты в виде крылатой ракеты - с собственным двигателем или в виде планирующего снаряда, гиперзвуковую скорость которому сообщают маршевые ступени обычных баллистических ракет. Так, разрабатываемая ныне противоракета SM-3 Block IIA чаще всего упоминается в связи с модернизацией американской ПРО. Она, подобно предыдущим модификациям SM-3, будет принята на вооружение системы ПРО морского базирования Aegis. Особенностью Block IIA является заявленная способность перехвата на определенном участке траектории межконтинентальных баллистических ракет, что послужит основанием для включения системы Aegis в состав противоракетной обороны США.

Американские военные объявили в 2010 году, что на базе *SM-3 Block IIA* будет также создана ударная система большой дальности под кодовым названием Are Light. Предполагается, что маршевые ступени противоракеты выведут на гиперзвуковую скорость планирующий аппарат, который способен пролететь до 600 км и доставить к цели боеголовку массой 50–100 кГ. Общая дальность полета всей системы составит 3800 км. [http://www.cnews.ru/news/tpp/print. shtml?2012/07/02/494977].

Параллельно идеологии гиперзвукового планера американские конструкторы стали осуществлять разработку гиперзвуковых крылатых ракет. Разработанная корпорацией Boeing, ракета X-51 под названием *WAVERIDER* может использовать энергию ударных волн гиперзвукового полета. Принятие этой ракеты на вооружение планируется в 2017 году [5].

Гиперзвуковые средства нападения и внешней разведки обладают способностью появляться в воздушном пространстве противника неожиданно, что позволяет эффективно преодолевать любую систему ПВО.

Россия и Индия в настоящее время тестируют совместно разработанную сверхзвуковую крылатую ракету *Брамос*, которая летит со скоростью в два раза превышающей скорость звука. В завершающей фазе находится ее модификация *Брамос-2*, которая будет гиперзвуковой и достигнет скорости 7*M*. Эта ракета может стартовать с морской, наземной и воздушной платформ. Подобного оружия пока не существует ни в одной стране мира. Летные испытания планируются на 2017 год [6].

По данным американской внешней разведки, Россия успешно испытала гиперзвуковой прямоточный воздушно-реактивный двигатель на водородном топливе еще 1983 году. Опытный образец ракеты достиг тогда скорости 6,4 М [7].

Американская ракета X-51 достигла скорости 6 М, а гиперзвуковой аппарат X-43 даже превысил этот показатель, его скорость составила 10 М [8].

Понятно, что для осуществления амбициозных программ освоения ближнего космоса, а также задач оборонного значения, необходимы средства высокой энерговооруженности, к каким, несомненно, можно отнести и ядерные энергодвигательные установки мегаваттного класса.

Таким образом, гиперзвуковым технологиям неизбежно будет сопутствовать мощное ультразвуковое излучение, ударная N-волна, запредельная температура и другие не менее нежелательные факторы. В работе рассматривается влияние первого из возмущающих факторов – ультразвукового излучения и строится на расчетных моделях механизм его действия на механические системы приборов.

3. Литературный обзор

Двухстепенные гироскопы с жидкостатическим подвесом нашли широкое применение и как пилотажные, и как навигационные приборы [1, 2, 9]. Кроме того, они часто используются как чувствительные элементы гиростабилизированных платформ. Большая вязкость жидкости и малая величина рабочего зазора позволяют получить требуемый коэффициент демпфирования в интегрирующем гироскопе [10].

Бурное развитие гиперзвуковых технологий заставило проанализировать возможности эксплуатационного использования уже известного пилотажно-навигационного оборудования с целью подтверждения его функциональных возможностей [11]. Уже первые исследования показали, что акустическое излучение гиперзвуковых летательных аппаратов может существенно влиять на бортовую аппаратуру [7, 8, 12].

Стратегические преимущества гиперзвуковых технологий неизбежно сформировали и возмущающие факторы, которые можно отнести к категории сверхопасных [13].

В данной работе впервые изучается упругое взаимодействие ультразвукового излучения с полиагрегатным подвесом гироскопа и объясняется природа резонансных проявлений, порождающих дополнительные погрешности автономного позиционирования аппарата. Строится расчетная модель прохождения звуковой волны через корпус прибора в предположении его большого волнового размера, что позволяет в дальнейшем рассматривать элементарный участок как тонкую пластину и анализировать только один тип генерируемых волн - изгибных, в поле ультразвукового луча, причем, ограничиваясь только его антисимметричной составляющей. Формулируется условие возникновения акустической прозрачности корпуса при летной эксплуатации, вычисляется угол волнового совпадения и определяются дополнительные погрешности двухстепенного гироскопа на стенде.

4. Волновое совпадение и погрешность поплавкового гироскопа на резонансном уровне

Проанализируем подробно природу погрешности поплавкового гироскопа при волновом совпадении на резонансном уровне явления. При выбранной частоте ультразвукового излучения, например в 42 кГц, волновой размер kR корпуса поплавкового гироскопа значительно превышает единицу, т. е.

 $kR \gg 1$,

де $k = \frac{\omega}{c_0}$ – волновое число воздушного пространства

снаружи корпуса прибора; ω – частота излучения; c_0 – скорость звука в воздухе.

Оговоренное выше условие позволяет в дальнейшем рассматривать отдельно взятый элементарный участок шпангоута корпуса в виде тонкой упругой изотропной пластины бесконечной по протяженности, колебания которой под действием ультразвукового излучения могут быть описаны уравнениями движения тонкой пластины, при условии, что длина следа падающей волны не меньше шестикратной ее толщины.

Принимая сопротивление корпуса симметричной составляющей звуковой волны значительно больше сопротивления действию антисимметричной составляющей, устанавливаем, что, начиная с граничной частоты $f_{\rm rp}$, при соответствующем подборе угла $\theta_{\rm c}$ падения звуковой волны, наблюдается установленное еще Л. Кремером явление совпадения следа изгибной волны и падающей звуковой волны

$$c_{_{\rm H}} = \frac{c_0}{\sin\theta_c} \,,$$

когда распределение давления в падающей волне вдоль пластины точно соответствует распределению упругих смещений при собственных колебаниях пластины той же частоты, что и приводит к интенсивному росту колебаний.

При иных значениях угла θ звукопередача через корпус резко снижается, т. е. растет его звукоизоляция. Наименьшая частота f_{r_p} , при которой становится возможным волновое совпадение, будет наблюдаться при

 $\theta = \frac{\pi}{2}$ рад. Основное значение для звукопроницаемости

корпуса на частотах $f_{\rm rp}\,{<}\,f\,$ приобретает область углов падения

$$\theta_{\rm c} = \arcsin \frac{c_0}{c_{_{\rm H}}}.$$

Для иллюстрации проведем численную оценку явления. Пусть корпус прибора изготовлен из алюминия (модуль Юнга $E=10,3\cdot 10^{10}\,{\rm Hm^{-2}};$ коэффициент Пуассона $\sigma=0,25$), масса единицы площади ${\rm m_{II}}=54\,{\rm Hc^2};~f=42\,{\rm \kappa}\Gamma{\rm u};~\omega=2\pi f;$ плотность материала корпуса $\rho_k=27\cdot 10^3\,{\rm Hm^{-1}c^2}$ толщина корпуса $\delta=1\cdot 10^{-3}\,{\rm m}$ скорость звука в воздухе $c_{\rm o}=331\,{\rm mc^{-1}}$. Тогда, скорость изгибной волны $c_{\rm u}$ будет определяться формулой

$$c_{_{\rm H}} = \sqrt[4]{\frac{2E\delta^2 \left(2\pi\right)^2 f^2}{3m_{_{\rm H}} \left(1-\sigma^2\right)}} = 1900 \left({}_{\rm M}c^{-1}\right), \label{eq:c_H}$$

а граничная частота очерчиваться величиной -

$$f_{rp} = f \bigg|_{\theta = \frac{\pi}{2}} = \frac{c_0^2}{2\pi \sin \theta} \sqrt{\frac{m_{\Pi}}{D}} = 15,473 \text{ (kGm)},$$

где D – цилиндрическая жесткость.

Теперь не представляет труда определить угол совпадения:

$$c_{\mu} = \frac{c_0}{\sin \theta_c}; \ \theta_c = 10^0.$$

Таким образом, "акустически прозрачным" корпус прибора становится при значениях угла падения ультразвукового луча $\theta = 10^{\circ}$. В этом случае наступает интенсивная перекачка звуковой энергии внутрь корпуса. Она зависит, как видно, от частоты *f* излучения. С целью апробации теоретических исследований, проводилось полунатурное тестирование промышленного образца гироскопического датчика угловых скоростей класса ДУСУ с поплавковым подвесом подвижной части на функциональную способность с помощью ультразвуковой установки *MINI ULTRASONIC CLEANER MO*DEL 3560. Ультразвуковой пучок создавался пьезокерамической пластиной, что давало возможность для формирования практически безградиентного вдоль линии фронта излучения. Мощность излучения составляет 30 Вт, рабочая частота 42 кГц.

Стендовые испытания позволили установить, что угол падения θ ультразвукового луча на поверхность корпуса прибора может решительным образом повлиять на погрешность измерений (рис. 1). Так, для угла $\theta = 0^{\circ}$, погрешность прибора немного превышает порог чувствительности (0,45 град с⁻¹). При $\theta = 10^{\circ} 37'$, назовем его углом совпадения θ_c , максимальная погрешность достигает 2,2 град с⁻¹, а среднее значение составляет 1,6 град с⁻¹. Такие величины погрешностей прибора при эксплуатации летательного аппарата, вообще говоря, ставят под сомнение надежность выполнения поплавковым прибором его задач и соответствие паспорту на изделие (табл. 1).

Рис. 1. Выходной сигнал ДУСУ на неподвижном основании: тонкая линия — $\theta = 0^\circ$; контурная линия — $\theta = 10^\circ 37'$

Резкое ухудшение технических характеристик гироскопического прибора при угле падения ультразвукового луча равном $\theta = 10^{0} 37'$, подтверждает тезис о наличии при определенных условиях резонансных эффектов в полиагрегатном подвесе датчика угловых скоростей.

Незначительное расхождение в значениях угла совпадения θ_c на стенде и установленного расчетным путем (37 угловых минут) вполне приемлемо, для подтверждения правомочности исходных предпосылок.

Таблица 1

Погрешность ДУСУ в ультразвуковом поле. Гиромотор включен

Ориентация корпуса прибора: $\phi = 0^\circ$, $\theta = 10^\circ 37'$			Объем : V=400 ml		Гироскоп: «OFF»		Результаты
1	2	3	4	5	6	7	8
t, c	Выходной сигнал, град с ⁻¹	t, c	Выходной сигнал, град с ⁻¹	t, c	Выходной сигнал, град с ⁻¹	t, c	Выходной сигнал, град с ⁻¹
0,5	1,288	30,5	1,4145	60,5	1,8285	90,5	1,081
1	1,3915	31	1,633	61	1,4145	91	1,3915
1,5	1,219	31,5	1,7135	61,5	1,3915	91,5	1,104
2	1,541	32	1,288	62	1,5065	92	0,989

Продолжение таблицы 1

(()	2			-		-	0
1	2	3	4	5	6	7	8
2,5	1,5295	32,5	1,518	62,5	2,0585	92,5	1,1615
3	0,989	33	1,6675	63	1,6445	93	1,173
3,5	1,2305	33,5	1,6675	63,5	2,07	93,5	1,104
4	1,4145	34	1,564	64	2,1735	94	1,1615
4,5	1,4145	34,5	1,5065	64,5	2,1275	94,5	1,2305
5	1,3915	35	1,5985	65	1,7365	95	1,7595
5,5	1,61	35,5	1,242	65,5	1,725	95,5	1,334
6	1,3225	36	1,403	66	1,7365	96	1,2305
6,5	1,311	36,5	1,5985	66,5	2,0815	96,5	1,1385
7	1,357	37	1,541	67	1,8975	97	1,2305
7,5	1,9205	37,5	1,265	67,5	1,8745	97,5	1,0925
8	1,7135	38	1,472	68	2,024	98	1,0925
8.5	1.196	38.5	1.5985	68.5	1.9665	98.5	1.173
9	1.564	39	1.426	69	1.8745	99	1.127
9.5	1.265	39.5	1.771	69.5	1.725	99.5	1,196
10	1.495	40	1.5525	70	1.5295	100	1.15
10.5	1,564	40.5	1,5065	70.5	1,702	100.5	1.3455
11	1 5065	41	2 001	71	1 5065	101	1,0695
11.5	1 1615	/1.5	1 9/35	71.5	1,6215	101.5	1 219
12	1 3685	41,0	1 7/8	72	1,0210	101,5	1,215
12 12 5	1 3225	42.5	2,0355	72.5	1,200	102 5	1,2535
12,5	1 38	42,5	1 9205	73	1,0213	102,5	1,2305
12.5	1,30	43	2 185	72.5	1,215	102.5	1,2305
15,5	1,173	43,3	2,103	73,3	1,104J	105,5	1,2703
14	1,307	44	1,01	74	1,4005	104	1,190
14,5	1,242	44,5	1,6905	74,5	1,495	104,5	1,038
15	1,7135	45	1,3685	75	1,15	105	1,1385
15,5	1,4375	45,5	1,3455	/5,5	1,38	105,5	1,311
16	1,2305	46	1,6905	76	1,334	106	1,288
16,5	1,2305	46,5	1,38	76,5	1,38	106,5	1,403
17	1,403	47	1,2535		1,426	107	1,2995
17,5	1,518	47,5	1,311	77,5	1,725	107,5	1,1845
18	1,2305	48	1,2305	78	1,6675	108	1,012
18,5	1,449	48,5	1,15	78,5	1,863	108,5	1,1615
19	1,196	49	1,725	79	1,6905	109	1,2765
19,5	1,334	49,5	2,1965	79,5	1,7595	109,5	1,15
20	1,7825	50	1,288	80	1,7595	110	1,2075
20,5	1,242	50,5	1,219	80,5	1,518	110,5	1,1845
21	1,5525	51	1,4145	81	1,863	111	1,196
21,5	1,426	51,5	1,242	81,5	1,5525	111,5	1,2535
22	1,5525	52	1,334	82	1,2765	112	1,058
22,5	1,1845	52,5	1,4605	82,5	1,541	112,5	1,1385
23	1,2765	53	1,61	83	1,7365	113	1,2305
23,5	1,5295	53,5	1,541	83,5	1,2075	113,5	1,0005
24	1,5755	54	1,173	84	1,311	114	0,943
24,5	1,656	54,5	1,656	84,5	1,38	114,5	1,2075
25	1,633	55	1,7135	85	1,518	115	1,2995
25,5	1,771	55,5	1,817	85,5	1,564		
26	1,84	56	2,1275	86	1,3685		
26,5	1,84	56,5	1,748	86,5	1,2765		
27	1,8975	57	1,472	87	1,219		
27,5	1,8745	57,5	1,932	87,5	1,2075		
28	1,3685	58	1,84	88	1,288		
28,5	1,587	58,5	1,6905	88,5	1,61		
29	1,3455	59	1,909	89	1,2765		
29,5	1,7595	59,5	1,3915	89,5	1,0925		
30	1,886	60	1,656	90	1,1615		

5. Выводы

Построенная расчетная модель возникновения дополнительных погрешностей поплавкового двухстепенного гироскопа в условиях гиперзвукового полета дает основание не только для глубокого изучения установленного явления с точки зрения проявления резонансных особенностей в подвесе, но и для выбора путей борьбы с этим явлением в эксплуатационных условиях. Это могут быть, к примеру, либо пассивные методы, либо схемные решения на основе компенсации влияния ультразвукового излучения на импедансную поверхность подвеса гироскопа.

Проведенные исследования дают возможность оценить степень влияния импеданса материала корпуса поплавкового гироскопа антисимметричным колебаниям, а также симметричным колебаниям, генерируемым проникающим ультразвуковым излучением при летной эксплуатации летательного аппарата.

Установлено, что в том случае, когда сопротивление корпуса прибора симметричным колебаниям значительно больше сопротивления антисимметричным колебаниям, звукопроницаемость материала исключительно изгибным колебаниям становится меньше. На частотах выше граничной частоты характер прохождения звука через корпус будет определяться явлением совпадения, т.е. каждой частоте **ω** будет соответствовать свой угол падения θ_c , при котором звуковая волна проходит в зону акустической тени с минимальными потерями (явление волнового совпадения).

В отличие от частотного резонанса, порожденного равенством собственной частоты и частоты излучения, при волновом резонансе имеет место совпадение геометрических размеров, а именно, следа падающей и *изгибной* волн. При явлении совпадения, распределение давления в падающей волне точно соответствует распределению упругих смещений при собственных колебаниях той же частоты, что и приводит к интенсивному росту колебаний – к явлению "акустической прозрачности".

Напротив, в том случае, когда механический импеданс материала корпуса симметричным колебаниям намного меньше импеданса антисимметричным колебаниям, волновое совпадение следа падающей и *продольной* (окружной) волны зависит только от угла падения θ и может проявляться на любой частоте излучения.

Таким образом, "акустически прозрачным" корпус прибора становится при угле падения $\theta_c = 10^0$, когда интенсивная перекачка звуковой энергии осуществляется изгибной волной, и при угле $\theta_c = 5^010'$, когда (практически без потерь) трансляция звуковой энергии внутрь прибора осуществляется продольной (окружной по шпангоуту) волной.

Литература

- 1. Карачун, В. В. Задачі супроводу та маскування рухомих об'єктів [Текст]: моногр. / В. В. Карачун, В. М. Мельник. К.: «Корнійчук», 2011. 263 с.
- Шибецкий, В. Ю. Збурюючий вплив на чутливі датчики ГСП при льотній експлуатації гіперзвукових літальних апаратів [Текст]: матер. VIII міжн. наук.-прак. конф. / В. Ю. Шибецький // Достижения высшей школы. – Софія: Бял ГРАД –БГ, 2013. – С. 32–35.
- Косова, В. П. Надзвуковий політ і похибки поплавкового гіроскопа [Текст]: матер. VIII межд. научн.-практ. конф. / В. П. Косова // Achievement of high school. – София, «Бял ГРАД-БГ», 2012. – С. 30–32.
- Мельник, В. Н. Гиперзвуковые технологии и некоторые проблемы навигации [Текст]: моногр. / В. Н. Мельник, В. В. Карачун. – К.: «Корнейчук», 2013. – 152 с.
- A new type of weapon: drone bombers [Electronic resource] / Available at: http://www.cnews.ru/ nevs/line/index.shtml? 2012/07/12/496176/. – accessed 07 December 2012.
- Новый тип оружия: беспилотник-камикадзе [Электронный ресурс] / Режим доступа: http://www.cnews.ru/nevs/line/index. shtml? 2012/07/12/496176. 12.07.2012. – Заг. с экрана.
- Запуск космического корабля Orion состоится в 2014 году [Электронный ресурс] / Режим доступа: http://www.cnews.ru/ nevs/line/index.shtml? 2013/11/13/549482. 13.11.2013.- Заг. с экрана Режим доступа: http://www.cnews.ru/nevs/line/index. shtml? 2013/11/13/549482.
- Спутник GOCE взорвался над Сибирью [Электронный ресурс] / Режим доступа: http://www.cnews.ru/nevs/line/ index.shtml? 2013/11/11/549147. - 11.11.2013. Заг. с экрана Режим доступа: http://www.cnews.ru/nevs/line/index.shtml? 2013/11/11/549147.
- Ригли, У. Теория, проектирование и испытания гироскопов [Текст]: пер. с англ. / У. Ригли, У. Холлистер, У. Денхард. М: Мир, 1972. – 416 с.
- Коновалов, С. Ф. Проектирование гироскопических систем [Текст]: уч. пособие / С. Ф. Коновалов, Е. А. Никитин, С. М. Селиванова. – М.: Высш. шк., 1980. – 128 с.
- 11. Бойко, Г. В. Линейно упругий подвес поплавкового гироскопа в акустическом поле [Текст] / Г. В. Бойко // Технологический аудит и резервы производства. 2013. Т. 6, № 1 (14). С. 7–10.
- Karachun, V. V. Influence of Diffraction Effects of the Inertial Sensors of a Gyroscopically Stabilized Platform: Three Dimensional Problem [Text] / V. V. Karachun, V. N. Mel'nick // International Applied Mechanics. – 2012. – Vol. 48 №4. – P. 458–464.
- Nikitin, V. History of the Future: how mankind is paving the may into space [Electronic resource] / Available at: http://www.cnews. ru/reviews/index.shtml? 2013/07/06/534634/. – accessed 07 June 2013.