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1. Introduction

The operational reliability of structures in general and 
individual structural elements, in particular, is determined 
by the reliability of the elastic elements of various devices 
that make up the structural elements, and, consequently, the 
degree of accuracy of their work. 

Environmental influences are often of a pronounced 
dynamic nature.

Therefore, due to the ever-increasing need for devices 
with elastic elements operating under various dynamic 
modes, it is a relevant task to study dynamic characteristics 
and calculate, based on them, the elastic shell elements [1, 2].

The relevance of our research is in the development of a 
methodology for determining the dynamic characteristics of 
ESE, the analysis of the impact of changes in the parameters 
of ESE geometry on their dynamic characteristics. All this 
could make it possible to construct elastic elements with 
more accurate results of work, as well as design them with 
the required characteristics.

2. Literature review and problem statement

A wide class of elastic elements (EE) consists of elastic 
elements such as thin-walled shells of rotation, in particular 

corrugated, whose meridional cross-section is a wave-like 
curve. Such shells can be fabricated by applying concentric 
ring corrugations of arbitrary shape to any surface of rota-
tion, termed the initial or main one. Paper [1] deals with 
the theory of calculating multilayer shells made of isotropic 
materials. The shells are considered smooth, and anisotropy 
is caused by a combination of different materials. However, 
shells with an arbitrary meridian shape are not considered. 
Work [2] examines elastic elements in the form of thin-
walled shells of rotation with the shape of a meridian in 
the form of corrugations of various depths but consisting 
of mono materials. Such EEs have the same physical and 
mechanical properties in all directions. However, stresses 
in the EEs are determined only at static loads. Paper [3] 
determined elastic constants, taking into consideration the 
heterogeneity of the shells caused by uneven reinforcement. 
Refined values of such characteristics are used in research. 
Paper [4] sets out the provisions of finite-element methods 
for the calculation of a thin two-layer conical shell under the 
action of a uniformly distributed load using an axisymmetric 
finite element. The discrepancy between the results of the 
study of the proposed mathematical model and the available 
results of calculations using analytical formulas for thin 
two-layer conical shells does not exceed 9.3 %. From a math-
ematical point of view, the finite-element method is widely 
implemented in the calculation of building structures. How-
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The elastic element was considered as a shell of rotation with a com-
plex shape of the meridian and various physical and mechanical proper-
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geometric and physical properties of the shell elastic elements
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ever, taking into consideration the uneven distribution of 
elastic characteristics in the calculation of heterogeneous 
corrugated shells could be very difficult to express when 
filling in the initial data, which makes this method difficult. 
Paper [5] addresses the issue of the calculation of multilayer 
structures by the type of layered plates and shells. The au-
thors analyze the existing approaches in the field of calcu-
lation of layered plates and shells. It is established that the 
calculation of multilayer structures is considered using two 
main procedures: the theory of elasticity and the methods of 
mechanics of composite materials. The isotropic, anisotro-
pic, and orthotropic structures of the plates and shells, which 
obey Hooke’s law, were considered. The choice of calculation 
methodology depends on the composition of the multilayer 
structure, the rigidity of the middle layer, and the diverse 
orientation of all layers. Studies of the stressed-strained 
state and the distribution of forces between the components 
of multilayer structures in the above calculations show that 
the deformation state is mainly described by Hooke’s gener-
alized law. An important factor is to take into consideration 
the general anisotropy of the structure and the work of the 
middle layer in the layered structure. However, shells with 
a complex shape of the meridian and shells with anisotropy 
caused by uneven reinforcement were not considered. In [6], 
the same structures are considered but the SCAD program 
(RF) is used. A comparison of theoretical and computer cal-
culations is given. For the same reasons that were specified 
regarding the finite-element method (FEM), this method is 
not desirable in the calculation of SEE.

Paper [7] reports determining the natural oscillations of 
cylindrical shells made of composites. However, composites 
are assumed to be various combinations of plastic materials, 
rather than matrix-reinforcing fiber combinations. Study [8] 
considers various types of composites for use in building 
structures, but without the calculation of specific struc-
tural elements for dynamic effects. Work [9] considers the 
oscillations of the shell. Based on the variational Lagrange 
equation, certain tests of a viscoelastic ribbed truncated 
conical shell are obtained. Based on the finite element meth-
od, methods of solving and equations of proper oscillations of 
a viscoelastic ribbed truncated conical shell with articulated 
and freely operated edges are used. The problem is reduced 
to solving homogeneous algebraic equations with complex 
coefficients of a large order. However, that shell is homoge-
neous, with a simple meridian shape. In [10], the author de-
scribes the conditions of generalized orthogonality of the os-
cillation shapes of an elastic dissipative system, for which the 
traditional classical orthogonality conditions are a special 
case. Within the framework of the theory of temporal analy-
sis, the shapes of free oscillations of an elastic-plastic system 
are built on the basis of the use of a schematic diagram of 
deformation with strengthening. However, the cited paper 
does not consider the dynamic characteristics that depend 
on the geometry of the structure. Paper [11] states the ini-
tial boundary problem of viscoelastic bending of cylindrical 
round shells transversely reinforced on equidistant surfaces. 
Instantaneous elastic-plastic deformation of the components 
of the shell is described by the basic equations from the the-
ory of plastic flow with isotropic hardening. However, the 
dynamics of rotation shells made of composite materials are 
not considered. Study [12] discusses the multilayer shell and 
identifies stresses and deformations. However, the anisotro-
py of such shells is caused by different materials of the layers, 
and not by reinforcing fibers. Work [13] considers the tensile 

forces of the toroidal shell caused by pressure and rotation, 
as well as their effect on their natural oscillations. However, 
dynamic forces are not taken into consideration and hetero-
geneous shells are ignored. Paper [14] covers the stability 
of parametric oscillations in the shape of a hyperbolic pa-
raboloid but does not consider the shells of rotation and de-
termining the dynamic characteristics. In [15], a numerical 
analysis of nonlinear forced oscillations of a cylindrical shell 
with a combinational internal resonance in a fractional vis-
coelastic medium was performed. However, the dynamics of 
rotation shells made of composite materials are not touched 
upon. Study [16] considers nonlinear oscillations of a cylin-
drical shell of a layered polymer reinforced with carbon fiber. 
However, other combinations of composite materials were 
not analyzed, for example, a metal matrix and a stiffer metal 
fiber. The shell was considered as simple cylindrical rather 
than a rotational shell. Paper [17] determines the influence 
of the parameters of the non-constant load on the transient 
process of oscillations of the ribbed cylindrical shell. How-
ever, the operation of rotation shells under the action of a 
dynamic load was not taken into consideration. In [18], a 
new shell element with double curvature for free oscillations 
of layered structures of arbitrary shape was calculated on the 
basis of isogeometric analysis. However, the issues of oscilla-
tions of heterogeneous shells unevenly reinforced with metal 
fibers were not considered. The review of literary sources al-
lows us to assert that it is advisable to conduct a study aimed 
at determining the dynamic characteristics of the structures 
of heterogeneous shells of rotation under various influences.

3. The aim and objectives of the study

The purpose of this study is to analyze the effect of 
changes in the geometric parameters of ESE on the main 
dynamic characteristics. Our theoretical studies could make 
it possible to design elastic shell elements with th predefined 
dynamic characteristics, as well as to improve the accuracy 
of the measured values.

To accomplish the aim, the following tasks have been set:
– to draw up a design scheme of the elastic element as a 

shell of rotation under deformation and build an equilibrium 
equation; 

– to derive equations for determining the frequencies 
and shapes of the free oscillations of corrugated shell EEs;

– to bring the system of equations to a dimensionless 
form and to define boundary conditions; 

– to determine the displacements and stresses during the 
forced oscillations of corrugated EEs under the influence of 
arbitrary external loads.

4. The study materials and methods

Addressing the first three tasks makes it possible to estab-
lish the dependences of the natural frequencies and shapes of 
an elastic element on the main design parameters, and, con-
sequently, enables the design of elements with the predefined 
natural frequencies.

When tackling the fourth task, forced fluctuations of EE 
are considered under harmonic, unit pulse, unit step, and other 
external influences, which makes it possible to determine the 
AFC, PFC, pulse, and transition characteristics of the element 
and establish their dependence on the main design parameters.
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To perform the study, a dynamic model was adopted, 
which makes it possible to calculate the dynamic charac-
teristics of SEE with an arbitrary shape of the meridian. In 
deriving the system of equations, the validity of the Kirch-
hoff-Love hypotheses was allowed. The oscillations were 
considered small, the EE was considered a rotation shell 
with a rigid center, and all accepted assumptions correspond 
to the actual operating conditions of SEE. The external 
static load is replaced by the sum of the intensities of the 
inertial forces and the viscous friction forces. A system of 
partial differential equations describing the forced oscilla-
tions of the shell under the action of a harmonic load is built. 
The solution to the system of equations was expanded into 
a Fourier series for time and angle in the circumferential 
direction. A transition to the original system of ordinary 
linear differential equations with variable coefficients is 
carried out. When considering free oscillations, the original 
system was brought to a homogeneous form. The derivation 
of boundary conditions is given.

Since the resulting system of differential equations does 
not have a common solution, the integration was carried out 
by the numerical method according to a specially developed 
software, based on the specificity of the process under con-
sideration. To integrate the original system of differential 
equations, the classical predictor-corrector Hamming method 
with automatic selection of the integration step was chosen. In 
order to avoid “flattening” the vectors of solutions, the meth-
od of orthogonalization of solutions at intermediate points of 
integration, proposed by S. K. Godunov, was applied.

To implement the algorithm for the numerical calcula-
tion of the dynamic characteristics of EE, the frequency of 
natural and forced oscillations, a calculation subprogram 
was compiled.

5. Results of the development of a methodology for 
determining the dynamic characteristics of elastic shells 

5. 1. Justification of the estimation scheme
The estimation scheme of the median surface of an elastic 

element is considered as a thin-walled shell of rotation with 
an arbitrary meridian (Fig. 1).

The law of changing the thickness of the shell along the 
meridian is arbitrary. We believe that the material of the 

shell obeys the generalized Hooke’s law. The median surface 
of the shell is assigned to the Gaussian coordinates s and ϕ. 
One edge of the shell (s=0, θ=θ0) is connected to an abso-
lutely rigid flange of radius r0 and mass m0, the other edge 
(s=sk, θ=θk) is rigidly sealed. For the main unknowns, let us 
take the components of the vector of displacements: ur, uz, 
v, υ and the vectors of internal forces: Qr, Qz, S*, M1, related 
to the coordinate system (r, z, v), which are functions of the 
variables s, ϕ, t.

The following notations are introduced here:
– ur is the radial displacement; 
– uz is the axial displacement; 
– v is the circumferential displacement of an arbitrary 

point at the surface of the tin;  
– υ is the angle of rotation of the normal to the median 

surface in the meridional plane;
– Qr is the radial force;  
– Qz is the axial force;  
– S* is the reduced shear force at an arbitrary point of 

the shell, related to the unit length of the parallel;
– M1 is the meridional bending momentum at an ar-

bitrary point of the shell, related to the unit length of the 
parallel; 

– s is the arc length of the shell meridian, counted from 
the outer contour of the rigid center;

– ϕ is the angle between the initial meridian and the 
meridian passing through an arbitrary point of the median 
surface (Fig. 4); 

– θ is the angle of inclination of the normal of the unde-
formed median surface to the axis of the shell;

– R is the overall radius of the shell; 
– m0 is the mass of the rigid center;  
– r0 is the radius of the rigid center; 
– r is the radius of the parallel circle; 
– h is the thickness of the shell.

5. 2. Derivation of equations for determining the fre-
quencies and shapes of free oscillations of corrugated 
shell elastic elements

After drawing up the equations of equilibrium and math-
ematical transformations, the following system of equations 
is built:
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Fig. 1. The estimation scheme of an element
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where:
– ur=ur(φ, s, t), uz=uz(φ, s, t), v=v(φ, s, t), ( ), ,s tϑ = ϑ ϕ  – 

displacements;
– Qr=Qr(φ, s, t), Qz=Qz(φ, s, t), S*=S*(φ, s, t), M1=M1(φ, 

s, t) – forces;
– h is the shell thickness;
– qr=qr(φ, s, t), qz=qz(φ, s, t), qv=qv(φ, s, t) is the inten-

sity of inertial and pressure forces in the radial, axial, and 
circumferential directions.

The mechanical characteristics in the direction of axes 1 
(along the radius) and 2 (perpendicular to the radius) depend 
on the location of the reinforcing fibers and are equal to:
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If we take into consideration the refined value of the 
modulus of elasticity [3], then the parameter Е2 is calculated:
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The refined values of modulus of elasticity and Poisson 
coefficients were obtained for shells reinforced along the 
radius and along the ring.

5. 3. Bringing the system of equations to dimension-
less form and determining boundary conditions

To calculate the free and forced oscillations of the shell 
elastic elements, it is advisable to represent equations (1) in a 
dimensionless form. To this end, the following dimensionless 
parameters are introduced:
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where po, h0 are the normalizing multipliers of the frequency 
of oscillations and the thickness of the shell, the choice of 
the value for which is dictated by the specific conditions of 
the problem being solved. By introducing notation (2), the 
system of ordinary differential equations with respect to the 
amplitudes of the components of displacements and forces 
can be written in the following vector form:

,
d

y Ay q
dx

= + 		 (3)

where y is the state vector with components y1, y2,…..y16; 
А is the square matrix of variable coefficients;  
q  is the load vector.
Numerical methods are used to solve the system (1) since 

an analytical solution is almost impossible. Solutions to equa-
tions (1) in harmonic perturbation can be represented as:
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where k=0,1,2,3….
In (4), the lower and upper indices, at the constituent 

displacements and forces, are used to denote the values that 
are, respectively, symmetrical and obliquely symmetric rela-
tive to the initial meridian. 

Similarly, the load acting on the shell can be represented:
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The solution and load components on the right side of 
expressions (4) and (5) are s functions.

In these expressions:
– p is the frequency of change in the harmonic pertur-

bation; 
– k is half the value of the number of nodal meridians 

(the number of waves in the circumferential direction).
The derivation of boundary conditions was carried out 

as follows. 
Solutions to the system of equations (1) must be subject 

to boundary conditions in two circumferential cross-sec-
tions bounding the shell (in general, eight conditions at each 
edge). Boundary conditions are imposed directly on the 
main unknown movements or their corresponding efforts [1].

For the calculation scheme under consideration (Fig. 1), 
at any values of k, it is obvious that at s=sk (sk is the final 
length of the arc of the meridian) all components of the dis-
placements are zero:
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Boundary conditions can now be formulated to satisfy 
the solutions to the system of equations (1) at s=0. To this 
end, the dynamic equilibrium of the rigid center (flange) is 
considered [2]. Let the center O of the flange move in the 
directions x, y, z at Δx, Δy, Δz, respectively. Also, let the flange 
rotate relative to the axes at angles ψx, ψy, ψz. The vector of 
movement of an arbitrary point of the flange contour, under 
the condition of the smallness of movements and rotation 
angles, can be written as:
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where i, j, k are the orts of the x, y, z axes; r0 is the radius of 
the rigid center. 

Writing (7) in the movements on the stationary axes x, 
y, z, we obtain:
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0 0cos sin .z z x yr rξ = D + ψ φ − ψ φ

Mapping the vector of movement of an arbitrary point 
of the end (s=0) of the shell onto the x, y, z axes, we obtain:

sin cos ;x ru vξ = φ + φ

cos sin ;y ru vξ = φ − φ  			   (9)

.z zuξ =

Expressing the unit vectors i  and j  through the unit 
vectors re  and eν  on the contour of the flange, we obtain:

sin cos ;r vi e e= φ + φ

cos sin .r vj e e= φ − φ

Thus, all equations are brought to a dimensionless form 
for the convenience of solving and compiling a calculation 
program.

5. 4. Determining the displacements and stresses un-
der the forced oscillations of corrugated elastic elements

Stresses:
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where σ1, Т1, М1 are, respectively, the stress, force, and 
bending momentum in a cross-section perpendicular to the 
median surface; 

σ2, Т2, М2 are, respectively, the magnitudes in the 
cross-section parallel to the meridional plane.

In (10), the plus sign is used for stresses on the compressed 
surface. The stress in the cross-section parallel to the median 
surface is neglected according to the accepted Kirchhoff-Love 
hypothesis. The force factors included in equations (10) are de-
termined through the components of the state vector:

1 cos sin ;or ozT Q Q= θ + θ

1 01;M M=

2 cos sin ;or oz or

Eh
T Q Q u

r
= µ θ + µ θ +  		  (11)

3

2 1 01 cos ;
12
Eh

M M
r

= µ + υ θ

where
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2 2 ;or Ors OrCQ Q Q= +  

2 2
1 1 1 ;o Os OCM M M= +

2 2 ;or Ors Orcu u u= +  			   (12)

2 2
1 1 1 .o os ocυ = υ + υ

The equivalent stress is determined from energy theory:

2 2
1 2 1 2 .eqvσ = σ + σ − σ σ 			    (13)

Strength testing is carried out according to the following 
condition:

[ ] ,T
eqv

Tn
σ

σ ≤ σ = 			   (14)

where [σ] is the allowable stress; σr is the yield strength at 
stretching or compression; nТ is the yield factor.

Based on the calculation results, we constructed 
the plots showing the dependence of the first three fre-
quencies of natural oscillations on the thickness of the 
shell (Fig. 2).

A plot of the dependence of the first three frequencies of 
natural oscillations on the depth of the corrugation is shown 
in Fig. 3.

Fig. 4 shows the dependence of the first two frequencies 
of elastic elements on the element thickness.

The amplitude-frequency characteristics of the elastic 
element depending on the thickness of the shell were de-
rived (Fig. 5).

Fig. 2. Dependence of the first three natural frequencies of 
elastic elements on thickness: 	

k=0 – solid lines; k=1 – dashed lines

 0,2  0,25  0,3  0,35  h, mm 

λ

2,5

2

1,5

1

0.5

Fig. 3. The dependence of the first three natural frequencies 
of elastic elements on corrugation depth. 	

For k=0 – solid lines, for k=1 – dashed lines

 ΔR, mm 

Fig. 4. The dependence of the first two frequencies of elastic 
elements on thickness: solid line – the first frequency, 
bar line – the second; points – frequencies determined 

experimentally

h, mm  

Fig. 5. Amplitude-frequency characteristics of the elastic element depending on the thickness of the shell

h=0,2 mm 

h=0,3 mm 

h=0,4 mm 

Uz, 
μm 
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The phase-frequency characteristics of the elastic ele-
ment, depending on its thickness, are shown in Fig. 6.

Fig. 7 shows the diagrams of equivalent stresses of an 
elastic element.

The amplitude-frequency characteristics of the equiva-
lent stress of the elastic element are shown in Fig. 8.

Fig. 2–8 show plots of the dependences of oscillation 
frequencies, AFC, and PFC on geometric parameters, con-
structed as a result of our calculations.

6. Discussion of results of applying the methodology for 
determining the dynamic characteristics of elastic shells

The dependence of AFC, PFC, and stresses 
on the values of Pz, R, h, ΔR can be established 
by successively varying their values within the 
predefined limits. 

Fig. 2–4 show the dependence of the first 
two natural frequencies of EE on the shell 
thickness h, with axisymmetric oscillations 
(k=0), where 0.06≤h≤0.16 mm, the solid line ‒ 
the first frequency, dash ‒ the second, the 
points are the natural frequency determined 
experimentally.

Fig. 2, 3 demonstrate that all three consid-
ered first frequencies have the same pattern of 
change both depending on the thickness and 
depending on the depth of the corrugation. 
Namely, with increasing thickness, their values 
increase, and linearly, which is explained by an 
increase in the stiffness of ESE. With an in-

crease in the depth of the corrugation, that is, with an increase 
in the outer radius, their values decrease, which is explained 

by a decrease in stiffness and 
an increase in mass.

Fig. 5 shows the EE PFC 
depending on its shell thick-
ness. Analysis of the figure 
reveals that phase errors 
in the operating frequency 
range decrease with the in-
creasing thickness of the EE. 

Along with the metro-
logical parameters discussed 
above, the characteristics 
that determine the strength 
and reliability of EE are of 
great importance. The most 
important of them is the 
magnitude of stresses in the 
considered EE.

Stresses in the EE have been determined. As an object 
of our study, the EE is taken whose geometric and mechani-

cal characteristics are given 
in [8], under the action of an 
external acceleration field 
with an intensity of 1 g.

Fig. 7 shows the dia-
gram of equivalent stresses 
in EE at the frequency of 
the external field of accel-
erations coinciding with 
the first natural frequency 
since the greatest stresses 
occur at resonance frequen-
cies. Fig. 7 demonstrates 
that the tops and troughs 
of the SE corrugations are 
the most loaded. At the 
first natural frequency, the 
internal bends are loaded 

weaker than the outer ones. Moreover, the nature of the 
distribution of equivalent stresses along the EE meridian is 
qualitatively the same as with static loading.

Fig. 6. Phase-frequency characteristics of the elastic element depending on 
its thickness

h=0,2 mm 

h=0,3 mm 

h=0,4 mm 

ΨUz, 
rad 

Fig. 7. Diagrams of equivalent stresses of the elastic element

Ϭeqv, 
МPа 

Fig. 8. Amplitude-frequency characteristics of the equivalent stress of the elastic element

Ϭeqv, 
МPа 
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Fig. 8 shows the AFC of the maximum equivalent stress 
that occurs at the 20th point of orthogonalization, that 
is, at the apex of the first external bend. The maximum 
equivalent stress reaches the highest values at resonance 
frequencies. 

The undoubted advantage of our proposed calculation 
method is the possibility to design SEE with the predefined 
characteristics, using various combinations of reinforcement 
and types of corrugation.

For the specific use of our study results aimed at obtain-
ing a rational design solution for SEE, the following main 
stages must be performed:

– numerical calculation in order to obtain the depen-
dences of the dynamic characteristics (performance indica-
tors) of SEE on its design parameters; 

– analysis of the obtained dependences, determining the 
degree of influence exerted on the dynamic characteristics 
by various design parameters of SEE, defining the necessary 
set of design parameters;

– analysis of the dependences of the dynamic character-
istics of the SEE on its design parameters, taking into con-
sideration the restrictions imposed on these characteristics, 
the construction of cross-sections of the corresponding areas 
of operability.

Further work on the implementation of our study results 
would make it possible to design SEE with the predefined 
geometric and physical characteristics, as well as improve 
the accuracy of the measured results.

7. Conclusions 

1. We have built an estimation scheme of an elastic ele-
ment as a shell of rotation under deformation and construct-
ed a system of differential equations of shell equilibrium un-
der dynamic action. A special feature of the proposed scheme 

is that the shell is unevenly reinforced with metal fiber and 
has a complex shape of the meridian (corrugated).

2. Equilibrium equations have been compiled and a system 
of equations has been derived for determining the basic operat-
ing characteristics of ESE (natural frequencies, state vectors, 
AFC, PFC, and stresses), which make it possible to theoretical-
ly investigate the influence of the parameters of ESE geometry 
on these characteristics. A special feature of these equations 
is that they are built for heterogeneous shell elements. This 
heterogeneity is caused by the shape of the shell meridian (cor-
rugated surface), as well as uneven reinforcement of the shell, 
which makes the values of the Poisson coefficients and modulus 
of elasticity different at each point of the shell.

3. The system of equations for calculating the free and 
forced oscillations of the shell elastic elements is reduced to a di-
mensionless form with the boundary conditions determined. A 
feature of the proposed solution to this system of equations, as 
a solution to the problem of dynamics of inhomogeneous shells 
of rotations with a complex meridian shape, is the application 
of the orthogonalization method. The main performance char-
acteristics (AFC, PFC) have been determined, which makes it 
possible to theoretically investigate the influence of the param-
eters of SEE geometry on these characteristics.

4. We have determined the displacements, stresses of 
EE under dynamic loads. The dependences of the first three 
natural frequencies of the SEE on its thickness and the depth 
of the corrugation and the first two natural frequencies on its 
thickness have been established and analyzed. This analysis 
makes it possible to design SEE with predefined characteris-
tics. The implementation of our study results could allow for 
the following:

– a decrease in the volume of selective assembly of units, 
by (15÷20) %; 

– a decrease in the node-related defects by (10÷15) %; 
– an improvement in the accuracy of units’ operation 

by (20÷25) %.
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