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1. Introduction

Technological machines for various purposes are wide-
ly used in technology. In these machines, the transfer of 
energy from the engine to the working body is carried out 
through the mechanisms of levers. Modern technology 
increases the power of such machines, which leads to an 
increase in the speed of movement of the working bodies of 
the machines. In addition, inertial loads increase sharply in 
mechanisms, and the problem of equilibrium is of particular 
importance. The level of vibration of the machine depends 
on the quality of balancing, as well as its performance, 
reliability and accuracy of work, and the quality of techno-
logical processes.

There is a static and dynamic balance of the mechanism; 
their elimination in the designed mechanism will correspond 

to its static and dynamic balancing. Depending on the de-
gree of balance, an exact or approximate solution (balanc-
ing) can be obtained.

Traditionally, the criterion for accurate static balancing 
of the mechanism is the condition that the main vector of 
inertia of its links is equal to zero

0,IF = 				    (1)

which corresponds to the immobility of the general mass 
center of the mechanism. With precise dynamic balancing, 
simultaneously with the abovementioned condition, it is also 
required to zero the main moment of the inertial forces of the 
links, i. e.

0,IF =  0 0.IM = 		  (2)
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The paper presents an analytical solution 
to the problem of optimal dynamic balancing of 
the six-link converting mechanism of the suck-
er-rod pumping unit. This problem is solved 
numerically using a computer model of dynam-
ics, namely by selecting the value of the correc-
tion factor k. Here we will consider an analyti-
cal method for solving this problem, that is, we 
find the location of the counterweight on the 
third link of the six-link converting mechanism 
for balancing. To solve the problem, we use the 
principle of possible displacement and write an 
equation where we express the torque through 
the unknown parameter of the counterweight. 
Further, such a value of the unknown parame-
ter is found, at which the minimum of the root-
mean-square value of torque M is reached. 
From the condition of the minimum of the func-
tion, we obtain an equation for determining the 
location of the counterweight. Thus, we obtain 
an analytical solution to the problem of optimal 
dynamic balancing of the six-link converting 
mechanism of the sucker-rod pumping drive in 
various settings.  

According to the results, it was found that 
with the combined balancing method, the value 
of the maximum torque M and the value of the 
maximum power are reduced by 20 % than 
when the counterweight is placed on the third 
link of the converting mechanism, as well as 
when the value of the maximum torque is 
determined through the correction factor k.

In practice, balancing is carried out empir-
ically by comparing two peaks of torque M 
on the crank shaft per cycle of the mechanism 
movement. Solving the analytical problem, we 
determine the exact location of the counter-
weight
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If it was possible for the mechanism in some way to sat-
isfy the conditions of exact balancing, then these conditions 
will persist for any law of motion of the input link and, there-
fore, the balance of the mechanism (both static and dynamic) 
becomes an intrinsic quality of the mechanism [1].

Approximate balancing of the mechanism can be con-
sidered as an approximation to the precise one, if some sec-
ondary conditions can be neglected when solving a specific 
problem.

The tasks associated with reducing the swinging mo-
ment, the load on the gearbox and the efforts on the crank 
pins, which cause shocks in the drive mechanism of the rock-
er machine, do not have an analytical solution.

This allows us to assert that it is expedient to analyti-
cally solve the problem of optimal dynamic balancing of the 
converting mechanism of sucker-rod pumping units using 
the analytical method to reduce the required engine power. 

The goal of balancing is to cancel or reduce variable 
dynamic responses. When solving the problem of balancing 
by adding counterweights, the method of selecting the value 
of the correction factor was used. Therefore, an analytical 
solution to the problem in this direction is relevant.

In practice, according to the results of the analytical 
solution of the problem of optimal balancing of the convert-
ing mechanism of sucker-rod pumping units, the location 
and the weight of the counterweight are determined, which 
provides the minimum swing moment to the foundation. 

2. Literature review and problem statement

In [2], the general foundations of the structural analysis 
of mechanisms, features of kinematic analysis using La-
grange variables and dynamic analysis based on the energy 
model of mechanics with the fulfillment of the law of conser-
vation of energy on any elements and for the mechanism as 
a whole for any time interval are given. But there were still 
unresolved issues related to balancing.

The paper [3] presents an optimization method for find-
ing the link shapes for a dynamically balanced flat four-link 
mechanism. The force of shock and the moment of shock, 
arising in the mechanism due to inertia, are minimized due 
to the optimal distribution of the masses of the links. It is 
shown that using cubic B-spline curves, the link shapes are 
found and an optimization problem is formulated to mini-
mize the percentage error in the resulting link inertia values, 
in which the control points of the B-spline curve are taken as 
design variables. Since in the paper the dynamic balancing of 
the mechanism is achieved due to the optimal distribution of 
the masses of the links, an analytical solution to the problem 
is not given.

The paper [4] considers the mechanism of balancing the 
upper roll significantly affecting the accuracy of rolling and 
the operating conditions of the pressure device. Balancing 
mechanism calculations are usually limited to the case of 
static balancing for some middle position of the mecha-
nism. The dependence of the rebalancing coefficient on the 
position of the mechanism has been investigated; a refined 
calculation of the balancing device was carried out taking 
into account the friction forces and the dynamic operating 
conditions of the mechanism. 

However, the mechanism operates in a dynamic mode, 
which means that large masses are accelerated and deceler-
ated in short periods of time, and, in addition, friction forces 

in kinematic pairs have a significant effect on the mechanism 
operation. But the analytical approach to solving balancing 
problems is not considered.

The paper [5] presents the research results of the devel-
oped method of graphic synthesis, which allows determin-
ing the initial values of free parameters of the considered 
crank-slider mechanisms of the 3rd class, realizing the re-
quired cyclogram with an approximate height, the output 
link of which moves along the guide. Analytical expressions 
are obtained for calculating the parameters of the kinematic 
diagram of the mechanism. Multi-link crank-link mechanisms 
are used in crank presses. But there were still unresolved is-
sues related to balancing the mechanisms of the 3rd class.

The paper [6] is devoted to the study of the peculiarities 
of using the analytical method of kinematic analysis of lever 
mechanisms. It is shown how to use a number of analytical 
methods based on obtaining formal mathematical expres-
sions describing the position functions in the form of func-
tions of the angles of rotation of the movable links or in the 
form of functions of movement of the characteristic points of 
the mechanism for the mathematical modeling of multi-link 
lever mechanisms. However, questions related to kinetostat-
ic analysis and balancing of multi-link linkage mechanisms 
remained unresolved.

In [7], a dynamic system simulation is presented, com-
piled in Visual Basic V6.0, and the correctness and practi-
cality of the simulation are verified by field measurements. 
To study the complex forces acting in a system, static and 
dynamic models of the injection pump, hermetic piston, 
and production pump are set up from the bottom up using 
a mechanical method, and the solution is found using the 
difference method. The drive mechanism is not considered 
here, as the research is carried out by a mechanical method. 

The paper [8] shows that the inherently balanced com-
munication architecture, based on four rods, is only part of 
a complete or grandiose four-rod based inherently balanced 
communication architecture that is presented here. It is 
shown that this architecture includes all related theories 
and they all depend on the principal vectors. Various new 
balanced relationships are also displayed. Here the prob-
lem of mechanism balancing is solved due to the balanced 
communication architecture and the analytical method for 
solving the problem is not considered.

The work [9] shows the modes of the frequency-elastic 
drive for the pumping system to reduce the peak loads on the 
polished rod and the total energy consumption. It is shown 
that the variable-frequency drive mode is a software solution 
for variable-speed drive systems that can be applied in the 
controller and does not require any hardware settings. The new 
drive mode adjusts the reference frequency transmitted by the 
controller to the frequency converter based on the actual power 
requirements. But the power consumption of the sucker-rod 
pumping drive mechanism is not given. The reason for this may 
be objective difficulties associated with the analytical solution 
of the problem of dynamic analysis and synthesis.

Based on the analysis of the kinematics, dynamics and 
running characteristics of the beam pumping unit, in [10] 
a full-fledged mathematical model of the engine, pumping 
unit, sucker rod and oil pump was created. The system of 
differential equations for pumping out the pumping unit 
used the method of cyclic iterations to solve the problem of 
strong adhesion between the engine, pumping unit, sucker 
rod and pump. The model is confirmed by experimental data 
on production pumping wells.
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But there are still unresolved issues related to the reduc-
tion of the swinging moment, the load on the gearbox and the 
efforts on the crank fingers, which cause shocks in the drive 
mechanism of the rocking machine.

All this allows us to assert that it is expedient to conduct 
a study on the optimal dynamic balancing of the converting 
mechanism of sucker-rod pumping units by the analytical 
method to reduce the required engine power and its uniform 
load per cycle of movement and to determine the optimal 
values of the counterweight weight.

3. The aim and objectives of the study

The aim of the study is to solve the problem of optimal 
dynamic balancing of the six-link converting mechanism of 
sucker-rod pumping units by the analytical method to reduce 
the required engine power and uniform its load during the 
movement cycle and to determine the optimal values lП=OL 
of the counterweight weight GП and the distance from the 
crank axis at which the minimum peak value of the balanc-
ing moment on the crank shaft is ensured. This will allow 
optimal placement of the counterweight to counterbalance 
the conversion mechanism of the sucker-rod pumping unit.

To achieve the aim, the following objectives were set:
– by selecting the value of the correction factor k, to 

solve the problem of balancing using a computer model of 
dynamics;

– to analytically solve the balancing problem, that is, 
find the location of the counterweight on the third link of the 
six-link converting mechanism and for which the principle of 
possible displacement is used;

– to analytically solve the problem of combined balanc-
ing, that is, placing the counterweight on the third link and 
on the crank of the six-link converting mechanism. 

4. Research materials and methods

In [1], the movement of a six-link hinge-lever mechanism 
was investigated and the following problems were solved: 

– the problem of kinematic analysis of a six-link rectilin-
ear guiding converting mechanism; defining the functions of 
the mechanism positions; 

– the problem of the power analysis of a six-link rectilin-
ear guiding converting mechanism; 

– determination of the reaction force in kinematic pairs. 
Also, a computer model for studying the kinematics and ki-
netostatics of the six-link rectilinear guiding mechanism of 
the SRP drive has been developed.

Based on these studies, we will solve analytically the 
problem of optimal dynamic balancing of the six-link con-
verting mechanism of the sucker-rod pump drive.

The converting mechanism of the pumping unit, shown 
in Fig. 1, is a class II mechanism, which consists of a 
crank – 1, a double-drive group (2, 3) FCO, also attached to 
it double-drive group (4, 5) ABC. The working point is the 
suspension point D of the rod string.

The crank is affected at the point S1 in the center of mass 
of the crank by G1 – the weight of the crank and MD – engine 
torque, the connecting rod is affected in the center of mass 
of the connecting rod by G2 – the weight of the connecting 
rod. The third link is affected at the point S3 by the force 
G3 – the weight of the third link. The connecting rod 4 is 

affected in the center of mass of the connecting rod by G4 – 
the weight of the connecting rod. G5 – the weight of the fifth 
link operates on the 5th link at the center of mass, as well as 
load P (the weight of the rod string and pumped liquids) in 
the suspension point of the rod string D. 

The purpose of the balancing task is to minimize input 
torque M on the crank shaft. To do this, one needs to prop-
erly pick up the mass of the counterbalance and the distance 
of the center of the counterweight from the axis of rotation. 
In the case of rotary balancing, the counterweight is set on 
the crank. And in the case of combined balancing, a second 
counterweight is added, which is installed on the balancer.

The distance of the center of the counterweight mass 
from the axis of crank rotation is defined in the first approx-
imation as:

( )
,

4
E up downk H P P

OL
GΠ

⋅ +
=

⋅
 			   (3)

where HE – length of the rod string, Pup, Pdown – loads at the 
point of rod suspension at the motion up and down, GΠ – total 
weight of counterweights;

k – correcting coefficient that is manually entered by the 
user until the two peak values of torque М on the crank shaft 
will be equal. 

Let’s use the well-known principle of possible movements

0iAδ =∑  or 0.iN =∑  		   (4)

According to the principle of possible movements, the 
power of these forces should be zero. Let’s write this down 
for our problem:

1 2 3 4

5

1 2 3 4

5 0.

i i i i

i Di i

s s s s

s P s L i i

G V G V G V G V

G V G V G V MΠ

+ + + +

+ + + + ω =  		   (5)

Here, Vi are the velocities of the corresponding points of 
gravity forces application;

ωi – angular speed of the crank;
М – torque on the crank shaft. 
In this section, we consider an analytical method for 

solving this problem. The starting point is the principle of 
possible displacement, which is written in the form of ex-
pression (5).

Let us introduce the notations: x1=GПlП, where l1=OL.
Then

3 3cos .y
L L i iG V G V G lΠ Π Π Π= − = − ⋅ ⋅ ϕ ⋅ω

		
(6)

Fig. 1. Converting mechanism of the rod pump
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Next, we rewrite our expression (5), taking into account 
the introduced designation for each i-th position of the 
mechanism, i=1, …, N

1 2 3 4 51 2 3 4 5

1 3 3cos 0.

i i i i i

i

s s s s s

P D i i i i

G V G V G V G V G V

G V x M

+ + + + +

+ − ω ϕ + ω = 	 (7)

To find the unknown variable x1 at which the minimum 
value of the balancing moment is achieved at full rotation of 
the crank, two methods are proposed. 

2) From the obtained expression, we find Mi, expressing 
it in terms of the remaining values of the powers: 

1 2 3 4

5

1 2 3 4
1

3
5 1 3

1

1
[

] cos 0.

i i i i

i Di

s s s si

i
s SP i

M G V G V G V G V

G V G V x

= − − − − −
ω

ω
− − + ϕ =

ω
	 (8)

Let us introduce the following notations:

1 2 3

4 5

1 2 3

4 5

,i i i

i i Di

s s s

i
s s SP

G V G V G V
d

G V G V G V

 − − − −
=  

 − − − 
		 (9)

3
3

1

cos ,i
i ic

ω
= ϕ

ω
		  (10)

and rewrite the expression (8) 

1 .i i iM b x c= + 		  (11)

Then the problem is reduced to finding the minimum of 
the S function depending on the х1 variable

( )
1

2
1

1

1
min.

N

i x
i

S x M
N =

= ⇒∑ 		  (12) 

Thus, such an х1 value is sought, at which the minimum 
of the root-mean-square value of torque М is reached.

As you know, in order to reach the minimum of a function, 
it is necessary that its first derivative be equal to zero, that is 

 

1

0,
dS
dx

= 			   (13)

( )2
1

1

2
0.

N
i i i

i

d c c x

N=

+
=∑ 			   (14)

2) The essence of the second method is as follows.
Consider the problem of balancing, when the counter-

weight on the third link is displaced by the α∏ angle (Fig. 2).
Fig. 2 shows the third link, intermediate links are shown 

in dotted lines. Then, for the corresponding terms in the 
expression (15) we have

( )3

3 3

cos

cos cos sin sin .
OCi i

OCi i OCi i

G V G l

G l G l

ΠΠ Π Π Π

Π Π Π Π Π Π

= −ω ϕ + α =

= −ω α ϕ + ω α ϕ 	 (15)

Let us introduce variables:

1 cos ,x G lΠ Π Π= α  2 sinx G lΠ Π Π= α 		  (16)

and notations: 

3cos ,OCi
i i

GF

c
ω

= α
ω

 3sin ,OCi
i i

GF

s
ω

= α
ω

 

1
.ii i

GF

d F V= − ⋅
ω ∑ 	 (17)

We rewrite the expression (11), with variables and no-
tations introduced for each i-th position of the mechanism, 
i=1, …, N.

1 2 .i i i iM d x c x s= + ⋅ − ⋅ 		  (18)

We find such an x1 value, at which the minimum of the 
root-mean-square value of torque М is reached.

( )
1 2

2
1 2 ,

1

1
, min.

N

i x x
i

S x x M
N =

= ⇒∑  		  (19)

From the necessary condition for the minimum of the S 
function, we obtain two equations with two unknowns

2
1 2

1 1 1

2
1 2

1 1 1

,

.

N N N

i i i i i
i i i

N N N

i i i i i
i i i

c x c s x c d

s c x s x s d

= = =

= = =


⋅ − ⋅ ⋅ = − ⋅


 ⋅ ⋅ − ⋅ = − ⋅

∑ ∑ ∑

∑ ∑ ∑
		  (20)

3) Now we are solving the problem of combined balanc-
ing, when the counterweight is placed not only on the 3rd 
link, but also on the crank. Let’s try to solve analytically the 
problem of optimal dynamic balancing in general form. In 
addition, we assume that the counterweight on the crank is 
displaced by the third link angle and the counterweight on 
the third link is displaced by the αΠ angle (Fig. 3).

Fig. 2. Placement of additional weight on the third link
Fig. 3. The third link and the crank of the six-link mechanism 
are shown, the intermediate links are shown in dotted lines
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With combined balancing, the principle of possible dis-
placements is written as follows:

1 2 3 4 51 2 3 4 5

3 3 1 1 0.

i i i i i

i i i

s s s s s

P D i GF

G V G V G V G V G V

G S G V G V MΠ Π Π Π

+ + + + +

+ + + + ω =  		  (21)

For the corresponding terms in the expression for the 
principle of possible displacements (21), we have

( )1 1 1 1 1

1 1 1
1

1 1 1
1

cos

cos cos

sin sin ,

i iGF

GF i

GF i

G V G l

G l

G l

Π Π Π Π Π

Π Π Π

Π Π Π

= − ⋅ ϕ + α =

= −ω ⋅ α ϕ +

+ω ⋅ ⋅ α ⋅ ϕ  			   (22)

( )33 3 3 3

3 3 3 3 3 3
3 3

cos

cos cos sin sin .

i iOC

OCi i OCi i

G V G l

G l G l

ΠΠ Π Π Π

Π Π Π Π Π Π

= − ⋅ ϕ + α =

= −ω α ϕ + ω α ϕ 	 (23)

Let us introduce variables

1 1 1
1 cos ,x G lΠ Π Π= α  1 1 1

2 sin ,x G lΠ Π Π= α  

3 3 3
3 cos ,x G lΠ Π Π= α 3 3 3

4 sin .x G lΠ Π Π= α 		  (24)

Then (16) takes the form:

1 2 3

4 5

1 2 3

4 5

1 1 2 1

3 3 4 3

1

cos sin

cos sin 0.

i i i

i i i

i i

i i

s s s

i
GF s s P D

OCi OCi

GF GF

G V G V G V
M

G V G V G S

x x

x x

 − − − −
 = +

ω  − − − 
+ ϕ − ϕ +

ω ω
+ ϕ − ⋅ ϕ =

ω ω
	  (25)

Let us introduce notations

1sin
iis = ϕ 1cos ,

iic = ϕ  3cos ,
i

OCi
i

GF

a
ω

= ϕ
ω

 

3sin ,
i

OCi
i

GF

b
ω

= ϕ
ω

 
1

.i i i
GF

d G V= −
ω ∑ 		  (26)

We rewrite the expression (26), with variables and no-
tations introduced for each i-th position of the mechanism, 
i=1, …, N, and derive

1 2 3 1 .i i i i i iM d x c x s x a x b= + − + −  		  (27)

We search for x1–x5 values, at which the minimum of the 
root-mean-square value of torque М is reached.

( ) 2
1 2 3 4 1 2 3 4

1
, , , min , , , .iS x x x x M x x x x

N
= = →∑ 	 (28)

From the necessary condition for the minimum of the S 
function

1

2

3

4

0

0

,
0

0

S
x

S
x

S
x

S
x

∂ =∂
 ∂

=∂
 ∂ =
∂


∂ =∂  

we get four equations with four unknowns

2
1 2

1

3 4

2
1 2

1

3 4

1 2
1

2
3 4

1 2
1

2
3 4

,

,

,

.

N

i i i
i

i i i i i i

N

i i i
i

i i i i i i

N

i i i i
i

i i i i i

N

i i i i
i

i i i i i

c x c s x

c a x c b x c d

s c x s x

s a x s b x s d

a c x a s x

a x a b x a d

b c x b s x

b a x b x b d

=

=

=

=


⋅ − ⋅ +


+ ⋅ − ⋅ =



⋅ − +

+ ⋅ − ⋅ =

 ⋅ − ⋅ +


+ − ⋅ =

 ⋅ − ⋅ +

+ ⋅ − =

∑ ∑
∑ ∑ ∑

∑ ∑
∑ ∑ ∑

∑ ∑
∑ ∑ ∑

∑ ∑
∑ ∑ ∑




			  (29)

4) Assuming that Mi=М*=const, we introduce a new 
variable x5=M* and rewrite (28) as follows:

1 2

1 3 4 5

1
0.

N
i i i

i i iGF

d x c x s

x a x b x=

+ ⋅ − ⋅ + 
= + ⋅ − ⋅ +ω  ∑ 			   (30)

The left part of (30) we designate as ∆i and then, accord-
ing to the synthesis condition, we find x1–x5 values, at which 
∆i approaches zero. For what, we will minimize the mean 
square value of the S function. 

( )1 2 3 4 5

2
1 2 3 4 5

, , , ,

1
min , , , , .i

S x x x x x

x x x x x
N

=

= D →∑ 			   (31)

From the minimum condition, we get five equations with 
five unknowns. 

2
1 2 3

1

4 5
1

2
1 2 3

1

4 5

2
1 2 3

1

4 5

1 2 3
1

2
4

,

,

,

N

i i i i i
i

a

i i i i i
i

N

i i i i i
i

i i i i i

N

i i i i i
i

i i i i i

N

i i i i i i
i

i

c x c s x c a x

c b x c x c d

s c x s x s a x

s b x s x s d

a c x a s x a x

a b x a x a d

b c x b s x b a x

b x

=

=

=

=

=

⋅ − ⋅ + ⋅ −

− ⋅ + = −

⋅ − + ⋅ −

− ⋅ + = −

⋅ − ⋅ + −

− ⋅ + = −

⋅ − ⋅ + ⋅ −

− +

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑
∑ ∑ ∑

∑ ∑ ∑
∑ ∑ ∑
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∑ 5

1 2 2
1 1 1

2 5
1 1

,

.

i i i

N N N

i i i
i i i
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Thus, the unknown parameters x1–x4 and torque value 
x4 are determined, where Mi=М*=const is considered as a 
constant parameter.
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5. Results of the study of the balancing mechanism of rod 
pumping units by the analytical method 

5. 1. Results of solving the balancing problem using a 
computer model of dynamics

By choosing the value of the correction factor k, the 
mass of the counterweight and the distance of the center of 
the counterweight from the axis of rotation were selected. 
The distance of the center of mass of the counterweight 
from the axis of rotation of the crank is determined in the 
first approximation by (1). In the 2nd column of Table 1, 
the balancing results are obtained through the correction 
factor, which adjusts the distance of the center of mass 
of the counterweight from the axis of rotation and is en-
tered manually until the two peak values of shaft torque 
M become equal. Moore values change – is the torque 
shown in Fig. 4, a.

Also, changes in the values of torque M after de-
termining the place of the counterweight are shown in 
Fig. 4, b, c.

5. 2. Results of analytical solution of the balancing 
problem 

Unknown parameter of the counterweight. Further, the 
value of the unknown parameter is determined, at which 
the minimum of the root-mean-square value of torque M is 
achieved. From the condition of the minimum of the function, 
an equation is obtained to determine the location of the coun-
terweight.

Solving the problem of optimal balancing, an expression 
was obtained that allows one to determine the mass and lo-
cation of the counterweight along the 3rd link of the six-link 
converting mechanism of the rocking machine.

Fig. 4. Graphs of torque changes at optimal balancing: a – solving the balancing problem by choosing the value of the 
correction factor; b – solving by an analytical method; c – solving the combined balancing problem; d – solving the combined 
balancing problem when the counterweight on the third link is displaced by an angle and on the crank is displaced by an angle
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Table 1

Results of the analytical solution of the optimal balancing problem

ω1=0.7, Рup/Рdown=30/10 kN

Results SK_R2_02 1-method 2-method

Mmax, kNm 8.260 8.412 8.365 

Nmax kNm 56.99 58.04 57.71

Мmin, kNm 3.823 3.892 3.992

m3, kg 478 479 478

l3, m 0.525 0.653 0.753

α3, degree 0 0.000 10.5414
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The balancing problem is also analytically solved, when 
the counterweight on the third link is displaced by an angle 
and the unknown variables are

1 cos ,x G lΠ Π Π= α  2 sin .x G lΠ Π Π= α 	  (34)

The analytical solution of the problem for det 0A ≠  is 
obtained as follows

1 ,x A d−= ⋅ 		   (35)

where
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The 2nd column of Table 2 gives the result of the analyt-
ical method where the value of GПlП is found, at which the 
minimum of the torque М value is reached. 

The 3rd column of Table 2 gives the result of the ana-
lytical method for solving the balancing problem, when the 
counterweight on the third link is displaced by an angle.

Table 2

Results of the analytical solution of the optimal balancing 
problem

ω1=0.7, Рup/Рdown=30/10 kN

Results 3-method 4-method

Mmax, kNm 6.605 6.605 

Nmax kNm 45.57 45.57

Мmin, kNm 3.992 3.992

m3, kg 478 478

l3, m 0.844 0.844

α3, degree 8.5324 8.5233

m1, kg 400 400

l1, m 0.334 0.334

α1, degree –18.2414 –17.3421

5. 3. Results of the analytical solution of the combined 
balancing problem

An analytical solution to the problem of optimal dynamic 
balancing is obtained in general form, where the counterweight 
on the crank is displaced by the 1

Пα  angle, and the counter-
weight on the third link is displaced by the α∏ angle (Fig. 4).

From the condition for the minimum of the function (28), 
a system of equations was obtained to determine the location 
of the counterweight on the third link and on the crank (29).

An analytical solution to the problem of optimal dynamic 
balancing is obtained in general form, where the counter-
weight on the crank is displaced by the angle 1

П,α  and the 
counterweight on the third link is offset by the angle 3

П.α  
Then the unknown variables are

1 1 1
1 cos ,x G lΠ Π Π= α  1 1 1

2 sin ,x G lΠ Π Π= α  

3 3 3
3 cos ,x G lΠ Π Π= α  3 3 3

4 sin .x G lΠ Π Π= α 		  (37)

The analytical solution of the problem for det 0A ≠  is 
as follows

1 ,X A d−= ⋅  			   (38)

where
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Also, assuming that the torque Mi=М*=const, we intro-
duce a new variable x5=M*.

Similarly, the analytical solution of the problem for 
det 0A ≠  is as follows

1 ,X A d−= ⋅  				    (41)

where
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Changes in the values of torque M after determining the 
locations of the counterweights are shown in Fig. 4, d.
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6. Discussion of the results of solving the problem of 
balancing the six-link drive mechanism of the sucker-rod 

pumping unit

The results confirm that by the analytical solution of the 
problem, it is possible to more accurately determine the location 
of the counterweight when balancing the converting mecha-
nism of the sucker-rod pumping unit.

As can be seen from Table 1, the result obtained when solving 
the balancing problem by selecting the value of the correction 
factor k, comparing two peak values of torque M on the crank 
shaft per cycle of movement of the mechanism, was also obtained 
when solving the balancing problem by the analytical method.

This proves the correctness of the analytical expressions 
obtained for the parameters of the counterweight of the trans-
mission mechanism of sucker-rod pumping units.

Also, with the combined balancing method, the value of 
the maximum torque M and the value of the maximum power 
are reduced by 20 % than when the counterweight is placed on 
the third link of the converting mechanism, as well as when 
the value of the maximum torque is determined through the 
correction factor k. This shows the optimality of the combined 
balancing of the six-link converting mechanism of the SRP 
drive, which allows reducing the swinging moment, load on 
the gearbox and efforts on the crank pins, which cause impacts.

As you can see, the combined balancing significantly reduc-
es the swinging moment on the foundation of the converting 
mechanism of sucker-rod pumping units, thereby ensuring 
optimal balancing of the mechanism. Therefore, the obtained 
analytical solutions of the balancing problem can be widely 
applied in practice.

The disadvantage of the combined balancing is the in-
creased crank bearing response due to the weight of the coun-
terweight.

In the future, a multicriteria synthesis of the six-link con-
verting mechanism of the SRP drive will be carried out to 
reduce the upper strut and improve the angle of motion trans-
mission. It is also required to reduce the values of the reactions 
of hinges and supports.

7. Conclusions

1. The mass of the counterweight and the distance of the 
center of the counterweight from the axis of rotation when 
solving the problem, by choosing the value of the correction 
factor k are m3=478 kg and l3=0.525 m. Maximum torque 
value Mmax=8.260 kNm.

2. An analytical solution to the problem of optimal 
dynamic balancing of the six-link converting mecha-
nism of the sucker-rod pumping drive is obtained in var-
ious formulations. In the case when the counterweight 
is placed along the 3rd link, the following values are 
obtained m3=479 kg and l3=0.653 m, the value of the max-
imum torque Mmax=8.412 kNm. In the case when the coun-
terweight on the third link is displaced by the angle, 
m3=479 kg and l3=0.653, the value of the maximum torque 
Mmax=8.365 kNm. Comparison of the results obtained shows 
that the value of the maximum torque and the location of the 
counterweight have insignificant differences when solving 
by choosing the value of the correction factor and when 
solving by an analytical method. 

3. A system of equations is obtained for solving the prob-
lem of combined balancing, that is, when the counterweight 
is placed on the third link, displaced by an angle and on the 
crank, displaced by an angle. The following values are ob-
tained m3=478 kg and l3=0.844 m, m1=400 kg, l1=0.334, the 
value of the maximum torque Mmax=6.605 kNm. The results 
show that with the combined balancing method, the value of 
the maximum torque M and the value of the maximum power 
are reduced by 20 % than when the counterweight is placed 
on the third link of the sucker-rod pumping drive converter 
mechanism.
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