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1. Introduction

There are many reasons why combined cycles are more 
and more popular and being taken under consideration as one 
of the main types of power plants. The main reason is efficien-
cy. Combined cycle power plants (CCPP) can perform more 
efficiently than traditional power plants by about 60 % [1]. 
A CCPP uses both a gas and a steam turbine together to 
produce up to 50 % more electricity from the same fuel than 
a traditional simple-cycle plant. The waste heat from the gas 
turbine is routed to the nearby steam turbine, which generates 
extra power [2]. The gas turbine compresses air and mixes it 
with fuel that is heated to a very high temperature. The hot 
air-fuel mixture moves through the gas turbine that drives an 
electricity generator. A heat recovery steam generator creates 
steam from the gas turbine exhaust heat and delivers it to the 
steam turbine that sends its energy to a generator where it is 
converted into additional electricity power output.

Predicting full load electrical power output of a base 
load power plant is important for accurate power production 
forecasts in the electrical power market to maximize the 
profit from the available megawatt-hours [3]. Moreover, it 
is a significant step toward the sustainable development of 
combined cycle power plants where heating load calculations 
are essential to optimize energy use during peak-demand 

seasons, and instantaneous heating loads are determined 
by different factors including the outdoor weather condi-
tions [4, 5]. Furthermore, it can be integrated in a dynamic 
condition monitoring system in which the online perfor-
mance is compared to the derived model and any deviations 
are diagnosed and inspected. This can ensure safe and reli-
able operation in various conditions [6]. 

Therefore, it becomes crucial to develop a method to 
predict power output, depending on various combinations 
of input/environment parameters. Several studies have been 
conducted in pursuit of finding accurate and efficient ways 
of predicting hourly electrical CCPP power output by em-
ploying different predictive models and tools (including 
artificial neural networks (ANN) and machine learning 
regressions) with corresponding accuracy performance and 
reliability measures (such as mean absolute error (MAE), 
root-mean-squared error (RMSE) and coefficient of deter-
mination R2) as will be discussed later.

The scientific relevance is summarized in predicting 
electrical power output in a CCPP based on a few features 
using simpler algorithms than reported deep learning and 
neural networks algorithms combined. That means a lower 
cost and less complicated procedure as per each, however, 
resulting in practically accepted results according to the 
evaluation metrics used. 
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of a combined cycle power plant (CCPP), in addition to the best 
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electrical power output. In this paper, the full load electrical 
power output of CCPP was predicted employing practically effi-
cient machine learning algorithms, including linear regression, 
ridge regression, lasso regression, elastic net regression, ran-
dom forest regression, and gradient boost regression. The orig-
inal data came from an actual confidential power plant, which 
was working on a full load for 6 years, with four major features: 
ambient temperature, relative humidity, atmospheric pressure, 
and exhaust vacuum, and one target (electrical power output 
per hour). Different regression performance measures were 
used, including R2 (coefficient of determination), MAE (Mean 
Absolute Error), MSE (Mean Squared Error), RMSE (Root 
Mean Squared Error), and MAPE (Mean Absolute Percentage 
Error). Research results revealed that the gradient boost regres-
sion model outperformed other models with and without using 
the dimensionality reduction technique (PCA) with the highest 
R2 of 0.912 and 0.872, respectively, and had the lowest MAPE of 
0.872 % and 1.039 %, respectively. Moreover, prediction perfor-
mance dropped slightly after using the dimensionality reduction 
technique almost in all regression algorithms used. The novelty 
in this work is summarized in predicting electrical power output 
in a CCPP based on a few features using simpler algorithms than 
reported deep learning and neural networks algorithms com-
bined. That means a lower cost and less complicated procedure 
as per each, however, resulting in practically accepted results 
according to the evaluation metrics used
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2. Literature review and problem statement

Machine learning is the process of equipping computers 
with the ability to learn by using data and experience like a 
human brain. The main aim of machine learning is to create 
models, which can train themselves to improve, perceive 
complex patterns, and find solutions/predictions to new 
problems by using the previous data [7].

Machine learning, more specifically the field of predic-
tive modeling, is primarily concerned with minimizing the 
error of a model or making the most accurate predictions 
possible, at the expense of explainability. As such, linear re-
gression was developed in the field of statistics and is studied 
as a model for understanding the relationship between input 
and output numerical variables but has been borrowed by 
machine learning. It is both a statistical algorithm and a 
machine learning algorithm [8].

The concept of linear regression was first proposed in 
1894. Linear regression is a statistical test applied to a data 
set to define and quantify the relation between the consid-
ered variables. It is a modeling technique where a dependent 
variable is predicted based on one or more independent vari-
ables. Linear regression analysis is the most widely used of 
all statistical techniques [9]. 

Dimensionality reduction is used in machine learning 
to avoid the curse of dimensionality and to convert the 
system from high to low dimension without sacrificing 
the important information in features. Ideally, the reduced 
representation should have a dimensionality that corre-
sponds to the intrinsic dimensionality of the data [10]. The 
dimensionality reduction can be performed either by man-
ually selecting the required features or by using specific 
techniques that reduce the system’s dimension [11]. One of 
these techniques is Principal Component Analysis (PCA). 
PCA is a mathematical method that uses algorithms to 
reduce dimensions in a high-dimensionality system to a 
low dimension while keeping the maximum number of vari-
ations in the resulted features [12]. PCA works by finding 
directions with the highest variation of data; called princi-
pal components where working with these reduced features 
is much more efficient than modeling with thousands of 
numbers for each sample [12].

Understanding basic least squares regression is still 
extremely useful, but there are other improved methods 
that should also be considered. One issue with regular 
least squares is that it doesn’t account for the possibility of 
overfitting. Ridge regression takes care of this by shrinking 
certain parameters. Lasso takes this step even further by 
allowing certain coefficients to be outright forced to zero, 
eliminating them from the model. Finally, Elastic Net com-
bines the benefits of both lasso and ridge [13]. The results 
of [13] showed that simple least squares performed the worst 
on test data compared to all other models. Ridge regression 
provided similar results to least squares, but it did better 
on the test data and shrunk most of the parameters. Elastic 
Net ended up providing the best MSE on the test dataset by 
quite a wide margin. Elastic Net removed lcp, gleason and 
age and shrunk other parameters. Lasso also removed the 
consideration of age, lcp and gleason but performed slightly 
worse than Elastic Net.

The study in [14] aimed to develop machine learning 
models to accurately predict bronchiolitis severity, and to 
compare their predictive performance with a convention-
al scoring (reference) model. In a 17-center prospective 

study of infants (aged <1 year) hospitalized for bronchiol-
itis, by using routinely available pre-hospitalization data as 
predictors, they developed four machine learning models: 
Lasso regression, elastic net regression, random forest, and 
gradient boosted decision tree. They compared predictive 
models’ performance with that of the reference model. The 
machine learning models also achieved a greater net benefit 
over ranges of clinical thresholds. Machine learning models 
consistently demonstrated a superior ability to predict acute 
severity and achieved greater net benefit. 

Nowadays, in the context of the industrial revolution 4.0, 
considerable volumes of data are being generated continu-
ously from intelligent sensors and connected objects. The 
proper understanding and use of these amounts of data are 
crucial levers of performance and innovation [15]. Machine 
learning is the technology that allows the full potential 
of big datasets to be exploited. As a branch of artificial 
intelligence, it enables us to discover patterns and make 
predictions from data based on statistics, data mining, and 
predictive analysis. The key goal of the study [15] was to use 
machine learning approaches to forecast the hourly power 
produced by photovoltaic panels. A comparative analysis 
of various predictive models including elastic net, support 
vector regression, random forest, and Bayesian regularized 
neural networks was carried out to identify the models pro-
viding the best predicting results. The principal components 
analysis used to reduce the dimensionality of the input data 
revealed six main factor components that could explain up 
to 91.95 % of the variation in all variables. Moreover, based 
on the findings of the performance metrics, it was found 
that non-linear models, particularly Bayesian regularized 
neural networks and random forest, obtained the best com-
promise between the predicted and observed values, with 
R2=99.99 % and R2=99.53 %, respectively, in the training 
phase and R2=99.99 % and R2=97.33 %, respectively, in the 
testing phase, while the lowest performance was achieved 
by linear models such as the elastic net algorithm with 
R2=89.3 % and RMSE=0.69 kW. This is mainly because 
non-linear methods are better at including data dynamics 
and capturing non-linear correlations between variables.

In order to find accurate and efficient ways of predict-
ing hourly electrical energy output, the researchers in [16] 
utilized a dataset collected over 6 years whose data points 
corresponded to average hourly sensor measurements when 
the plant was set to work with full load. The input features 
were ambient temperature, relative humidity and ambient 
pressure, which are known to be major factors in gas tur-
bines, as well as exhaust vacuum measured from the steam 
turbine. They utilized conventional multivariate regression, 
additive regression, k-NN, feed-forward ANN and K-Means 
clustering to form local and global predictive models. They 
found that even with simple regression tools such as k-NN 
smoother, it is possible to predict net yield with less than 1 % 
relative error on average. Using more sophisticated tools and 
proper preprocessing it is possible to significantly increase 
the performance. The research in [3] explained the used 
methodology by: first, based on the input variables, the best 
subset of the dataset is explored among all feature subsets in 
the experiments. Then, the most successful machine learning 
regression method is sought for predicting full load electrical 
power output. Thus, the best performance of the best subset, 
which contains a complete set of input variables, has been 
observed using the most successful method with the best 
mean absolute error and root-mean-squared error.
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Regression ANNs were used to model various systems 
that have high dimensionality with nonlinear relations. The 
system under study must have enough dataset available to 
train the neural network. The work in [17] was to apply and 
experiment with various options effects on feed-forward 
ANN used to obtain a regression model that predicts the 
electrical output power (EP) of the combined cycle power 
plant based on 4 inputs. The data set was obtained from 
an open online source. The work showed and explained the 
stochastic behavior of the regression neural and experiments 
the effect of the number of neurons of the hidden layers. A 
simple statistical study on the error between real values and 
estimated values using ANN was conducted, which showed 
the reliability of the model [18].

The study in [19] presented a simulation model of an 
existing gas-steam combined heat and power plant. The 
simulation models allow calculating non-measured operat-
ing parameters and energy assessment indicators. They also 
have the capability of adapting to the changing technical 
conditions of the modeled machines. Model predictive qual-
ity was verified with RMSE and R2. The models were also 
used to simulate the behavior of the analyzed gas-steam 
plant under different operating conditions. Exemplary cal-
culations had been presented.

In [20], electrical power output (PE) for a combined 
cycle gas turbine (CCGT) consisting of 9,568 data records 
collected over a 6-year period is evaluated by the transpar-
ent open box (TOB) machine learning method to provide 
accurate PE predictions and insight to prediction errors. 
The PE predictions derived by applying the TOB optimized 
data matching technique were more accurate than published 
predictions for the dataset from fifteen correlation-based, 
machine learning algorithms. Through its transparency and 
forensic-like auditability of its calculations for individual 
data records, the TOB algorithm was able to mine the data-
set to provide useful insight into the interactions of the outli-
ers with other data records. Mining the dataset also revealed 
significant differences in prediction accuracy achieved for 
different sectors of the PE distribution. This insight identi-
fied that prediction accuracy could be further improved by 
dividing the dataset into separately optimized subsets, three 
along its main PE trend plus a fourth, small subset consisting 
of the outliers. The TOB algorithm demonstrated its value 
as a machine learning tool capable of generating accurate 
predictions and easily auditable data mining.

The study in [21] developed a machine learning-based 
method to predict gas turbine performance for power gen-
eration. Two surrogate models based on high dimensional 
model representation and ANN were developed from real 
operational data to predict the operating characteristics of 
air compressor and turbine. Both models captured the op-
erating characteristics well with average errors of less than 
1.0 %. Since holistic ANN models have lower complexity 
and higher accuracy, the ANN model for predicting full-load 
performance was used to construct gas turbine performance 
correction curves. 

In [22], ANNs were applied to describe the performance 
of a micro gas turbine. Though large, the data set did not 
cover the whole working range of the turbine; ANNs and 
an artificial neural fuzzy interference system were therefore 
applied to fill information gaps. The results of the inves-
tigation were also used for sensitivity analysis of the ma-
chine’s behavior in different ambient conditions. ANNs can 
effectively evaluate both performance and emissions in real 

installations in any climate, the worst R2 in the validation 
set was 0.9962.

In [23], a detailed investigation was aimed based on 
numerical thermodynamic survey and ANN modeling of 
the trigeneration system. The results are presented in two 
pivotal frameworks namely the sensitivity analysis and ANN 
prediction capability of proposed modeling. The underlying 
operative parameters were chosen as input parameters from 
different cycles and components, while the exergy efficiency, 
exergy loss, coefficient of performance, heating load exergy, 
lambda, gas turbine power, exergy destruction, actual outlet 
air compressor temperature, and heat recovery gas steam 
generator outlet temperature were taken as objective output 
parameters for the modeling purpose. It followed that mul-
tilayer perceptron neural network with back propagation 
algorithm resulted in the modeling reliability ranged within 
R2=0.995–0.999. When the dataset treated with train-
lm learning algorithm and diversified neurons, the mean 
squared error (MSE) was obtained equal to 0.2175. 

In [24], an ANN model was constructed with the 
multi-layer feed-forward network type and trained with 
operational data using back-propagation. The results showed 
that the operational and performance parameters of the gas 
turbine can be predicted with good accuracy for varying 
local ambient conditions. 

Different modeling techniques were proposed in [25] for 
determining baseline energy consumption in the industry. 
A combined heat and power (CHP) plant was considered in 
the study that was subjected to a retrofit, which consisted 
of the implementation of some energy-saving measures. Two 
different modeling methodologies were applied to the CHP 
plant: thermodynamic modeling and artificial neural net-
works (ANN). Satisfactory results are obtained with both 
modeling techniques. Acceptable accuracy levels of prediction 
were detected, confirming good capability of the models for 
predicting plant behavior and their suitability for baseline 
energy consumption determining purposes. High level of ro-
bustness was observed for ANN against uncertainty affecting 
measured values of variables used as input in the models. 

In [6], a multi-layer perceptron (MLP) network with 
back propagation training was used to model the steam tur-
bine of a combined cycle power plant with dry cooling tower. 
The main cooling system was modeled to predict the cooling 
capacity in the steam turbine exhaust using the data avail-
able to the operator. Based on that, the operators are able to 
predict the exhaust steam vacuum of the steam turbine (ST), 
which is critical in the ST output, with good accuracy. Then 
the data was used to predict the power output of the ST us-
ing data available to the operators through the power plant’s 
data warehouse. It was concluded that ANN modeling is 
capable of predicting the electrical production of ST under 
varying load conditions. 

The researchers in [26] argued that energy consump-
tion has been increasing steadily due to globalization and 
industrialization with buildings being responsible for the 
biggest proportion of energy consumption. In order to 
control energy consumption in buildings, different policies 
have been proposed, from utilizing bioclimatic architectures 
to the use of predictive models within control approaches. 
There are mainly three groups of predictive models including 
engineering, statistical and artificial intelligence models. 
The main objective of the study was to compare a neural 
network model, which was designed utilizing statistical 
and analytical methods, with a group of neural network 
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models designed benefiting from a multi-objective genetic 
algorithm (MOGA). Moreover, the neural network models 
were compared to a naive autoregressive baseline model. The 
models were intended to predict electric power demand at 
the Solar Energy Research Center bioclimatic building lo-
cated at the University of Almeria, Spain. Experimental re-
sults showed that the models obtained from MOGA perform 
comparably to the model obtained through a statistical and 
analytical approach, but they use only 0.8 % of data samples 
and have lower model complexity.

Heat rate of a combined cycle power plant is a parameter 
that is typically used to assess how efficient a power plant is. 
In [27], the CCPP heat rate was predicted using an ANN 
method to support the maintenance team in monitoring the 
efficiency of the CCPP. The ANN method used fuel gas heat 
input, CO2 percentage, and power output as input parameters. 
Approximately 4322 actual operation data are generated from 
the digital control system (DCS) in a year. These data were 
used for ANN training and prediction. Seven parameter vari-
ations were developed to find the best parameter variation to 
predict heat rate. The ANN model that utilized three parame-
ters as input data had the best prediction heat rate data with a 
regression coefficient of determination value of 0.995.

The above literature demonstrated the level of details 
and related modeling and computational complexity to pre-
dict performance (related output) that highlighted the need 
for testing the performance of kind-of-simpler algorithms, 
using a few features, than reported deep learning and neural 
networks algorithms. These would be alternative algorithms 
to overcome these difficulties at lower cost and less compli-
cated procedures, while resulting in practically accepted 
results according to the known used evaluation performance 
metrics.

3. The aim and objectives of the study

The aim of the study is to predict the full load electrical 
power output of CCPP depending on four features: ambient 
temperature, relative humidity, atmospheric pressure, and 
exhaust vacuum, and one target (electrical power output 
per hour). 

To achieve this aim, the following objectives are accom-
plished:

– to make sure the data is clean with no missing values, 
duplications or outliers;

– to implement the following models: linear regression, 
ridge regression, lasso regression, elastic net regression, 
random forest regression, and gradient boost regression then 
evaluate the models using R2, MAE, MSE, RMSE, MAPE;

– to use the dimensionality reduction technique (PCA) 
and re-do the point (2) in objectives, then compare results 
with and without using dimensionality reduction and see 
where the best results occur.

4. Materials and methods 

4. 1. Data origin and information
The original data came from a real confidential power 

plant, which was working on a full load for 6 years. The 
data has been downloaded from [28]. It consists of 9,568 in-
stances with four features (ambient temperature (AT), rel-
ative humidity (RH), atmospheric pressure (AP), exhaust 

vacuum (V)) and one target (electrical power output per 
hour (PE)). The downloaded data was clean with no missing 
values, thus, no need for any imputation technique before 
the modeling phase. It has been noted also that there are no 
obscure outliers in the data, which made the correlation pro-
cedure between features and target quite straightforward. 

4. 2. Choice of learning algorithms
Choosing the right algorithm to train data on is not an 

easy task. However, the obvious correlation between PE and 
AT seen in Fig. 2 excluded our assumptions to specific linear 
originated models. The use of ensemble algorithms should 
result in more accurate performance theoretically, because 
it combines a set of weak learners together. The chosen 
algorithms are linear regression, ridge regression, lasso re-
gression, elastic net regression, random forest regression and 
gradient boost regression.

Linear regression was the first type of regression analysis 
to be studied rigorously, and to be used extensively in prac-
tical applications [4]. This is because models that depend 
linearly on their unknown parameters are easier to fit than 
models that are non-linearly related to their parameters and 
because the statistical properties of the resulting estimators 
are easier to determine. The case of one explanatory variable 
is called simple linear regression; for more than one, the pro-
cess is called multiple linear regression. This term is distinct 
from multivariate linear regression, where multiple correlat-
ed dependent variables are predicted, rather than a single 
scalar variable [29].  

Linear regression models are often fitted using the least-
squares approach; by fitting the least square residuals between 
the observed dataset points and predicted dataset points. But 
they may also be fitted in other ways, such as by minimizing 
the “lack of fit” in some other norm (as with least absolute 
deviations regression), or by minimizing a penalized version of 
the least-squares cost function as in ridge regression (L2-norm 
penalty) and lasso regression (L1-norm penalty) [29]. 

Ridge Regression, also called Tikhonov regulariza-
tion is a regularized version of the Linear Regression: add-
ing a regularization term, commonly referred to as alpha, 
the cost function, the learning algorithm is forced to keep 
the weight as low as possible. It adds a detractor (penalty 
factor) to the cost function. This determines the loss of 
importance of the value (check) of a feature, which, de-
pending on the penalty, can be more or less accentuated. 
The strength of the penalty is tunable controlled, that is, by 
a hyperparameter that must be set. Speaking of regulariza-
tion in general, there are two types of penalties [30]: 

– L1 (absolute size) penalizes the absolute value of the 
model coefficient 0073;

– L2 (squared size) penalizes the square of the value of 
the model coefficients.

Ridge Regression uses the L2 penalty. In practice, this 
produces small coefficients, but none of them are ever can-
celed out. Therefore, the coefficients are never 0. The phe-
nomenon is called feature shrinkage [30].

The word “LASSO” stands for Least Absolute Shrink-
age and Selection Operator. It is a statistical formula for 
the regularization of data models and feature selection. It is 
used over regression methods for a more accurate prediction. 
This model uses shrinkage. Shrinkage is where data values 
are shrunk towards a central point as the mean. The lasso 
procedure encourages simple, sparse models (i. e., models 
with fewer parameters). This particular type of regression is 
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well-suited for models showing high levels of multicollinear-
ity or when you want to automate certain parts of model se-
lection, like variable selection/parameter elimination. Lasso 
Regression uses the L1 regularization technique. It is used 
when we have a greater number of features because it auto-
matically performs feature selection [31].

Elastic net is a popular type of regularized linear regres-
sion that combines two popular penalties, specifically the L1 
and L2 penalty functions. A hyperparameter, alpha “α”, is 
provided to assign how much weight is given to each of the 
L1 and L2 penalties. Alpha is a value between 0 and 1 and is 
used to weight the contribution of the L1 penalty and “one 
minus the alpha” value is used to weight the L2 penalty as 
shown in (1) [32].

Elastic net penalty=(α(L1_penalty))+
+((1–α)(L2_penalty)).  (1)

The benefit is that elastic net allows a balance of both 
penalties, which can result in better performance than a 
model with either one or the other penalty on some problems.

Another hyperparameter is provided called lambda “λ” 
that controls the weighting of the sum of both penalties to the 
loss function as shown in (2). A default value of 1.0 is used to 
use the fully weighted penalty; a value of 0 excludes the penal-
ty. Very small values of lambada, such as 0.001 or smaller, are 
common [32]. Elastic net performs better in a large dataset.

Elastic_net_loss=loss+(λ(elastic_net_penalty)).  (2)

An ensemble method is a technique that combines the pre-
dictions from multiple machine learning algorithms together 
to make more accurate predictions than any individual model. 
Random forest is a supervised learning algorithm, which 
uses the ensemble learning method for classification and 
regression. It operates by constructing a multitude of deci-
sion trees at training time and outputting the class that is 
the mode of the classes (classification) or mean prediction 
(regression) of the individual trees. Random forest is one of 
the most accurate learning algorithms available. It can han-
dle thousands of input variables without variable deletion 
and gives estimates of what variables are important in the 
classification. Furthermore, it generates an internal unbi-
ased estimate of the generalization error as the forest build-
ing progresses. Meanwhile, for data including categorical 
variables with different numbers of levels, random forests are 
biased in favor of those attributes with more levels. There-
fore, the variable importance scores from random forest are 
not reliable for this type of data [33]. 

Gradient boosting refers to a class of ensemble machine 
learning algorithms that can be used for classification or 
regression predictive modeling problems. It is also known as 
gradient tree boosting, stochastic gradient boosting (an ex-
tension), and gradient boosting machines, or GBM for short. 
Ensembles are constructed from decision tree models. Trees 
are added one at a time to the ensemble and fit to correct the 
prediction errors made by prior models. This is a type of en-
semble machine learning model referred to as boosting [34]. 

Models are fit using any arbitrary differentiable loss 
function and gradient descent optimization algorithm. This 
gives the technique its name, “gradient boosting,” as the loss 
gradient is minimized as the model is fit, much like a neural 
network. Gradient boosting performs well, if not the best, 
on a wide range of tabular datasets, and versions of the algo-

rithm like XGBoost and LightBoost often play an important 
role in winning machine learning competitions [34].

4. 3. Evaluation metrics
Deciding which evaluation metrics to use in order to 

evaluate training performance isn’t an easy task due to pos-
sible data imbalance, for example. Regarding the problem in 
this work, as can be noted clearly in Fig. 2, the linearity of 
the regression leads us to choose the following evaluation 
measures: R2 (coefficient of determination), MAE (Mean 
Absolute Error), MSE (Mean Squared Error), RMSE (Root 
Mean Squared Error), and MAPE (Mean Absolute Percent-
age Error). MAE calculates the absolute difference between 
actual and predicted values (3). MSE calculates the squared 
error or distance between actual and predicted values (4). 
The reason behind squaring values is to cancel the negativity 
effect. One con of this method is that it penalizes the outliers 
when it squares the outputs, which isn’t the case in MAE. 
Another evaluation metric used in this work is RMSE (5). 
As its name suggests, it roots down the value of MSE, which 
makes the output more interpretable and has the same 
intended unit. R2 is also used in this study (6), which is 
quite different from the latter evaluation measures in that it 
doesn’t measure the loss in a sense, instead, it measures how 
well the model performs. It’s called coefficient of determi-
nation and the higher its value is the better. It takes values 
between 0 and 1. The last evaluation metric in this work is 
MAPE, which measures the percentage accuracy of predict-
ed outputs to the actual outputs with a percentage error (7). 
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where yi – the actual ith output, ŷ – the predicted output, 
n – number of instances, MSS is the model sum of squares 
(also known as ESS, or explained sum of squares), which 
is the sum of the squares of the prediction from the linear 
regression minus the mean for that variable; TSS is the total 
sum of squares associated with the outcome variable, which 
is the sum of the squares of the measurements minus their 
mean; and RSS is the residual sum of squares, which is the 
sum of the squares of the measurements minus the prediction 
from the linear regression [35, 36]. That means:
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where ym is the mean value of the output.
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5. Results of research of predicting the full load electrical 
power output of CCPP depending on four features

5. 1. Exploratory data analysis (EDA)
Exploratory data analysis resulted in clean data by the 

means of no missing values, outliers or duplications in our data-
set according to the output of our code. This pathed the way 
for the next objective of modeling. The scatter matrix in Fig. 1 
shows an obvious linear relationship between AT and PE.

The PE vs AT relationship is enlarged for a better visual-
ity in Fig. 2. As shown in Fig. 2, a direct and linear relation-
ship exists between PE and AT. 

When AT increases, PE decreases. The red line is drawn 
from the linear regression model (discussed) and the yellow 
dot represents a prediction that follows this linearity where 
PE is 447.08 kWh when AT is 23 °C.

5. 2. Results of implementing models without dimen-
sionality reduction

This section includes results obtained from training 
CCPP data and measuring its performance without us-
ing feature reduction. As shown in Fig. 2, there’s clearly 
a linear relationship between AT and PE as mentioned 
in Section 5. 1. According to this linearity, in our first set 

of results we had AT as our feature data set and 
PE as our label then trained the data on six 
different models, where four of them are linear 
originated estimators (linear regression, ridge 
regression, lasso regression, elastic net) and 
the other two are ensemble methods (random 
forest and gradient boost models) that depend 
on a combination of weak algorithms then 
evaluated their performance using five dif-
ferent evaluation metrics as shown in Table 1. 
It’s worth noting that results in Table 1 are 
performed without using a feature reduction 
method. Moreover, we do not have to manually 
set the values of the regularization parameters 
(α and λ) in our modeling procedure, as they 
are optimized automatically in the models used.

As shown in Table 1, for the ensemble 
methods (random forest and gradient boost re-
gressors), random forest regression performed 
worse than linear originated methods while 
gradient boost regressor was the best model 
performer between all 6 models with R2 of 
0.912 and the lowest MAPE of 0.872 %. The 
high performance of gradient boost regressor 
is mainly because non-linear methods are bet-
ter at including data dynamics and capturing 

non-linear correlations between variables, 
while the low performance of random forest 
regression can be attributed to the expected 
variables’ different number of levels as ran-
dom forests are biased in favor of those 
attributes with more levels. Therefore, the 
variable importance scores from random 
forest are not reliable in such conditions. 
Meanwhile, all four linear originated mod-
els performed in a very similar way, which 
can be explained as a result of the used 
modeling variables and the related linearity 
assumption. The details of achieved results 
are discussed.

The R2 value for the six different regression 
models is shown clearly in Fig. 3.

Fig. 4 shows MAE for the six different 
models. Again, it’s noted here that the linear 
originated models perform similarly with an 
MAE of around 4.27 approximately.

Fig. 5 shows the MSE of the six regression 
models.

Fig. 6 shows the RMSE value of the six 
models.

MAPE of the six models is shown in Fig. 7.

Fig.	1.	Scatter	matrix	showing	correlation	between	features	and	target:	
AT	–	ambient	temperature;	RH	–	relative	humidity;	AP	–	atmospheric	

pressure;	V	–	exhaust	vacuum;	PE	–	electrical	power	output

Fig.	2. Correlation	between	ambient	temperature	and	electrical	power	
output	per	hour
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Table	1	

Comparison	of	models’	evaluation	metrics	without	using	
dimensionality	reduction

Evaluation 
metric

Linear 
regres-

sion

Lasso 
regres-

sion

Ridge 
regres-

sion

Elastic 
net re-

gression

Random 
forest 

regression

Gradient 
boost re-
gression

R2 0.898 0.900 0.900 0.900 0.884 0.912

MAE 4.276 4.277 4.276 4.278 4.536 3.955

MSE 28.912 28.872 28.912 28.866 33.569 25.344

RMSE 5.376 5.373 5.376 5.372 5.793 5.034

MAPE (%) 0.946 0.946 0.946 0.946 1.000 0.872

5. 3. Results of implementing models using dimen-
sionality reduction

Table 2 shows the performance metrics after using the 
dimensionality reduction technique, Principal Component 
Analysis (PCA), which aims to select features with the 
lowest loss.

Table	2

Comparison	of	models’	evaluation	metrics	with	using	
dimensionality	reduction	technique	(PCA)

Evaluation 
metric

Linear 
regres-

sion

Lasso 
regres-

sion

Ridge 
regres-

sion

Elastic 
net re-

gression

Random 
forest re-
gression

Gradient 
boost re-
gression

R2 0.851 0.850 0.851 0.851 0.862 0.872

MAE 5.134 5.135 5.134 5.135 4.902 4.742

MSE 43.201 43.219 43.201 43.215 39.869 37.020

RMSE 6.572 6.574 6.572 6.573 6.314 6.084

MAPE (%) 1.126 1.126 1.126 1.126 1.073 1.039

As shown in Table 2, again, gradient boost regressor 
performs better than the other ensemble method; random 
forest regressor, and even better than the other four linear 
originated models with the highest R2 of 0.872 and lowest 
MAPE of 1.039 %. However, this time after using PCA, it 
is noticed that random forest regressor isn’t the worst model 
in this group. Actually, random forest regressor performance 
results outperform all the four linear originated models in 
terms of R2 (0.862), MAE (4.902), MSE (39.869), RMSE 
(6.314) and MAPE of 1.073 %. The high performance of gra-
dient boost regressor and random forest is mainly because 
non-linear methods are better at including data dynamics 
and capturing non-linear correlations between variables. 
However, the performance metrics of random forest regres-

Fig.	3.	R2	value	for	the	six	regression	models	without	
using	PCA
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Fig.	4.	MAE	value	for	the	six	regression	models	without	
using	PCA
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Fig.	5.	MSE	value	for	the	six	regression	models	without	
using	PCA
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Fig.	6.	RMSE	value	for	the	six	regression	models	without	
using	PCA
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Fig.	7.	MAPE	value	for	the	six	regression	models	without	
using	PCA
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sor after using PCA are still behind the performance results 
of gradient boost regressor. The details of achieved results 
are discussed. 

Fig. 8 shows the performance of the six models after 
applying the dimensionality reduction technique of PCA 
measured by the evaluation metric R2.

Fig. 9 shows MAE of the six models in this study after 
applying PCA.

Fig. 10 shows a very close performance of the four linear 
originated models when applying PCA and measuring it 
using MSE.

Fig. 11 shows the performance of the six models for the 
evaluation metric of RMSE when using the dimensionality 
reduction technique of PCA.

Fig. 12 shows the performance of the six models after 
applying the evaluation metric of MAPE when using feature 
selection of PCA.

6. Discussion of results of predicting the full load 
electrical power 

According to proven linearity between AT and PE, the 
first set of results, shown in Table 1, where six different 
models: four of them are linear-originated estimators (linear 
regression, ridge regression, lasso regression, elastic net) 
and the other two are ensemble methods (random forest and 
gradient boost models), without using a feature reduction 
method. The following details the discussion of the perfor-
mance metrics results found in Table 1.

It can be noted in Fig. 3 that almost all linear origi-
nated estimators (linear regression, lasso regression, ridge 
regression, elastic net regression) perform similarly for this 
evaluation metric. As for the ensemble estimators, it can be 
shown that random forest regressor performs worse than the 
latter four linear originated models with an R2 value of 0.884 
while the other ensemble model (gradient boost regressor) 
performs better than the other five models in Fig. 3 with an 
R2 of 0.912. 

The random forest regressor model performs worse than 
the linear originated model with an MAE of 4.536. However, 
gradient boost regressor as an ensemble method performs 
better than the other five models with an MAE of 3.955. 

The first four linear originated models perform almost 
similarly with a very close value of MSE. It can be noted 
clearly from Fig. 5 that random forest regressor performs 
worse than linear originated models with an MSE of 33.569. 

Fig.	8.	R2	value	for	the	six	regression	models	when	using	
PCA
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Fig.	9.	MAE	value	for	the	six	regression	models	when	
using	PCA
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Fig.	10.	MSE	value	for	the	six	regression	models	when	
using	PCA
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Fig.	11.	RMSE	value	for	the	six	regression	models	when	
using	PCA
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Fig.	12.	MAPE	value	for	the	six	regression	models	when	
using	PCA

0.98
1

1.02
1.04
1.06
1.08
1.1

1.12
1.14

Linear
regression

Lasso
regression

Ridge
regression

Elasticnet
regression

Random
forest

regression

Gradient
boost

regression

MAPE value when using PCA for regression models



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/8 ( 114 ) 2021

24

Our second ensemble method, gradient boost regressor, 
again performs the best between the previous five models in 
this evaluation metric with an MSE of 25.344. 

The linear originated models perform similarly with an 
RMSE of around 5.37. Random forest regressor performs 
worse in this evaluation metric with an RMSE of 5.793. The 
best model performance of RMSE is again gradient boost 
regressor with a value of 5.034 for this evaluation metric. 

The linear originated models produced a good performance 
in this evaluation metric with an MAPE of 0.946 %, which 
indicates a high level of accuracy. Random forest regressor per-
forms a little bit worse with an MAPE of 1.00 %. The best per-
formance for this evaluation metric goes to the second ensemble 
method (gradient boost regressor) with an MAPE of 0.872 %. 

Moreover, Table 2 shows the performance metrics after 
using the dimensionality reduction technique, Principal 
Component Analysis (PCA), with the same assumptions 
considered for Table 1 results. The following details the dis-
cussion of the performance metrics results found in Table 2.

The four linear originated models perform similarly for 
this evaluation metric with an R2 of around 0.85. Random for-
est regressor clearly performs a little bit better than the other 
four linear originated models after applying PCA. Gradient 
boost regressor has the best performance for R2 after applying 
the dimensionality reduction technique with a value of 0.872.

It can be clearly noted that the four linear originated 
models perform similarly with an MAE of around 5.13. The 
ensemble methods both perform better than the four linear 
originated models with a value of 4.902 for random forest 
regressor and best performance of 4.742 for gradient boost 
regressor for this evaluation metric after using PCA. 

Random forest regressor performs better than the latter 
four linear originated models for this evaluation metric with 
an MSE of 39.869. Again, gradient boost regressor performs 
the best in MSE measurement with a value of 37.02 after 
applying PCA. 

The four linear originated models perform similarly with 
an RMSE of around 6.57. The ensemble methods perform 
better than the previous four linear originated models with 
RMSE values of 6.314 and 6.084 for random forest regressor 
and gradient boost regressor as a best performer, respectively.

The four linear originated models perform similarly with 
an MAPE value of 1.126 % when using PCA. The perfor-
mance improves when using random forest regressor with 
an MAPE of 1.073 %. The best performance of MAPE after 
applying the dimensionality reduction technique of PCA 
goes to gradient boost regressor with an MAPE of 1.039 %.

Comparing the achieved results shown in Tables 1, 2 
reveals that performance dropped after using the dimen-
sionality reduction technique (PCA) almost in all evalua-
tion metrics that were used. The dimensionality reduction 
technique usually reduces complexity and cost in the system 
while retaining the most important information in the fea-
tures. Modeling two features instead of one linearly related 
feature with the target participated in the slight drop in 

performance. Moreover, despite the kind-of-simplicity of 
the techniques used (with and without using the dimension-
ality reduction technique) compared to more detailed and 
complicated techniques found in literature, they provided 
practically accepted results that confirms according to per-
formance metrics and close to other’s outcomes. 

One of the limitations of this study is that if we have a 
much smaller dataset, it is not guaranteed that the perfor-
mance of the chosen models will stay the same as it is known 
that machine learning models require a large amount of 
dataset to increase the performance. Also, the data that we 
have worked with is considered clean with no missing values, 
duplicates or outliers. Having any of the former circum-
stances may change the performance of the chosen models.

7. Conclusions

1. Using original data, came from a real confidential 
power plant, which was working on a full load for 6 years, 
we used machine learning models to predict CCPP full load 
electrical power output per hour depending on four main 
features (AT, RH, V, and AP). It has turned out that the data 
is clean with no missing values, duplicates or outliers.

2. It has been revealed that the gradient boost regression 
model outperformed linear regression, ridge regression, lasso 
regression, elastic net regression, and random forest regres-
sion, when using the dimensionality reduction technique 
(PCA) with the highest R2 of 0.912 and the lowest MAPE 
of 0.872 %. It has been revealed that the gradient boost 
regression model outperformed linear regression, ridge re-
gression, lasso regression, elastic net regression, and random 
forest regression, without using the dimensionality reduc-
tion technique (PCA) with the highest R2 of 0.872, and the 
lowest MAPE of 1.039 %. 

3. Moreover, prediction performance dropped slightly 
after using the dimensionality reduction technique almost in 
all regression algorithms used. The research results aligned 
with similar research, while MAPE was an added-used 
performance measure in this field. Finally, we were able to 
predict electrical power output in a CCPP based on a few 
features using simpler algorithms than reported deep learn-
ing and neural networks algorithms combined. That means a 
lower cost and less complicated procedure as per each, how-
ever, resulting in practically accepted results according to 
the evaluation metrics used. As a future work, this study can 
be extended by implementing other algorithms and testing 
on different kinds of power plants.
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