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The main purpose of using the hybrid evolutionary 
algorithm is to reach optimal values and achieve goals 
that traditional methods cannot reach and because 
there are different evolutionary computations, each 
of them has different advantages and capabilities. 
Therefore, researchers integrate more than one algo-
rithm into a hybrid form to increase the ability of these 
algorithms to perform evolutionary computation when 
working alone. In this paper, we propose a new algo-
rithm for hybrid genetic algorithm (GA) and particle  
swarm optimization (PSO) with fuzzy logic con-
trol (FLC) approach for function optimization. Fuzzy 
logic is applied to switch dynamically between evolu-
tionary algorithms, in an attempt to improve the algo-
rithm performance. The HEF hybrid evolutionary algo-
rithms are compared to GA, PSO, GAPSO, and PSOGA. 
The comparison uses a variety of measurement func-
tions. In addition to strongly convex functions, these 
functions can be uniformly distributed or not, and are 
valuable for evaluating our approach. Iterations of 500, 
1000, and 1500 were used for each function. The HEF 
algorithm’s efficiency was tested on four functions. The 
new algorithm is often the best solution, HEF accounted 
for 75 % of all the tests. This method is superior to con-
ventional methods in terms of efficiency
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1. Introduction

Evolutionary computation helps solve difficult optimi-
zation problems. The approach’s simplicity, robust response 
to changing circumstances, flexibility, and other features are 
all advantages but standard evolutionary algorithms have 
limited use in practical architectural design tasks. This may 
be due to the poor search efficiency and the lack of diversity 
of the result. With scientific progress, many ways emerged to 
overcome these weaknesses.

To determine this problem, look at the performance 
and quality of algorithms. It is common to refer to genetic  
algorithms as evolutionary algorithms or evolutionary com-
putation as, evolutionary strategies [1], learning classifier  
systems [2], evolutionary programming [3], differential evo-
lution [4], genetic programming [5], and estimation of distri-
bution algorithms as evolutionary algorithms or evolutionary 
computation [6]. These algorithms share the same concep-
tual framework for simulating individual structure evolution 
but differ in issue description, selection method, and estima-
tion of distribution algorithms.

Most evolutionary techniques start with random gene-
ration of an initial population, and then reckon fitness value  
for each subject. After that, they reproduce into a new po-
pulation based on fitness values and finally stop when the 

requirements are met. Otherwise, the reproduction step is 
repeated. The procedure demonstrates that PSO and GA 
have a great deal in common. Both techniques begin with  
a collection of randomly created populations and use fitness 
values to evaluate them. Both methods rely on random 
algorithms to keep the population fresh and find the best 
solution. Neither system is certain to succeed. PSO, on the 
other hand, does not employ genetic operators such as cross-
over and mutation. Particles self-update in response to their 
internal velocity. Additionally, they have memory, which is 
critical for the method.

The mechanism for sharing information in PSO differs 
significantly from that of GAs. In GAs, chromosomes com-
municate with one another. Thus, the entire population 
moves in unison toward an optimal area. Only the global 
best divulges information in PSO. It is a mechanism for 
one-way information sharing. Evolution seeks only the op-
timal solution. In comparison to GA, all particles tend to 
converge quickly to the optimal solution, even in the case of 
a local version. Because the two methods are conceptually 
equivalent, we can use them sequentially. There will be two 
options: either to begin with GA and conclude with PSO, or 
vice versa. Both methods enable us to arrive at the solution 
more quickly than either method alone. The difficulty in de-
termining which method to use to arrive at the optimal value 
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is dependent on the type of problem at hand. It is possible to 
begin with either of the methods in the proposed algorithm 
in order to obtain the optimal value.

Therefore, a large number of researchers are focusing on 
constructing hybrid evolutionary algorithms. It is critical 
to increase the accuracy of procedures and predictability to 
reach optimal values. A hybrid algorithm uses two or more 
algorithms to solve a problem; and hybrid algorithms are very 
common in the optimized real world.

2. Literature review and problem statement

Several research papers on fuzzy system evolutionary de-
sign can be found in the literature [7], the majority of which 
concern the automatic design or optimization of fuzzy logic 
controllers by either adapting the fuzzy membership functions 
or by learning the fuzzy if-then rules [8]; on the other hand, 
FLC have been successfully applied to nonlinear control prob-
lems [9] and automatic construction of membership functions 
and fuzzy rules from training instances using evolutionary 
algorithms [10]. A fuzzy rule-based system is based on an 
agent-based evolutionary framework and multi-objective 
optimization [11]. In [12], a new system is presented that can 
be used to search for the best feature subset for dimensional 
reduction, acting as a genetic feature selector wrapper; while 
in [13], both genetic algorithm (GA) and particle swarm opti-
mization (PSO) have had success when it comes to the many 
combinatory issues that require near-optimal solutions. In 
some cases, hybrid algorithms have been created to mitigate 
some of the poor behavior exhibited by GA and PSO.

The PSO algorithm comes in a variety of flavors. PSO’s 
capabilities, as well as those of other algorithms like hybrid 
PSO, have been included in some of these variations. The PSO 
method makes use of a variety of evolution techniques, includ-
ing selection, mutation, and crossover, as well as other types 
of variation. The Genetic Fuzzy System (GFS) keeps track 
of the structural health of composite helicopter rotor blades 
through the internet [14]. The authors created both global and 
local GFS models. The global GFS detects matrix cracking 
and deboning/delamination all over the blade, but the local 
GFS only sees it in a few spots. Tunnel ventilation systems use  
a GA-based fuzzy controller [15]. Due to the system’s non-
linear and complex behavior, the FLC method was used, and 
the FLC was optimized using GA. For a difficult task provided 
by a machine supplier, a genetic-fuzzy system can be used to 
provide online scheduling solutions automatically [16]. There 
is a rule framework in place that categorizes various scheduling 
circumstances and provides a scheduling approach to each one.  
The researchers compared and contrasted two different ap-
proaches. The first method assigns a similar scheduling stra-
tegy to all situation classes through an iterative process. Using 
symbiotic evolution, we can build different circumstance 
classes and then assign appropriate scheduling methods based 
on the Gaussian membership function parameter values.

The paper [17] proposed first running the PSO algorithm 
and then utilizing the results as a starting population for the 
GA approach. While [18] looked at two different approaches 
to combining the GA and PSO methods. In the first, the GA 
population was used to start with PSO, and in the second, 
the PSO swarm was used to initiate the GA population.

This approach proposed a new hybrid technique combining 
PSO with the genetic algorithm. Using the genetic algorithm 
operator increases population variety and facilitates escape from 

the local minimum. As stated previously, the influence factor pe 
modulates genetic operators. So it may affect the algorithm’s 
convergence. Choosing the right value depends on the problem 
and can be tricky. They recommended first running the PSO 
algorithm and then utilizing the results as an initial population 
for the GA approach. It’s also fine to make changes while the 
algorithm is running. When the PSO algorithm produces new, 
better solutions, the influence of genetic algorithms (number 
of particles modified by genetic operators) should be reduced.  
To combat this, genetic operators’ effect should be increased. 
Leave the algorithm in the local optimal if it is [19].

To wrap up this section, hybrid approaches are one of the 
most well-established areas of optimization; numerous studies 
have been conducted, and optimization methods have been 
improved. However, hybrid optimization techniques such 
as GA-Fuzzy, GAPSO, and others are the most prevalent. 
PSO hybridization with GA requires a significant amount of 
computation and memory. This is particularly true in series 
hybridization, where changes from one algorithm to another 
cannot be returned to the first, thereby negating the first’s ad-
vantage and making it impossible to reach the optimal value. 

The use of a single classical algorithm, or a hybrid of two 
classical algorithms, to solve a problem is preferable because it 
is more appropriate to re-apply the algorithm in every case of 
change encountered. It is from this point that the importance of 
applying multiple exchanges between the classical algorithms 
will become apparent. The properties of both optimization 
algorithms (GA and PSO) will be taken advantage of, and the 
defects of both optimization algorithms (GA and PSO) will be 
avoided, by switching between them in an adaptive manner. 

3. The aim and objectives of the study

The aim of the study is to investigate differential design 
for generating intelligent paradigms with evolutionary algo-
rithms. To accompany this evolutionary design architecture, 
the most modern evolutionary design architecture is given. 
It will explain the fuzzy control that has an important course 
within the proposed algorithm.

To achieve the aim, the following objectives were set:
– to implement a new algorithm called the Hybrid Evo-

lutionary Algorithm with FLC (HEF);
– to apply the Hybrid Evolutionary Algorithm with 

FLC (HEF) using MATLAB in addition to the traditional GA 
and PSO and two hybrid GAPSO and PSOGA algorithms; 

– to compare and evaluate the performance of HEF and 
GA, PSO, GAPSO and PSOGA. There is evidence that HEF 
utilized the FLC optimization switching agent to connect 
several optimization strategies;

– to compare the efficiency of new and old methods, some 
researchers use optimization functions such as Rosenbrock, 
Sphere, Rastrigin, and Griewank to provide a wide range of 
difficulties and challenges.

4. Materials and methods 

4. 1. Research hypothesis
A hybrid evolutionary algorithm solves discrete optimi-

zation issues in a broad way. As a result, several aspects of 
the algorithm must be thoroughly examined before they can 
be used to solve automation problems and determine a set of 
fixed elements and an optimization approach.
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As in Fig. 1, the purpose of this study is to develop a fea-
sible, reliable, and cost-effective method for transitioning from 
evolutionary optimization techniques to stochastic operations. 
Specifically, the GA and PSO techniques are combined with 
fuzzy to optimize HEF simulation, with the goal of increasing 
overall operational efficiency through result minimization.  
FLC’s primary objective is divided into two categories. The first 
step is to develop a generic and adaptable mechanism for re-
solving switching problems between evolutionary algorithms.  
The second task is to monitor and control the entire system, 
as well as to determine the termination condition.

 
Fig.	1.	GA	and	PSO	techniques	are	applied		

with	fuzzy	to	optimize

4. 2. HEF Algorithm
These algorithms (GA, PSO, GAPSO, and PSOGA) each 

have their own set of advantages for dealing with situations 
of various degrees of complexity. Rather than combining the 
two algorithms, we wish to mix them in order to take advan-
tage of their individual benefits. On the other hand, to avoid 
GA and PSO becoming locked in local minima and to over-
come the stagnation problem, an FLC-based evolutionary 
algorithm is being investigated for a number of applications. 
Fig. 2 graphically depicts the hierarchical structure of the 
HEF system. When a random particle from the swarm is 
chosen, the operation proceeds to other locations within the 
search area until the entire swarm is investigated. 

The performance of the algorithm is described with steps 
of list a proposed HEF algorithm is given below:

1. Define all initial parameters for GA, PSO and FLC.
2. Initial input rate of change (RCH) Optimization prog-

ress (OpP).
3. FLC. It is depending on the input variables and the 

previous method PSO or Ga.
4. If the previous method is PSO, the GA procedure will 

be called or If the previous method is GA, the PSO procedure 
will be called.

5. Check the condition of the end of the algorithm de-
pending on No of iterations or minimum error value.

6. If not stop Calculation of new RCh & OpP for the next 
round then go to 3.

 

no 
         6 

Calculation  
of new  

RCh & OpP 
for the next 

round 

NoItration Or 
Min-error  

END 

yes 

FLC 
It is depending on the 

input variables and  
the previous method 

PSO or Ga           3 
If the previous 
method is GA, 

PSO will be used 

         4 
If the previous 
method is PSO, 

GA 4 will  
be used 

Define all initial parameters for GA, PSO and FLC           1 

GA: mutation rate, crossover rate 
PSO: C1, C2, w 
FLC: input rate of change (RCH) Optimization progress (OpP)  
Stop condition: maximum iteration number (NoItration) or reach 
the minimum value of error (Min-error)  

Initial input rate of change (RCH) Optimization progress (OpP) 2 

 

5 

Fig.	2.	HEF	architecture

4. 3. Mechanism FLC controlling on switching in the 
HEF algorithm 

The rate of change (RCh) in the fitness function and the  
optimization progress (OpP) are chosen as inputs to the 
fuzzy system. The two output variables are the change of 
the used optimization method (COp) and the next stage 
duration (NSD). The rate indicates the effectiveness of the 
proposed solution discovered thus far by HEF. A variety of 
performance metric settings are required for various optimi-
zation challenges. In order to develop a fuzzy system that can 
be utilized to solve a wide range of optimization issues, one 
of the inputs must be the rate, RCh must be translated into  
a normalized format:

RCh V V
V

end=
−int

int

,  (1)

where Vint is the initial value of the fitness function and Vend 
is the final value of the fitness function after the last iteration. 
The optimization progress (OpP) is therefore:

OpP =
N

Nmax

,  (2)

where N is the number of optimization iteration at termina-
tion and Nmax is the maximum number of iterations. All the 
three fuzzy variables, i.e. the two input variables (RCh, OpP)  
and one of the output variables (N), are three fuzzy sets 
defined as LOW, MEDIUM and HIGH with associated 
membership functions as LowTriangle, MedTriangle and 
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HiTriangle, respectively. These three membership functions 
are defined as follows.

Low triangle membership function:
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Medium triangle membership function:
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High triangle membership function:
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The other output variable COp has two fuzzy sets: 
«Change» and «NoChange», with Change and NoChange as 
membership functions, respectively. These two membership 
functions are defined as follows:
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The shape and placement of the function are determined 
by the essential parameters x2 and x1. Other membership 
function definitions exist, but the authors found that they 
were beneficial in a variety of situations and were simple 
to implement in microcontrollers and microprocessors. The 
controller in this study has two input variables and different 
linguistic variables. The first variable (input) is Rch, which 
consists of three fuzzy sets, each with a different dynamic 
range (0, l). Each fuzzy set is given a membership function. 
The first is a LowTriangle function with two critical values 
of 0 and 0.4; the second is a MedTriangle function with two 
critical parameters of 0.1 and 0.9; and the third is a Hitriangle 
function with two critical parameters of 0.6 and 1. The pres-
ent inertial time, OpP, is the second input variable. There are 
two output variables on the controller. The change of inertial 
change and Nochange are two linguistic variables in the first 
output variable COp. Like the input variables, the second 
output variable, NCOp, has three linguistic variables.

This results in at most 3·3 = 9 rules to characterize the 
nature of those inputs in relation to their discourse universe. 
Although each scenario has a related entry in this example, it 
is possible to leave a particular space blank, implying that the 
controller does nothing (i.e. the output remains unchanged). 

The rule base for systems with two inputs can be built as 
shown in Tables 1, 2.

Table	1
FLC	rule	base	for	rate	condition

OpP
RCh

Low Medium High

Low Change Change Change

Medium Change Change Change

High No change No change No change

Table	2
FLC	rate	base	for	NoItration	condition

OpP
RCh

Low Medium High

Low High Medium Medium

Medium Medium Medium Medium

High High High High

The degree of non-linearity of the FLC used in the HEF 
model can be gauged by viewing the FLC control surface, 
two views of which are shown in Fig. 3. A linear control 
surface would be consistent with a plane, and while the con-
trol surface above exhibits some near-linear behavior in the 
central section of the surface, non-linear behavior is evident 
at extreme values of rate and time and by «bumpy» and 
sharp-changing regions throughout. There are three primary 
sources for the non-linear surface in an FLC [17, 20]. 
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Fig.	3.	That’s	rate	of	change	(RCh)	and	optimization		
progress	(OpP)	are	selected	as	inputs	to	FLC:  

a	–	Change	of	Optimization	(COp);		
b	–	Next	Stage	Duration	(NSD)

The experiment has been divided into two parts. The 
first experiment respectively compares the traditional algo-
rithms (GA, PSO), the hybrids (GAPSO, PSOGA) and the 
proposed algorithm (HEF). The second experiment applied 
our algorithm (HEF) in difficult and different circumstances.

5. Results of implementing the HEF algorithm

5. 1. Experimental settings of the HEF algorithm
We tested the proposed HEA algorithm on the maxi-

mum and minimum functions in order to ensure its validity.  
To confirm the efficiency of HEF, some regularly used opti-
mization functions were chosen. Many papers [12, 13, 21, 22] 
mention Rosenbrock, Sphere, Rastrigin, and Griewank as 
benchmark functions for comparison in this study. These 
are common test functions that have been utilized in prior 
evolutionary optimization studies and provide a wide variety  
of challenges. Rosenbrock and Sphere (f8 and f9) with single- 
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peak were employed in this study to verify the algorithm’s 
convergence accuracy and rate. Due to the fact that many 
physical problems have several peaks, the optimization search 
may end up in a local optimum along the way to the global 
optimum. Multimodal functions should be used to test the 
optimization algorithm. To test the algorithm’s global opti-
mization capacity, the Rastrigin and Griewank functions (f10 
and f11) with multi-peak were used.

In order to account for the valley’s non-linearity, many al-
gorithms cover a large area slowly since they have to modify 
the direction of their searches on a regular basis. The Rosen-
brock function is two-dimensional and unimodal in nature, 
with a parabola-shaped deep valley that can be found on it, 
which will eventually reach its global minimum and there 
are no separate dimensions to this function. This function is 
defined by the equation below:

f x x x xros i i i
i

p

( ) = −( ) + −( )



+

=

−

∑ 100 11
2 2 2

1

1

.  (8)

The Sphere function, which is unimodal 
and separable, is the third function. The fol-
lowing equation describes strongly convex and 
simple function:

F x xSphere i
i

p

( ) = ( )
=

−

∑ 2

1

1

. (9)

The second function is more generic. Ras-
trigin is a multimodal function that was crea-
ted by combining Sphere with a modulator 
term αcos(2πxi). Its contour is formed by 
a large number of local minima whose values 
grow in proportion to the distance between 
them and the global minimum defined by (9):

F x p x xras i i
i

n

( ) = − ( ) 
=

−

∑10 10 22

1

1

cos .π  (10)

The generalized Griewank function, which 
is multimodal and regularly distributed but not 
separable, is the final function A product term 
is used to establish the interdependence of the 
variables in the model. It is possible to optimize 
each variable separately using the equation (11):

F x
x x

i
Griewank

i i

i

d

i

p

( ) = − 
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==

∏∑
2

11 4000
1cos .  (11)

The above-mentioned four functions have 
a variety of different situations and they are 
used to increase the accuracy and demonstrate 
the algorithm proposed in this research.

5. 2. Comparison of traditional algorithms 
and HEF

Three different dimensions of sizes 10, 30 
and 50 are tested for all four functions. The 
maximum number of generations is set to 500, 
1,000, and 1,500. One way to investigate the 
performance of the HEF algorithm is to vary 
the size of the populations employed in each 
iteration. This size variation happens with 
varying dimensions.

These populations are at 50, 100, and 200 individuals 
each. A total of 100 runs for each experimental setting were 
conducted. The search space for the experiments is [–10, +10] 
for all the functions. The algorithm’s settings for specific pa-
rameters. Firstly, for GA, the population size is equal to (100), 
crossover rate is (0.6) and mutation rate is (0.3). Secondly, for 
PSO parameters, coefficient C1 and social coefficient C2 are 
equal (2) and inertial weight w is between 29.9 and 0.3.

Hybrid algorithms and HEF used the same parameters. 
Samples of test functions results are shown in Tables 3, 4. For 
each of the 100 runs of the HEF algorithm, the search space and 
average best fitness for the best particle are computed, which 
leads to the following results: with the functions (F8–F11),  
it produced good results while completing the convergent 
phase more quickly than the other competing algorithms.

For the purpose of inspection and testing of the algo-
rithm, HEF conducted all the tests possible, such that the 
number of these tests is 594. Table 3 represents only some of 
the tests that show that the HEF algorithm is better than the 
other algorithms.

Table	3

Some	testing	results	(average	value	of	100	runs)	of	the	following	functions:	
a)	Rosenbrock;	b)	Rastrigin;	c)	Sphere;	d)	Griewank;	the	results	show		

that	HEF	has	the	best	result	

a) Rosenbrock function
dim popu Itra GA PSO GAPSO PSOGA HEF

10
100 1,500 54.9050390 3.0986129 3.5012260 4.1840576 2.1422217
200 1500 25.8339254 3.3489086 3.2979943 4.1255705 1.7295450

30

100 1500 1595.4309558 146.4905519 81.0923249 200.126111 53.3110017

200
500 555.7968170 154.2657570 120.931273 279.787945 99.9235301

1000 564.4494005 120.1217701 61.7329330 189.296672 61.0480409
1500 553.0114423 89.9231590 69.7676323 126.032776 63.5426128

50
50 500 19103.102875 7279.3190056 3745.39274 13495.8964 2324.10906

200 1500 3968.6416594 266.3573605 217.927704 438.101363 163.780868

b) Rastrigin function

10
50 500 20.9995809 6.2763435 7.0240323 10.4223827 5.6125994

100
1500 211.3057540 51.8426738 71.8419924 65.7992447 41.3134580
500 114.4197907 80.0115066 62.2497541 87.6102558 47.0579405

50

50 500 526.4267855 335.0863013 346.398007 327.879789 273.549064

100
500 312.9898250 281.4605339 210.729705 236.201480 150.107662

1500 318.0132520 121.4187847 136.908739 166.265919 95.3724370

200
500 201.4782142 238.5881391 131.455705 170.881719 92.1868103

1000 178.3804510 136.3013245 90.9524070 170.308027 59.9357941
c) Sphere function

10 200 1500 0.0576697 0.0000000 0.0000000 0.0000000 0.0000000

30
50 500 9.6281266 0.3105080 0.29655964 2.6503327 0.2896150

100 500 4.8499440 0.0856588 0.2061771 0.9534102 0.0815745

50

50
500 36.4090684 12.4308898 7.6227767 27.882661 4.3087127

1000 34.9863164 3.3272009 1.8375423 6.6395920 1.2019434

100
1000 21.4725031 1.1254789 0.7804462 2.9096162 0.2490245
1500 21.5177332 7.0032946 0.1271885 1.3943089 0.0435033
1500 9.8283309 0.0037393 0.0331918 0.1701024 0.0027109

d) Griewank function
10 200 1500 0.0092926 0.0123052 0.0044834 0.0114812 0.0035968

30
50 500 0.1295082 0.1097727 0.0360240 0.0932734 0.0245314

200
500 0.0330478 0.0300050 0.0063523 0.0314659 0.0046551

1500 0.0414372 0.0254638 0.0096768 0.0264402 0.0089887

50
50 500 0.1493082 0.0956985 0.0416602 0.1085254 0.0289331

100 1000 0.1371774 0.1160969 0.0188092 0.0954646 0.0159163
200 1500 0.0774445 0.1180633 0.0136650 0.0934671 0.0130475
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HEF normally assigns the facilities quickly, whereas GA took the lon-
gest and had the worst fitness function value. This experiment revealed 
that GAPSO results are the nearest to HEF algorithm results, thus, the 
next experiment will explore the advantage of the proposed algorithm 
over GAPSO. Other models do not produce satisfactory outcomes.  
However, with a larger population and more generations, better solutions 
are possible.  

While Table 4 includes all the results of the tests in which the HEF 
algorithm failed. The size of the tests where the failure occurs is 25 %.  
This 25 % is distributed among the other 4 methods (GA, PSO, GPSO  
and PSOG), thus this percentage will not affect the effectiveness of the 
HEF algorithm.

Fig. 4 gives all comparisons between all the algorithms showing that 
HEF has the lowest fitness function with different parameters. Population 
size, dimension, and number of iterations.

Table	4

All	possible	results	(average	value	of	100	runs)	of	the	following	functions:	
a)	Rosenbrock;	b)	Rastrigin;	c)	Sphere;	d)	Griewank;	the	results	show		

that	HEF	has	a	few	drawbacks

a) Rosenbrock function

dim popu Itra GA PSO GAPSO PSOGA HEF

10
100 500 66.1868549 4.8317257 6.0130655 11.5317982 6.0593365

200 500 24.3443255 8.0424355 4.5250319 4.3355859 4.5776259

50 50
1000 15758.153354 607.3546398 981.909540 451.96917 663.325609

1500 15263.166238 439.6065380 618.243662 1153.54796 454.433765

b) Rastrigin function

10

50
1000 27.6899555 6.2846837 5.6370697 6.3492710 6.6956957

1500 24.7271925 2.5570749 5.1329931 3.8063875 4.4375153

100

500 12.6556343 4.8232295 4.2988138 3.3118377 4.4258424

1000 12.2761426 4.2555092 3.3201413 2.2968709 2.8655842

1500 11.7771524 1.9023348 2.5777617 3.1072136 2.5968483

200
1000 5.4747189 1.5536038 1.2043218 3.0348732 1.9949591

1500 6.7492654 1.8409374 1.4030058 0.8287218 1.1541525

30
50 1000 218.8286347 52.6664627 90.7339091 79.6194346 70.4025930

200 1500 60.9333014 29.9782374 12.1612736 42.5684754 22.2893929

50 50 1500 505.4940637 134.6591321 201.257473 187.244442 168.734600

c) Sphere function

10

50 500 0.4833277 0.0000000 0.0000070 0.0000419 0.0000092

100 500 0.1665356 0.0000042 0.0000011 0.0000069 0.0000023

200 500 0.0544333 0.0000005 0.0000006 0.0000004 0.0000013

30

50
1000 9.5841473 0.0404308 0.0376095 0.0230273 0.0292281

1500 9.6673474 1.0000010 0.0019731 0.0047108 0.0048875

100
1000 4.5722550 0.0021638 0.0047276 0.0217913 0.0011693

1500 4.8639225 0.0000982 0.0001934 0.0000100 0.0000805

200 1000 1.8455636 0.0000922 0.0000298 0.0038836 0.0000856

50 50 1500 34.1238462 12.0182145 0.4548737 3.2010603 0.4798060

d) Griewank function

10

50 500 0.0475908 0.0328842 0.0250986 0.0363188 0.0253389

100 1500 0.0250486 0.0214224 0.0128176 0.0214746 0.0144882

200 1000 0.0135937 0.0192313 0.0087693 0.0211199 0.0100248

30 200 1000 0.0373370 0.0317528 0.0086188 0.0251994 0.0096874

50 50 1500 0.1713549 0.1379658 0.0131923 0.1133198 0.0135191

Fig.	4.	All	comparisons	for:		
a – Griewank; b – Rosenbrock; c –	Rastrigin; 

d –	Sphere

d
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5. 3. Using HEF in difficult and different situations 
Fig. 5 presents the second experiment graphs showing the 

best average, both HEF and GAPSO had the highest average 
fitness. Experiments using a unimodal (Rosenbrock) and  
a multimodal (Griewank) test function of 10, 30, 50 dimen-
sions and 100 populations are depicted in the graphs.

 

 
 
 

 

Griewank function 

a

b

Fig.	5.	GAPSO	versus	HEF	model	for:		
a –	Griewank; b –	Rosenbrock

Also, Fig. 5 shows that GAPSO has reached a fail point, 
while HEF is still looking for a better position.

5. 4. Summary and comparison
Table 5 summarizes and compares the final results of 

HEF with various optimization approaches showing the re-
sults of comparison between them. 

It is very clear from the foregoing tabulated results that 
the hybrid evolutionary algorithm with fuzzy logic control 
has improved FLC’s performance significantly for all the test 
functions.

Table	5
Percentage	of	average	best	tests

Time rate F1 F2 F3 F4
Total % 

bestbest fail

GA 0 0 0 0 0 108 0

PSO 1 4 1 0 6 102 5.5

GAPSO 1 3 4 5 13 95 12

PSOGA 2 3 3 0 8 100 7.4

HEF 23 17 19 22 81 27 75

5. 5. Simulation technique to apply the HEF algorithm
Mathworks developed MATLAB, a multi-paradigm 

numerical computing environment and proprietary pro-

gramming language. It integrates computing, visualization, 
and programming in a user-friendly environment using  
mathematical equations. We compared the suggested ap-
proach to other algorithms using the simulation results. 
Our algorithm has the best optimization, according to the 
comparison results.

From the above results, we conclude that the optimiza-
tions and problem-solving efficiency are greatly improved 
by the proposed HEF algorithm. It can be seen that HEF is 
superior to traditional GA and PSO and two hybrid GAPSO 
and PSOGA, which means that the result proves the positive 
performance of the new algorithm.

6. Discussion of optimization comparison among GA, 
PSO, GAPSO, POSGA and HEF 

To carry out a fair comparison among the GA, PSO, 
GAPSO, POSGA and HEF algorithms, the initial popula-
tion was the same in all the experiments. Many researchers 
provide that small populations may not sufficiently cover 
the solution space and therefore, given limited function 
evaluations, may be prone to premature convergence. Larger 
populations, while providing greater diversity for the search, 
allow exploration of fewer generations per unit of compu-
tational overhead and for limited function evaluations may 
not converge at all. Nonetheless, in this evaluation, such  
a comparison provides a good and easy compromise. HEF 
was examined in the same experimental setup that had previ-
ously been used. Tables 3, 4 provide only a few representative 
functions from each group that were tested and examined for 
brevity and clarity. Table 5 sums up the cases in which the 
proposed HEF algorithm outperforms the other algorithms, 
whereas, Table 4 presents the situations in which HEF’s  
performance is inferior to its counterparts. 

In Table 5, even after evaluating the value of the 100 runs, 
the proposed HEF performs better than all its counterparts. 
To put it another way, HEF performs slightly better than 
GAPSO, but still rather close to its counterparts, and clearly 
better than other techniques. Overall, the results demon-
strate that HEF continues to perform admirably on multi-
modal functions with many minima, as well as exceptionally 
well on multimodal and unimodal functions with only a small 
number of local minima. HEF has shown a considerable im-
provement in performance in all four functions.

For all of the functions in the above experiments, the 
HEF population size was the same for evolutionary methods 
and it is realistic to predict even better outcomes. It has 
been mentioned several times in this paper that HEF per-
forms better than other techniques because of its fuzzy way 
of continuous switching between GA and PSO during the 
implementation of the algorithm. Thus, HEF has the benefit 
of selecting between GA and PSO both at the beginning and 
at any other point during the run time of the problem. The 
increase of the population size and number of iterations leads 
to a more accurate solution in HEF. It can be noticed that 
the solution with parameter (popu = 200, itration = 1500) is 
almost the best solution for all test functions. 

To demonstrate the HEF algorithm’s efficiency, in this 
research, several tests were applied to four functions. Each 
function was applied using five different techniques (algo-
rithms), with each approach testing three distinct popula-
tions, and each population applied with three different itera-
tions, for a total of 4⋅5⋅3⋅3⋅3 = 540 tests. Although HEF is not 
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always the greatest option, as illustrated in Table 5, it had the 
highest value with a ratio of 75 % of total tests.

Although successful in some application fields, most of 
these approaches are ad hoc in design. Without a shared 
framework, comparing hybrid systems conceptually and com-
paring their performance is challenging. Due to the limita-
tions of the evolutionary algorithm, the proposed algorithm  
also has limitations. 

To reduce the effect of limitation on evolutionary algo-
rithms, it is open to use other techniques such as Neural net-
work, Ant colony optimization, Bacterial foraging, etc. Just 
as Fuzzy logic was introduced with GA, PSO to assist the 
evolutionary algorithm in this research algorithm.

7. Conclusions

1. In this paper, we proposed the Hybrid Evolutionary 
Algorithm with FLC. It is based on introducing the Evolu-
tionary Algorithm population whose individuals are modi-
fied by switching PSO and GA, respectively.

2. The purpose of this switching operation is to prevent 
premature convergence. The key point of the proposed 
method is the use of fuzzy system to control the switching 
operation and when must stop. It allows increasing the influ-

ence of the genetic algorithm on the search process when the 
PSO algorithm is stagnating. And vice versa allows the PSO 
algorithm to increase its impact on the search process when 
the GA algorithm is stagnating.

3. We have developed an HEF algorithm as an optimiza-
tion tool on the MATLAB platform with an accompanying 
graphical user interface in addition to traditional GA and 
PSO and two hybrid GAPSO and PSOGA. The performance 
of the proposed HEF algorithm was confirmed on the four 
benchmark functions such as Rosenbrock, Sphere, Rastrigin, 
and Griewank.

4. The results have been compared with some existing well-
known methods (GA, PSO, GAPSO and PSOGA). According 
to the comparison results, our algorithm is capable of clearly 
giving satisfactory solutions for four benchmark functions.
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