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1. Introduction

One of the properties of materials that affect the stress-strain 
state of elastic bodies is their inhomogeneity. In the study of in-
homogeneous bodies, the real properties of materials are taken 
into account. Heterogeneous materials are widely used in various 
fields of technology. Various materials are being developed and 
created, the characteristics of which, in particular, the modulus 
of elasticity can change continuously along certain directions.

The complexity of the phenomena arising from the defor-
mation of inhomogeneous shells has given rise to a number of 
applied theories based on various hypotheses. To assess the 
area of applicability of existing applied theories and in order to 
create new refined applied theories, it is relevant to analyze the 
stress-strain state of inhomogeneous shells from the standpoint 
of three-dimensional equations of the theory of elasticity. The 
study of inhomogeneous shells from the standpoint of three-di-
mensional equations of the theory of elasticity, more adequately 
take into account their mechanical and geometric structure. 
The study of the stress-strain state of inhomogeneous shells on 
the basis of three-dimensional equations of the theory of elas-
ticity is associated with significant mathematical difficulties. 
Along with this, new qualitative and quantitative effects appear.

2. Literature review and problem statement

A number of studies are devoted to the study of prob-
lems in the theory of elasticity for a radial inhomogeneous 

cylinder. In [1], the main achievements in the field of inho-
mogeneous elastic bodies are presented. In [2], an overview 
of the history of the development of research in the field of 
inhomogeneous elastic bodies is given and frequently used 
analytical, numerical-analytical methods are characterized. 
In [3], the problem of torsion of a radial layered cylinder is 
studied and a possible violation of Saint-Venant’s principle 
in its classical formulation was shown.

In [4], the axisymmetric problem of the theory of elastic-
ity is studied for a radial layered cylinder with alternating 
hard and soft layers. The existence of weakly damped bound-
ary layer solutions is shown. A mechanical interpretation of 
penetrating solutions with a weak boundary layer is given.

In [5], on the basis of the method of asymptotic integration 
of the equations of the theory of elasticity, the axisymmetric 
problem of the theory of elasticity was studied for a radial 
inhomogeneous cylinder of small thickness, in the case when 
the elastic moduli vary along the radius according to a linear 
law. Three groups of solutions are obtained and the nature of 
the constructed solutions is explained. In [6], the problem of 
the theory of elasticity is studied for a radial inhomogeneous 
cylinder of small thickness with a fixed lateral surface. In [7], 
the problem of torsion of a radial inhomogeneous cylinder is 
studied in the case when the lateral surfaces of the cylinder 
are stress-free. In [8], the problem of torsion of a radial inho-
mogeneous cylinder with a fixed lateral surface was studied. 
In [9], an asymptotic method is used to study the behavior 
of solutions of an axisymmetric problem of elasticity theories 
for a radial inhomogeneous transversely isotropic cylinder of 
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small thickness. The analysis of the stress-strain state deter-
mined by homogeneous solutions is carried out.

In [10], the flexural deformation of a multilayer cylin-
der with cylindrical anisotropy is studied. In [11], the Al-
mansi-Michell problem for an inhomogeneous anisotropic 
cylinder is investigated by a numerical-analytical method. 
An analogue of the classical Lamé problem for an isotropic 
hollow cylinder with Young’s modulus depending on the ra-
dial coordinate and with a constant Poisson’s ratio is con-
sidered in [12]. In [13], the stress-strain state of an inhomo-
geneous orthotropic cylinder with a given inhomogeneity is 
studied. In [14], the method of discrete orthogonalization 
is used to numerically solve a three-dimensional problem of 
the theory of elasticity for a radial inhomogeneous cylinder. 
In [15], on the basis of the spline collocation method and 
the finite element method, the three-dimensional stress-
strain state of a radial inhomogeneous cylinder was studied 
and the numerical results obtained were compared. In [16], 
the analysis of the stress-strain state of a radial inhomo-
geneous cylinder subjected to uniform internal pressure is 
considered. In [17], an analysis was made of the problem of 
the theory of elasticity for a radial inhomogeneous hollow 
cylinder with a constant Poisson’s ratio and Young’s modu-
lus, which is an exponential function of the radius. In [18], 
an analytical solution is obtained for an axisymmetric 
problem of the theory of elasticity for a radial inhomoge-
neous cylinder. It is assumed that the elastic properties of 
the cylinder material are arbitrary functions of the radial 
coordinate. The solutions to the problem are reduced to 
integral equations.

An analysis of the thermomechanical behavior of 
radial inhomogeneous cylinders is presented in [19]. Sev-
eral numerical cases are investigated and conclusions are 
drawn about the general properties of thermal stresses in 
a cylinder. In [20], the axisymmetric problem of thermo-
elasticity for a radial inhomogeneous cylinder is studied. 
It is believed that the elastic properties of the material 
change in the radial direction by a power law. In [21], the 
thermoelasticity problem for an inhomogeneous cylinder 
was studied and the effect of the inhomogeneity of the 
stress-strain state of the cylinder was investigated. An 
analytical solution for an inhomogeneous cylinder sub-
ject to thermal loads, internal pressure and axial loads is 
presented. In [22], assuming that the thermoelastic pa-
rameters are power functions of the radial coordinate, the 
thermomechanical state of a radial inhomogeneous aniso-
tropic cylinder is studied. In [23], the thermoelasticity 
problem is studied for a radial inhomogeneous cylinder, 
when the elastic moduli are linear functions of the radial 
coordinate. In [24], exact solutions were obtained for gen-
eralized plane problems for a piezoelastic cylinder with a 
power-law radial inhomogeneity.

In the above works, axisymmetric problems of the the-
ory of elasticity are studied, in particular, when the elastic 
moduli are exponential or power-law functions of the radius. 
The nonaxisymmetric problem of the theory of elasticity in 
the case when the elastic moduli are arbitrary positive con-
tinuous functions of the radius is more complicated. Analysis 
of the stress-strain state of a radial inhomogeneous cylinder 
on the basis of three-dimensional equations of the theory of 
elasticity is reduced to the study of boundary value problems 
for systems of linear second-order partial differential equa-
tions with variable coefficients. Moreover, these coefficients 
include the elastic moduli, which are arbitrary positive con-

tinuous functions of the radius, which significantly compli-
cates the construction of solutions to problems.

3. The aim and objectives of research

The aim of this research is to study the behavior of the 
solution to the problem of the theory of elasticity and to reveal 
the features of the stress-strain state for a radial inhomoge-
neous cylinder of small thickness. This will make it possible to 
estimate the range of applicability of various applied theories 
for radial inhomogeneous cylindrical shells. Based on the 
analysis performed, a new, more refined applied theory can be 
constructed. To achieve this goal, it is necessary to solve the 
following tasks:

– to build inhomogeneous solutions for a radial inhomoge-
neous cylinder;

– to construct homogeneous solutions for a radial inhomo-
geneous cylinder and obtain asymptotic formulas for displace-
ments, stresses;

– to study the nature of stress-strain states corresponding 
to various types of homogeneous solutions.

4. Materials and methods of research 

The three-dimensional stress-strain state of a radial inho-
mogeneous cylinder of small thickness is studied on the basis of 
the equations of the theory of elasticity. A complete system of 
equations of the theory of elasticity for a radial inhomogeneous 
cylinder in a cylindrical coordinate system is presented and a 
boundary value problem is formulated. Taking into account 
that the formulated boundary value problems include a small 
parameter characterizing the thickness of the cylinder, the 
method of asymptotic integration of the equations of the theory 
of elasticity is used to construct the solution. This method is one 
of the most effective methods for studying the three-dimension-
al stress state of inhomogeneous bodies of finite dimensions.

5. Research results on the behavior of the solution 
to the problem of the theory of elasticity for a radial 

inhomogeneous cylinder of small thickness

5. 1. Construction of an inhomogeneous solution for a 
radial inhomogeneous cylinder

Let’s consider a nonaxisymmetric problem of the theory 
of elasticity for a radial inhomogeneous cylinder of small 
thickness (the problem of bending deformation of a radial 
inhomogeneous cylinder) [25]. Let’s refer the cylinder to the 
cylindrical coordinate system r, φ, z

1 2;r r r≤ ≤  0 2 ;≤ ϕ ≤ π  .L z L− ≤ ≤

The system of equilibrium equations in the absence of mass 
forces in the cylindrical coordinate system r, φ, z has the form [25]:

1
0,

1 2
0,

1
0.

r rrrzrr

r z
r

zrz zz rz

r r z r

r r z r

r r z r

ϕ ϕϕ

ϕ ϕϕ ϕ
ϕ

ϕ

∂σ σ − σ ∂σ∂σ
+ + + = ∂ ∂ϕ ∂

∂σ ∂σ ∂σ + + + σ = ∂ ∂ϕ ∂
 ∂σ∂σ ∂σ σ + + + =

∂ ∂ϕ ∂

		   (1)
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Here σrr, σzz, σφφ, σrφ, σφz, σrz – the stress tensor compo-
nents, which are expressed in terms of the displacement vec-
tors υr=υr(r, φ, z), υφ=υφ(r, φ, z), υz=υz(r, φ, z) as follows [25]:

( )

( )

( )

* * *
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* *
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
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	 (2)

Substituting (2) into (1), let’s obtain the equilibrium equa-
tions in displacements
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Here 
0

1
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characterizing the thickness of the cylinder, 
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0
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G
G
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0

,
G
λ
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mensionless quantities; G0 – some characteristic parame-
ter that has the dimension of the shear modulus.

Let’s assume that the Lame elastic parameters G=G(ρ), 
λ=λ(ρ) are arbitrary positive continuous functions of the 
variable ρ, the values of which can vary within the same order.

For bending deformation, the components uρ, uξ of the 
displacement vector are taken proportional to the cosine, 
and uφ – the sine of the azimuthal angle φ [25]:

( ), cos ,u uρ = ρ ξ ϕ  ( ), sin ,uϕ = υ ρ ξ ϕ  

( ), cos .u wξ = ρ ξ ϕ  	 (4)
 
Let’s suppose that a load acts on the lateral part of the 

boundary

( )
( )
( )
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1
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, ,
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t
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±
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±
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

		   (5)

where 
0

,rr

Gρρ
σ

σ =  
0

,r

G
ϕ

ρϕ

σ
σ =  

0

rz

Gρξ
σ

σ =  – dimensionless quan- 

tities; ( ), ,f ± ϕ ξ  ( ), ,t ± ϕ ξ  ( ),g ± ϕ ξ  – sufficiently smooth func-
tions and are of order O(1) with respect to ε.

Let’s assume that arbitrary boundary conditions are set at 
the ends of the cylinder, leaving the cylinder in equilibrium.

Consider the construction of particular solutions of 
equations (3) satisfying boundary conditions (5), i.e., inho-
mogeneous solutions.

When constructing particular solutions (3), various 
techniques can be used.

Let’s construct inhomogeneous solutions for prob-
lems (3), (5) by the method described in [26]. Let’s assume 
that the following boundary conditions are set on the lateral 
surfaces of the cylinder:

1

1

1

cos ,
!

sin ,
!

cos .
!

m

m

m

m

q
m

h
m

ρρ ±ρ=±

ρϕ ±ρ=±

ρξ ±ρ=±

 ξ
σ = τ ϕ


 ξ

σ = ϕ

 ξ

σ = ϕ


 		  (6)

Substituting (4) into (3) and (6), let’s obtain:
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∂

∂ =
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( ), , .
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q h± ± ± ±σ = τ

Let’s note that, having a set of solutions for different in-
tegers “m”, it is possible to construct solutions for arbitrary 
boundary conditions, given by smooth functions, by approxi-
mating them in advance by polynomials.

Let’s first consider an auxiliary problem. Let’s suppose that 
on the lateral surfaces, instead of a power-law load, a load is given:

1 1

1

cos ,

sin , cos .

e

q e h e

αξ
ρρ ± ρϕρ=± ρ=±

αξ αξ
± ρξ ±ρ=±

σ = τ ϕ σ =

= ϕ σ = ϕ 		  (9)

Taking into account (4), from (9) let’s obtain:

0 1B B a eαξ
±

 ∂
+ = σ ∂ξ 

 at 1.ρ = ± 			    (10)

Let’s seek solutions to problems (7), (10) in the form:

( ) ( ), ,a b eαξρ ξ = ρ 			   (11)

where ( ) ( ) ( ) ( )( ), , .
T

b u wρ = ρ υ ρ ρ 

After substituting (11) into (7), (10):
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

+ α = σ
			   (12)

Solutions (12) are a meromorphic function of the spectral 
parameter α. Its poles coincide with the spectrum of the homo-
geneous problem:
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α=0 is a fourfold point of the spectrum of the homogeneous 
problem (13). In a neighborhood of zero, solutions (12) have 
the form:
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Let’s introduce the operator
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α ⋅
⋅ =

+ α
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If the operator P (∙) is applied to the right-hand side of (10), 
then let’s obtain the expression on the right-hand side of (8).

Let’s substitute (14) into (11), and then into (7), (10). 
Next, act on (7), (10) by operator (15) and, equating the 
coefficients at the same powers of ξ, let’s obtain a recurrent 
system of boundary value problems to determine ( ):kb ρ
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Here δ0k – the Kronecker symbol, 0; .k m=
The solution satisfying the boundary condition (8) takes 

the form:

( ) ( ) ( )
44
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; .
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m km

k
k
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m k

+ −+

=

ξ
ρ ξ = ρ

+ −∑

The system of boundary value problems (16)–(20) is 
solved by the small parameter method.

If the thickness of the cylinder is sufficiently small, and the 
load given on the lateral surfaces is sufficiently smooth, then 
to construct inhomogeneous solutions it is advisable to use 
the first iterative process of the asymptotic method [27, 28]. 
Using the first iterative process, let’s construct particular 
solutions (3) satisfying the boundary conditions (5).

Let’s seek solutions (3), (5) in the form:

( ) ( )1
0 1, , ,u u u−

ρ ρ ρρ ξ ϕ = ε + ε +

( ) ( )1
0 1, , ,u u u−
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ξ ξ ξρ ξ ϕ = ε + ε +

	 	

(21)

Substitution of (21) into (3), (5) leads to a system whose 
successive integration over ρ gives the relations for the ex-
pansion coefficients uρ, uφ, uξ:

( )*
0 1 , ,u Cρ = ξ ϕ  ( )*

0 2 , ,u Cϕ = ξ ϕ  ( )*
0 3 , ,u Cξ = ξ ϕ

( )
* *

* *2 3
1 1 4

0

d , ,
C C

u C t C
H

ρ

ρ

 ∂ ∂ λ
= − + + + ξ ϕ ∂ϕ ∂ξ  ∫
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( )
*

* *1
1 2 5 , ,

C
u C Cϕ

 ∂
= ρ − + ξ ϕ ∂ϕ 

 		  (22)

( )
*

*1
1 6 , ,

C
u Cξ

∂
= −ρ + ξ ϕ

∂ξ

where 

( ) ( ) * *
* 0 3 2
1

0 0

,
, ,

f t C C
C

g g

ξ ϕ ∂ ∂
ξ ϕ = − −

∂ξ ∂ϕ

( )

( )

2 * 2 * 2 2 *
2 3 0 3

0 0 02 2
0

0

0

2 * 2 *
3 2

2
0

, ,

1
, ,

C C t C
G G g

g

t f
g

g

C C f
t

G

  ∂ ∂ ∂
+ + − =  ∂ξ∂ϕ ∂ϕ ∂ξ 

  ∂= − ξ ϕ +  ∂ξ 
  ∂ ∂ ∂ + = − ξ ϕ + ∂ξ∂ϕ ∂ξ ∂ϕ 

( )

( ) ( )

( )

( )

* * * *
* 5 0 6 0 2
4

0 0

*3 * 3 *
0 11 0 *2 2

12 3
0 0

2 * 2 * * *
1 0 1 1 0 1 1 3

2 2
0 0 0

3 * 3 *
1 0 3 3

3 2
0 0

1

0 0 1

2 (2 )

2

2 1 2
d ,

C t C Q C
C

g g

Q gg g C C
C

g g

g g C t t C Q C
g g g

g g C C t
g g

g G
f

g g H

−

−
−

−

−∂ ∂ ∂
ξ = − + +

∂ϕ ∂ξ ∂ϕ

+−  ∂ ∂
+ + + + ∂ξ ∂ϕ ∂ϕ 

− ∂ − ∂ ∂
+ + + +

∂ϕ ∂ξ ∂ξ

−  ∂ ∂ ∂
+ + + + ∂ξ ∂ξ∂ϕ ∂ϕ 

∂
+ + ρ

∂ξ ∫

( )

( )

( )

( )

2 * 2 * 2 2 *
5 6 0 6

0 0 02 2
0

* *
0 0 1* 1

4
0

3 *
0 0 1 1

1 3
0

3 *
0 0 1 1

1 2
0

4 * 4 *
0 0 1 2 2

3 3
0

0 0 1

* 0
1 4 0

0

2

2

2

2

C C t C
G G g

g

t Q g C
Q

g

t t t C
g

g

t g g C
g

g

t g g C C
g

G t G

t
t Q Q

g

 ∂ ∂ ∂
+ + − = ∂ξ∂ϕ ∂ϕ ∂ξ 

 + ∂
= − +   ∂ξ 

 − ∂
+ + +  ∂ξ 

 − ∂
+ + +  ∂ξ∂ϕ 

−  ∂ ∂
+ + + ∂ξ ∂ϕ ∂ϕ ∂ξ 

+ − −
+

− + −

( )

2 *
2

*

2 *
* *0 3
5 1 2

0

4 * 4 *
0 0 1 3 3

4 2 2
0

2 * 2 2
3 0

0 2 2
0

1 1
0

01 1

2
2

2
d d ,

C

t C
Q Q

g

t g g C C
g

C t g t
G g

g

tf f G
H g H

− −
−

− −

− −

 
∂  +  ∂ϕ∂ξ

 

  ∂
+ − +  ∂ξ 

−  ∂ ∂
+ + + ∂ξ ∂ξ ∂ϕ 

 ∂ ∂ ∂
+ − − + − ∂ϕ ∂ξ ∂ϕ∂ξ 

∂ λ ∂
− ρ − ρ

∂ξ ∂ξ∫ ∫

( )

( )

( ) ( )

( )

2 * 2 * 2 *
* *5 6 6

0 0 2 02 2

3 *
1

1 1 0 2

2 * *
* * * *3 1
3 1 2 0

3 * 4 *
1 3
3 3

0 1 4 * 4 * 4 *
3 2 2

3 2 2 4

2 * 2 2
2

1 2 2

2

2 2 2 2

C C C
G G Q Q

C
g t t

C C
Q Q Q Q

C C

g g
C C C

C f t g
G

− − −

∂ ∂ ∂
+ = − +

∂ξ ∂ξ∂ϕ ∂ϕ

∂
+ + + +

∂ξ ∂ϕ

∂ ∂
+ − + − +

∂ξ∂ϕ ∂ϕ

 ∂ ∂
+ + ∂ϕ ∂ξ ∂ϕ + − −

 ∂ ∂ ∂
+ + + ∂ξ∂ϕ ∂ξ ∂ϕ ∂ϕ 

∂ ∂ ∂ ∂
− − − −

∂ξ ∂ϕ ∂ϕ ∂ξ∂
4 ,t −−

ϕ

( ) ( ) ( ), , , ,t t t+ −ξ ϕ = ξ ϕ − ξ ϕ  ( ) ( ) ( ), , , ,g g g+ −ξ ϕ = ξ ϕ − ξ ϕ

( ) ( ) ( ), , , ,f f f+ −ξ ϕ = ξ ϕ − ξ ϕ

( )

( )

1
*
0

1 1

1

1 0

42
d d

4
d d ,

G GG
Q t

H H

G G
t

H H

ρ

− −

ρ

−

 + λ
= ρ + 

 

 + λ λ
+ ρ 

 

∫ ∫

∫ ∫

( )1
*
1

1 0

1

1 1

4
d d

2
2 d d

G G
Q t

H H

G
G t

H

ρ

−

ρ

− −

 + λ λ
= ρ + 

 

 λ
+ ρ 

 

∫ ∫

∫ ∫

( ) ( )

( )

1
*
2 0 1

1 1

1

1 0

4
2 d d

4
d d ,

G G
Q g g t

H H

G G
t

H H

ρ

− −

ρ

−

 + λλ
= − − ρ + 

 

 + λ λ
+ ρ 

 

∫ ∫

∫ ∫

( )

( )

1
*
3

1 0

1

0 0 1 1
1 1

4
d d

2
d d 2 ,

G G
Q t

H H

G
t G t G t

H

ρ

−

ρ

− −

 + λ λ
= ρ − 

 

 λ
− λ ρ + + − − 

 

∫ ∫

∫ ∫

( )

1
*
4 0 1

1 0

1

1 1

2
d d

4
d d ,

G
Q t t t

H H

G G
t

H H

ρ

−

ρ

− −

 λ λ
= − + ρ − 

 

 + λλ
− ρ 

 

∫ ∫

∫ ∫

( )

( )

1
*
5 0 0 1 1

1 0

1

1 1

2
2 d d

4
d d ,

G
Q G t G t t

H H

G G
t

H H

ρ

−

ρ

− −

 λ λ
= + − + + ρ − 

 

 + λλ
− ρ 

 

∫ ∫

∫ ∫

( )1

1

4
d ,k

k

G G
g

H−

+ λ
= ρ ρ∫  

1

1

2
d ,k

k

G
t

H−

λ
= ρ ρ∫  

1

1

d .k
kG G

−

= ρ ρ∫

(21), (22) allow one to obtain asymptotic formulas for 
the components of the stress tensor.
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5. 2. Construction of a homogeneous solution for a 
radial inhomogeneous cylinder

Any solution of the equilibrium equations (3) that sat-
isfies the condition of the absence of stresses on the lateral 
surfaces is called a homogeneous solution.

Let’s start building homogeneous solutions. In (5), let’s 
substitute f±(φ,ξ)=t±(φ,ξ)=g±(φ,ξ)=0:

1

1

1

0,

0,

0.

ρρ ρ=±

ρϕ ρ=±

ρξ ρ=±

σ =
σ =

σ =


			    (23)

Let’s assume that the stresses are set at the ends of the cylinder

( )
( ) ( )

1

2 3

cos ,

sin , cos .

sl l

s sl

f

f f

ρξ ϕξξ=± ξ=±

ξξ ξ=±

σ = ρ ϕ σ =

= ρ ϕ σ = ρ ϕ  		  (24)

Here, f1s(ρ), f2s(ρ), f3s(ρ) (s=1,2) – sufficiently smooth 
functions having order O(1) with respect to ε.

Let’s seek solutions (3), (23) in the form:

( ) ( ), , cos ,u u eαξ
ρ ρ ξ ϕ = ρ ϕ  

( ) ( ), , sin ,u eαξ
ϕ ρ ξ ϕ = υ ρ ϕ

( ) ( ), , cos .u w eαξ
ξ ρ ξ ϕ = ρ ϕ 		   (25)

Substituting (25) into (3), (23):

( )( )
( )( )

( )( )
( )

( )
( )

( )
( ) ( )

2

2

2

2 2 2

2

3 2
0,

2

2 2

0,

He u e u w

e u u
G

w e u

Ge u

H G u u
e

G H G

Ge G w

G e w u

G u

−ερ −ερ

−ερ

ερ

−ερ

−ερ

ερ

−ερ

′ + λε + υ + α +′ 
 υ − ε + υ + +′ ′

+ε = 
 +α + α ε′ 

′ υ − ε + υ −′ 
 ε + + λε −′

− + 
− ε υ + ε + υ′  

+ε α υ − ε + λ α =

′ + εα +′ 
+ε + λ α + υ +

  

  

 

 

 

 

 

 



( )
2 2 0.

Ge w w

He w u

−ερ

ερ




















+ε − ε +′
+ε α + λεα =′

 

 

	 (26)

( )( )( )
( )( )

( )

1

1

1

0,

0,

0.

He u e u w

Ge u

G e w u

−ερ −ερ

ρ=±

−ερ

ρ=±

−ερ

ρ=±

 + λε + υ + α =′


υ − ε + υ =′

 + εα =′


  

 

 

 		  (27)

To solve (26), (27), let’s use the asymptotic method [27, 28] 
based on three iterative processes.

Homogeneous solutions corresponding to the first iter-
ation process can be obtained from (22) if to put f ±(φ,ξ)= 
=t±(φ,ξ)=g±(φ,ξ)=0 in them:

( )

( ) ( )

(1)

3 2
0 0

0 0

20
0

0 0

, ,

6 2 2 2
cos ,

2
d

u

t t
C D

g g

G
D C Q t O

g H

ρ

ρ

ρ ξ ϕ =

    ξ ξ
+ ξ + + +        

= ϕ  λ +ε + ξ + + ε    
∫

( )

( ) ( )

(1)

3 2
0 0

0 0

20
0

0

, ,

6 2 2 2
sin ,

u

t t
C D

g g

t
D C Q O

g

ϕ ρ ξ ϕ =

    ξ ξ
− + ξ + − + +        = ϕ   +ε + ξ + ρ + ε    

	 (28)

( )

( )

(1)

2
0

0

2
20

1
0

, ,

3
2

2 2
cos ,

2 2

u

t
C D

g

t
Q C D O

g

ξ ρ ξ ϕ =

  ξ
− + + − ξ +    = ϕ   ξ +ε − ρ − ρ − ρξ + ε      

where C, D are arbitrary constants,

( )

( )

1
1 0 1 0

0 2 2
0 0 0 1 1

1 1
0
2

0 01 1 1 0

4
d d

2

41 2
d d d d ,

G Gt t g t G
Q t

g g g H H

G GGG G
t t

g H H g H H

ρ

− −

ρ ρ

− − −

 + λ
= − + ρ − 

 

   + λλ λ
− ρ − ρ   

   

∫ ∫

∫ ∫ ∫ ∫

( )

( )

( )

1
1 0

1
0 0 0 1 1

1

0 1 1

1
0 1 1

0 0 01 0

1 0 1
2

0 0

1
0
2
0 1 1

0 0
1

0

0 1 1

43
d d

1 2
d d

22 2
d d

2

4 ( )
d d

2

1 2
d d

G Gg t
Q t

G g G H H

G
t

G H H

t G tG
t

g H H G g

t t g
g g

t G G G
t

g H HG t

G G G
t

g H H

ρ

− −

ρ

− −

ρ

−

ρ

− −

ρ

− −

 + λλ
= − + ρ − 

 

 λ λ
− ρ + 

 

  +λ λ
+ ρ + + 

 

− +

 + λ
+ ρ − 

 +
+  λ

− ρ − 
 

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

( )0
2
0 1 0

.

4
d d

G GG
t

g H H

ρ ρ

−

 
 
 
 
 
 
 
 
 
 
  + λ λ − ρ    

∫ ∫

These solutions correspond to the fourfold eigenvalue α0=0.
The stress corresponding to solution (28) is as follows:

( ) ( ) ( )1 1 1 0,ρρ ρϕ ρξσ = σ = σ =

( ) ( ) ( ) ( )1 0

0

42
cos ,

G GtG
D C O

H g Hξξ

  + λλ
σ = + ξ − + ε ϕ     

( ) ( ) ( )1 0 0

0

2
sin ,

G g t
C O

gϕξ

 +
σ = + ε ϕ 

 
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( ) ( ) ( ) ( )1 0

0

4 2
cos .

G G t G
D C O

H g Hϕϕ

  + λ λ
σ = + ξ − + ε ϕ     

	 (29)

The solution corresponding to the second iterative pro-
cess will be sought in the following form:

( ) ( ) ( ) ( )2
20 21 ...,u u uρ = ρ + ε ρ +  

( ) ( ) ( ) ( )( )2
20 21 ... ,υ ρ = ε υ ρ + ευ ρ +  

( ) ( ) ( ) ( )( )
1

2 2
20 21 ... ,w w wρ = ε ρ + ε ρ +  

( )
1
2

0 1 ... .
−

α = ε α + εα + 		   (30)

Substituting (30) into (26), (27) after some transforma-
tions let’s obtain:

( ) ( )
4

2(2)

1

, , ,j j
j

u T Uρ ρ
=

ρ ξ ϕ = ∑  

( ) ( )
4

2(2)

1

, , ,j j
j

u T Uϕ ϕ
=

ρ ξ ϕ = ε∑  

( ) ( )
1 4

2(2) 2

1

, , ,j j
j

u T Uξ ξ
=

ρ ξ ϕ = ε ∑ 		  (31)

where

( )

( ) ( )

( )

2
0

0 02 2

2
0 0 1

0 0

1
2

0 1

d d

1

d

exp cos ,

j

j

j

j j

x x x
H H

U O
t g

x
g H

ρ ρ

ρ ρ

−

  λ λ
α − +  

  = + ε + ε ×  − α λ  +    
 

× ε α + εα +… ξ ϕ  

∫ ∫

∫

( )

( ) ( )( )

( )

( )

2

2 2 2
0 0 0 1 1 0 0 0 1 0

2
0 0 0

1
2

0 1

2

exp sin ,

j

j j

j

j j

U

g g G t G t g t

G g

O

ϕ

−

=

 − α + + + α −
 ρ + +

= ×α 
 
+ ε  

 
× ε α + εα + ξ ϕ  



( ) ( ) ( )

( )

2
0 1 02

0
0 0

1
2

0 1exp cos .

j

j j
j

j j

g t
U O

gξ

−

 α −
 = −α ρ + + ε ×

α  
 

× ε α + εα +… ξ ϕ  

To determine α0j:

( ) ( )
( )

2 4 2
1 0 2 0 0 1 1 0 0

2
0 0 0 0 0

2

2 0.

g g g g t g t

t g G t g

− α + − α +

+ − − =

The stress corresponding to the second iterative process 
is as follows:

( )

( )

( )

( ) ( )

( )

2

4
0

1 1

1 12
0

4
1

1 2
0

1 1

1

2
0 1 0

0

1
2

0 1

4
d d

2
d d

2
d

4
d d

2
d

exp c

x

j

x

j

j x
j

j

j

j j

G G
y y x

H

G
y x

H

G
x x

H
T

G G
y x

H

G
x x

H

g t
O

g

ρρ

ρ

− −

ρ

− −

ρ

−

ρ
=

− −

ρ

−

−

σ =

 + λ
−α +  

  λ
−    +α + 

λ −  = ε ×
  + λ
α × +    + × 

λ +  
α −

× + ε

 
× ε α + εα + ξ  

∫ ∫

∫ ∫

∫
∑

∫ ∫

∫

 os ,ϕ

( )

( )

( )

( )
( )
( )

( )

1

12
0

1

24
0 1 0 12

1 0

1

2 2
0 0 0

1 1

0 0 0 0

2
0 1 0

1

1
2

0 1

4
d

2 d

2
d

d

2
d

21

d

exp

j

j

j
j

j

j

j

G G
x

H

xG x

G
x x

H

G x
g t

T
g G

x
H

g g

G t

g G G t

g t

G x O

ρ

−

ρ

−

ρ

−

ρ

−
ρϕ ρ

=

−

ρ

−

−

+ λ
−

 
+ 

 −α + λ +  
 

+ α −  σ = ε + − × λ +  
 − α ×
 
× + + 

− × 
+ + × 

 
× α −  

× + ε

× ε α + εα

∫

∫

∫

∫
∑

∫

∫

( ) sin ,j

 
+ ξ ϕ  


( )

( )

( )

( ) ( )

( )

2
0

1

1 4
12 2

0 2
1 0 1 0

0

1

1
2

0 1

4
d

2
d

4
d

exp cos ,

j

j j
j j

j j

G G
x x

H

G
x

H
T

g t

g

G G
x O

H

ρ

−

ρ

−

ρξ
=

ρ

−

−

+ λ
α −

λ
− −

σ = ε α ×
α −

− ×

 + λ
× + ε 

  
 

× ε α + εα + ξ ϕ  

∫

∫
∑

∫

 	 (32)
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( )

( )

( ) ( )

( )

4
2

2
0 1 01 2

0
0

1
2

0 1

4

2

exp cos ,

j
jj

j

j j

G G

H
T g t G

O
g H

ϕϕ
=

−

+ λ
+

σ = × α − λ + − α ρ + ε
  

 
× ε α + εα +… ξ ϕ  

∑

( ) ( )
( )
( )

( )

( )

0

2 2
0 0 0

1 4
1 12 2

1 0 0 0 0 0

2
0 1 0

2
0 0 1

0 0

1
2

0 1

2

21

exp sin ,

j

j

j
j j

j

j

j

j j

g g

G t
T G

G g G t

g t

t g
O

g

ϕξ
=

−

α ρ +

 − α ×
 
× + + 

σ = ε + + × 
α + + × 

 
× α −  

− α
+ + ε

α

 
× ε α + εα +… ξ ϕ  

∑

( )

( )

( )

( )

4
2

2
0 1 01 2

0
0

1
2

0 1

42

exp cos .

j
jj

j

j j

G GG
H H

T
g t

O
g

ξξ
=

−

+ λλ
+ ×

σ = × α −
× − α ρ + ε 

 

 
× ε α + εα +… ξ ϕ  

∑

The solution corresponding to the third iterative process 
is sought in the form:

( ) ( ) ( ) ( )( )3
30 31 ,u u uρ = ε ρ + ε ρ   

( ) ( ) ( ) ( )( )3
30 31 ,υ ρ = ε υ ρ + ευ ρ   

( ) ( ) ( ) ( )( )3
30 31 ,w w wρ = ε ρ + ε ρ   

( )1
0 1 .−α = ε β + εβ +  		  (33)

After substituting (33) into (26), (27) for the first terms 
of the expansion, let’s obtain:

( )0 0 0,N fβ =  		 (34)

where

( ) ( ) ( ){ }0 0 0 0 * 0 0, 0 at 1 ,N f f L fβ = τ β β = ρ = ±

( ) ( ) ( )
( )

2
0 0 0 0 1 0 2 0 * 0 0

0 0 1 0

,

,

f N N N f L f

L L f

τ β = + β + β β =

= + β

( )
( )

( )

1 1

0 1 1

1 1

0 0

0 0 ,

0 0

H

N G

G

∂ ∂
= ∂ ∂

∂ ∂

( )

( )

1 1

1

1 1

0 0

0 0 0 ,

0 0

G

N

G

∂ λ + ∂
=

∂ + λ∂
 

2

0 0

0 0 ,

0 0

G

N G

H

=

1

0 1

1

0 0

0 0 ,

0 0

H

L G

G

∂
= ∂

∂
 1

0 0

0 0 0 ,

0 0

L

G

λ
=  

( )0 30 30 30, , .
T

f u w= υ 

Spectral problem (34) is divided into two independent 
problems with respect to ( )30 30,

T
u w   and 30.υ  These prob-

lems, respectively, coincide with the problem describing the 
potential solution and the vortex solution of a plate inhomo-
geneous over the thickness [26].

At the next stage, let’s obtain a boundary value problem 
for determining ( )1 31 31 31, ,

T
f u w= υ   and β1

( ) ( )
( ) ( )

0 1 0 1 0

0 0 0 1 6 7 01 1

, ,

,

f f

M f M E E f
ρ=± ρ=±

τ β = τ β β


β = ρ + β +
 	 	 (35)

where

( )0 1 0 1 0 2

2
0 3 0 1 4 1 5

,

2 ,

E E E

E E E

τ β β = ρ + + β +

+β ρ + β β + β

( )

( )

1 1

0

1 1

0 0

0 0 0 ,

0 0

H

E

G

∂ ∂
=

∂ ∂

( ) ( )
( ) ( )

1 1 1 1

1 1 1 1 1

0

0 ,

0 0 0

G

E G G G

λ∂ − ∂ λ − ∂ − ∂ λ
= λ∂ + ∂ ∂ − ∂  

( )
( ) ( )

2

0 0 0

0 0 ,

0

E G

G G

= + λ
− + λ − + λ

3

0 0

0 2 0 ,

0 0

G

E G

H

−
= −

−

4

0 0

0 0 ,

0 0

G

E G

H

−
= −

−

( )

( )

1 1

5

1 1

0 0

0 0 0 ,

0 0

G

E

G

−∂ λ − ∂
=

−∂ − λ∂

6

0 0

0 0 0 ,

0 0

E

G

−λ
=

−

7

0

0 .

0 0 0

E G G

−λ −λ
=
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The solvability condition (35) is the orthogonality of the 
right-hand side of the solution to the adjoint problem:

( ) ( )* * *
0 0 0 0 0,N f N fβ = −β =

where ( )* * * *
0 0 0 0, , .

T
f u w= υ 

Satisfying this condition, for β1 let’s obtain:

2
1

1

,
K
K

β =

where

( )

( )

( )

*
30 30 0

1
*

1 30 30 0
1

* *
30 0 30 0

0
*

30 0

d ,

2

w Gw u

K Gu u w

G u u

Hw w

−

 
  ′λ + +′    
  ′= + + λ + ρ′    
  + υ υ +  + β
  +  

∫

  

  

  

 

( )

( )
( )

( )
( )

2

*
30 0

* *
30 0 30 0

0 * *
30 0 30 0

* *
30 0 30 0

*
30 02

0 * *
30 0 30 0

30 30

30 30

2

K

w
G

w u w

w u Gw u

Gu w u w

Gu u

Hw w G

u u

G

=

  υ −
+ λ −  

−υ −  
 β −  ′λ + +′  −ρ  ′ + + λ ′   

 +
− β ρ + = + + υ υ  

 ′λ − λ −′ +  ′− λυ − υ′ 



   

   

   

 

  

 

 

( )
( )

1

1

*
0

30 30 *
0

30 30

d .

u

G u

Gu G

−

ρ

+


 ′υ + λ +′ + υ ′+ − υ′  

∫



 




The solutions corresponding to the third iteration 
process are:

( ) ( )
( ) ( )

( )( )

3 1
0 0 0 13

11
0 2

1
0 1

2

exp cos ,

k k k k

K
k

k k

k k

p p
u F

p O

− −∞

ρ
−=

−

 ′−β ψ − β ψ +′′ ′ = ε × ′+β ψ + ε  
× ε β + εβ +… ξ ϕ

∑

	  (36)

( ) ( ) ( ) ( )( )3 1
30 0 1

1

exp sin ,k
K k k

k

u F O
∞

−
ϕ

=

 = ε υ + ε ε β + εβ + ξ ϕ ∑  

( ) ( )

( )( )

3 2
0 0 2

1

1
0 1exp cos .

K k k k
k

k k

u F p p O
∞

−
ξ

=

−

 = ε β ψ − ψ + ε ×′′ 

× ε β + εβ + ξ ϕ

∑


Here ψk (ρ) are solutions to the generalized spectral Pa-
pkovich problem [26]

( )( )
( )( ) ( )( ) ( )

( )

0

2
0 1 2 2

4
0 0

2

0,

k

k k k k

k k

p

p p p

p

′′ψ ρ +′′

 ′ ′′+β ψ ρ − ψ ρ − ψ ρ +′ ′′  

+β ψ ρ =

 

( )0

2
;

4
G

p
G G

+ λ
=

+ λ
 1

1
;

2
p

G
=  ( )2 ,

4
p

G G
λ

=
+ λ

( )
30
kυ  are the solutions to the boundary value problem

( ) ( )( ) ( ) ( )

( ) ( )( )

2
30 0 30

30

1

0,

0.

k k
k

k

G G

G
ρ=±

 ′ ′ υ ρ + β υ ρ =  

 ′υ ρ =


 



The stresses corresponding to the third iteration process are:

( )

( )( )

3
0

1

1
0 1

( )

exp cos ,

k k k
k

k k

F O
∞

ρρ
=

−

 σ = β ψ + ε × 

× ε β + εβ + ξ ϕ

∑


( ) ( )( )
( )( )

3
30

1

1
0 1

( )

exp sin ,

k
k

k

k k

F G O
∞

ρϕ
=

−

 ′σ = υ + ε × 
 

× ε β + εβ + ξ ϕ

∑ 



( ) ( )

( )( )

3
0 30

1

1
0 1

( )

exp sin ,

k
k k

k

k k

F G O
∞

ϕξ
=

−

 σ = β υ + ε × 

× ε β + εβ + ξ ϕ

∑ 

  			  (37)

( )

( )( )

3
1

1

1
0 1

2 ( )

exp cos ,

k k
k

k k

F G p O
∞

ρξ
=

−

 σ = − ψ + ε ×′ 

× ε β + εβ + ξ ϕ

∑


( ) ( )

( )( )

3 1
0 2 0 0

1

1
0 1

( )

exp cos ,

K k k k k
k

k k

p p F O
∞

−
ϕϕ

=

−

 σ = λ − β ψ + β ψ + ε ×′′ 

× ε β + εβ + ξ ϕ

∑


( )

( )( )

3 1
0

1

1
0 1

( )

exp cos ,

K k k
k

k k

F O
∞

−
ξξ

=

−

 σ = β ψ + ε ×′′ 

× ε β + εβ + ξ ϕ

∑


The general solution (26), (27) will be the sum of solu-
tions (28), (31), (36) corresponding to the above three iterative 
processes:

( ) ( ) ( ) ( )1 2 3, , ,u u u uρ ρ ρ ρρ ξ ϕ = + +

( ) ( ) ( ) ( )1 2 3, , .u u u uξ ξ ξ ξρ ξ ϕ = + +

( ) ( ) ( ) ( )1 2 3, , .u u u uϕ ϕ ϕ ϕρ ξ ϕ = + +

5. 3. Qualitative analysis of stress-strain states cor-
responding to different types of homogeneous solutions

Let’s give a characteristic of the stress-strain states deter-
mined by homogeneous solutions. During bending deformation, 
the stresses σξξ, σρξ, σφξ in the cross section are statically equiva-
lent to the transverse force X and bending moment bM  relative 
to the OY axis in the z=0 plane. For X  and bM there are [25]:

( )
2

1

2

0

d d ,
r

rz z
r

X r r
π

ϕ= σ − σ ϕ∫ ∫  	 	 (38)

2

1

2
2

0

d d .
r

b zz
r

M zX r r
π

= − σ ϕ∫ ∫   			   (39)

In dimensionless coordinates (38) and (39) take the form:
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( )
1

* * 2

1

d ,X e ερ
ρξ ϕξ

−

= πε σ − σ ρ∫  			   (40)

( )
1 1

* * 2 * 3

1 1

d d .ερ ερ
ρξ ϕξ ξξ

− −

= πεξ σ − σ ρ− πε σ ρ∫ ∫bM e e 		 (41)

Here, asterisks denote the factors at cosφ, sinφ in the cor-

responding stress expressions and 2
0 0

,
X

X
G r

=


 3
0 0

b
b

MM
G r

=


 – di-  
mensionless quantities.

Let’s investigate the connection of homogeneous solu-
tions with the transverse force X and the bending moment 
Mb in the section ξ=const.

Let’s represent the displacements in the form:

( ) ( )1 *

1

cos ,k
k k

k

u u C e u
∞

α ξ
ρ ρ

=

= + ρ ϕ∑ 

( ) ( )1 *

1

sin ,k
k k

k

u u C e
∞

α ξ
ϕ ϕ

=

= + υ ρ ϕ∑  		  (42)

( ) ( )1 *

1

cos .k
k k

k

u u C e w
∞

α ξ
ξ ξ

=

= + ρ ϕ∑ 

The second term includes displacements determined by 
the second and third groups of solutions.

For stresses:

( ) ( )1 *
1

1

cos ,k
k k

k

C e E
∞

α ξ
ρξ ρξ

=

σ = σ + ρ ϕ∑

( ) ( )1 *
2

1

sin ,k
k k

k

C e E
∞

α ξ
ϕξ ϕξ

=

σ = σ + ρ ϕ∑ 		  (43)

( ) ( )1 *
3

1

cos .k
k k

k

C e E
∞

α ξ
ξξ ξξ

=

σ = σ + ρ ϕ∑

Here

( ) ( ) ( )1 ,k k k k

e
E G w u

−ερ 
ρ = ρ + α ρ′ ε 

 

( ) ( ) ( )2 ,k k k kE G e w−ερ ρ = α υ ρ − ρ  

( ) ( ) ( ) ( ) ( )3 .k
k k k k k

u
E H w e u−ερ  ρ′

ρ = α ρ + λ + ρ + υ ρ ε 


 

After substituting (43) into (40), (41):

( ) ( )

( ) ( )( )
( ) ( )( )

0 0 0

0

1
* 2

1 1

2

d ,k
k k

k
k k k k

G g t
X C O

g

e w w
C e G e

u

−ερ∞
α ξ ερ

= −

 +
= −πε + ε + 

 
 ρ + ε ρ +′
 +π ρ
 +εα ρ − υ ρ 

∑ ∫
 


	 (44)

( ) ( )

( ) ( )( )
( ) ( )( )

( )
( )

( ) ( )( )

0 0 0

0

1
* 2

1 1

1
* 3

1 1

2

d

d .

k

k

b

k k
k

k k k k

k k

kk
k

k k

G g t
M D O

g

e w w
C e G e

u

H w

uC e e
e

u

−ερ∞
α ξ ερ

= −

∞
α ξ ερ

−ερ
= −

 + 
= πε + ε + 

 
 ′ ρ + ε ρ +
 +π ξ ρ−
 +εα ρ − υ ρ 

 α ε ρ +
 

′ ρ + −π ρ 
 +λ  +ε ρ + υ ρ   

∑ ∫

∑ ∫

 









	 (45)

Let’s subtract from the first equation of system (26) the 
second equation of this system

( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )( )

( ) ( )

( ) ( ) ( )( )( )
( ) ( ) ( )

( ) ( ) ( )
( )

2

2

2

2 2 2

3 2

2

2 2

k k k k k

k k k k

k k k k

k k k

k k

k k

k k

He u e u w

e u u
G

w e u

Ge u

H G u u
e

G H G

Ge G

−ερ −ερ

−ερ

ερ

−ερ

−ερ

ερ

′ ρ + λε υ ρ + ρ + α ρ +′ 
 υ ρ − ε ρ + υ ρ + ρ +′ ′
 +ε −
 +α ρ + εα ρ′ 

′ − υ ρ − ε ρ + υ ρ +′ 
 ε + ρ + λε ρ −′

+ − 
− ε υ ρ + ε + υ ρ′  

−ε α υ ρ + ε +

  

  

 

 

 

 

 ( ) ( ) 0.k kwλ α ρ = 	 (46)

Multiplying both sides of (46) by eερ and integrating 
within the limits [–1; 1], let’s obtain:

( )
( ) ( )( )

( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( )
( ) ( )( )

( ) ( ) ( )( ) ( )
( ) ( )

1

1

1

1

2

2 2 2

2

2

d

( d

3

2

2

k

k k

k k

k k k

k k k

k k

k k k

k k k

k

He u

ee u

w

Ge u e

G G u

Ge w

e G u

H G u Hu

G G

−ερ

ερ−ερ

−

−ερ ερ

−

ερ

ερ

′ ρ +′
 

   ρ −υ ρ + ρ +
+λε  

+α ρ   

′ − υ ρ − ε ρ + υ ρ ρ +′ 

ευ ρ − ε ρ + υ ρ +′

+α ε ρ +′

+ +α ε ρ − υ ρ +

+ε + ρ + υ ρ + ε ρ −′

− ε υ ρ + ε + λ′

∫

∫



 



 

 





 

 ( )

1

1

d 0.

k kw e

−

ερ

 
 
 
 

ρ = 
 
 
 

α ρ  

∫



	 (47)

By integrating by parts using boundary conditions (27), 
it follows from (47)

( ) ( )( )
( ) ( )( )

1
2

1

d 0.
k k

k k k

e w w
G e

u

−ερ
ερ

−

 ρ + ε ρ +′ ′
  ρ =
 +εα ρ − υ ρ 

∫
 


		  (48)

Let’s multiply both sides of the third equation of system (26) 
by e2ερ and, integrating within the limits [–1; 1], let’s obtain:

( ) ( )( )
( ) ( ) ( )( )

( ) ( )( )
( ) ( )

1
2

1

2

1
2

1 2 2

d

d 0.

k k k

k k k

k k

k k k k

G e w u e

G u

Ge w w e

He w u

−ερ ερ

−

−ερ ερ

− ερ

′ ρ + εα ρ ρ +′ 

 ε + λ α ρ + υ ρ +
 
 + +ε ρ − ε ρ + ρ =′
 
+ε α ρ + λεα ρ ′ 

∫

∫

 



 

 

	 (49)

By integrating by parts using boundary condition (27) 
from (49):

( )
( ) ( ) ( )( )( )

( ) ( )( )
( ) ( )( )

1
3

1

1
2

1

d

d .

k k

k k k

k k

k k k

H w
e

e u u

e w w
G e

u

ερ
−ερ

−

−ερ
ερ

−

 εα ρ +
  ρ =
+λ ρ + +ε ρ + υ ρ ′  

 ρ + ε ρ +′
 = ρ
 +εα ρ − υ ρ 

∫

∫



 

 


	  

(50)

Taking into account (48) from (50) let’s obtain:

( )
( ) ( ) ( )( )( )

1
3

1

d 0.
k k

k k k

H w
e

e u u
ερ

−ερ
−

 α ε ρ +
  ρ =
+λ ρ + ε ρ + υ ρ ′  

∫


 
	 (51)
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(44), (45) taking into account (48) and (51) take the form:

( ) ( )0 0 0

0

2
,

G t g
X C O

g

 +
= −πε + ε  

		 (52)

( ) ( )0 0 0

0

2
.b

G t g
M D O

g
 + 

= πε + ε 
 

		  (53)

Let’s expand the shear force X and the bending moment 
Mb in series in ε

2 2
0 1 0 1bX X X M M M= ε + ε + = ε + ε +   	 (54)

Substituting (54) into (52), (53) for C and D:

( )
0

0
0 0 0

,
2

g
C X

G t g
= −

π +
		  (55)

( )
0

0
0 0 0

.
2

g
D M

G t g
=

π +
		  (56)

Thus, the constants C and D are determined through the 
principal parts of the shear force X and the bending moment Mb.

Solution (28) corresponding to the first asymptotic process 
together with (31) determines the internal stress-strain state of 
the cylinder. Solution (31) defines a simple edge effect in a radial 
inhomogeneous cylinder. In the first terms of the expansion in the 
parameter ε, solution (28) together with (31) can be considered 
as a solution according to the applied Kirchhoff-Love theory. 
The stress state corresponding to solution (36) has the character 
of a boundary layer and is localized at the ends of the cylinder. 
The first terms of its asymptotic expansion are equivalent to 
the Saint-Venant’s edge effect of an inhomogeneous plate [26].

Thus, the analysis of the solutions shows that the stress state 
of a radial inhomogeneous cylinder consists of three types: an 
internal stress state, a simple edge effect, and a boundary layer.

Let’s consider the question of the fulfillment of bound-
ary conditions (24) at the ends of the cylinder. Let’s seek 
the solution in the form (42). To determine the coefficients 

( )* 1,2,...kC k = , let’s use the Lagrange variational principle. 
The variational principle takes the following form [29, 30]:

( )
( )
( )

* *
1

12
* * 2

2
1 1

* *
3

d 0.

s

s
s

s
l

f u

f u e

f u

ρξ ρ

ερ
ϕξ ϕ

= −

ξξ ξ
ξ=±

 σ − δ +
 
 + σ − δ + ρ =
 
 + σ − δ 

∑ ∫ 	 	 (57)

Here, asterisks denote the factors at, cosφ, sinφ in the 
corresponding expressions for stresses and displacements. 
After substituting (42) into (57), assuming *

kCδ  indepen-
dent variations, let’s obtain an infinite system of linear alge-
braic equations with respect to * :kC

*
0

1

;jk k j
k

F C d
∞

=

=∑  ( )1,2,... .j = 		  (58)

Here

( ) ( )
( ) ( )
( ) ( )

( )( ) ( )( )( )

11
2

2
1

3

d

exp exp ,

k j

jk k j

k j

k j k j

E u

F E e

E w

l l

ερ

−

 ρ ρ +
 

= + ρ υ ρ + ρ × 
 
+ ρ ρ  

× α + α + − α + α

∫






( ) ( )
( ) ( )
( ) ( )

( )

( ) ( )
( ) ( )
( ) ( )

( )

11
1

* 2
0 21

1 *
31

12
1

* 2
22

1 *
32

d exp

d exp ,

j

j j j

j

j

j j

j

f u

d f e l

f w

f u

f e l

f w

ερ

−

ερ

−

 ρ ρ +
 

= + ρ υ ρ + ρ α + 
 + ρ ρ 

 ρ ρ +
 

+ + ρ υ ρ + ρ −α 
 + ρ ρ 

∫

∫













( ) ( ) ( ) ( )0 0 0*
2 2

0

2
,s s

G g t
f f C O

g

+
ρ = ρ − + ε

( ) ( ) ( )( )
( ) ( )

1*
3 3

0

0

1

42
,

s

s sf f D Cl

G GtG
O

H g H

+ρ = ρ − + ×

 + λλ
× − + ε  

Using the smallness of the parameter ε, let’s construct an 
asymptotic solution to system (58). Let’s clarify the assump-
tions regarding the external load, taking into account that

( ) ( )2 1 ,Oξξσ =  ( )
1

2 2 ,Oρξ

 
σ = ε  

 ( )
1

2 2 .Oϕξ

 
σ = ε  

The tangential stresses given at the ends of the cylinder 
are decomposed as follows:

( ) ( ) ( ) ( )1 2 1 2
1 1 1 2 2 2, ,s s s s s sf f f f f f= + = +

where

( )
1

1
1 1

1

1
d ,

2s sf f
−

= ρ∫  ( ) ( )2 1
1 1 1 ,s s sf f f= −

( )
1

1
2 2

1

1
d ,

2s sf f
−

= ρ∫  ( ) ( )2 1
2 2 2 ,s s sf f f= −  ( )1,2 .s =

Let’s note that

( )

1
*

1

2 2
1 0 2 0 0 1 1 0

1 4
02

0 1
1

2

0

d

exp ,

j

j j
j

j

g g g g t g t

g
T

O

ρξ
−

=

σ ρ =

 − α + −
 +
 = ε α × 

  + ε    
α ξ 

×   ε

∫

∑

( )

1
*

1

2
1 0 1 01 4

02 1
2

1 0 0 0

d

2 2

exp .
2

j j

j
j

j

g G G

T
G g t O

ϕξ
−

=

σ ρ =

 − α + α +
α ξ   

= ε      ε+ + + ε    

∫

∑ 	 (59)

Based on (59), it is assumed that ( )
1

1 2
1 ,sf O

 
= ε  

 ( )
1

1 2
2 .sf O

 
= ε  

 
 
Then the quantities ( )2

1 ,sf  ( )2
2sf  can be of the same order as ( )3 :sf ρ

( ) ( )2
1 1 ,sf O=  ( ) ( )2

2 1 ,sf O=  ( )1,2 .s = 		 (60)
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Arbitrary constants Tj, Fk ( )1,4, 1,2,...j k= =  will be sought 
in the form:

0 1 0 1,j j j k k kT T T F F F= + ε + = + ε +   	  (61)

After substituting (61) into (58), taking into account (60), 
let’s obtain the following systems of linear algebraic equations:

4

0
1

kj j k
j

q T
=

=γ∑  ( )1;4 ,k = 	 (62)

0
1

nk k n
k

t F d
∞

=

=∑  ( )1,2,... .n = 	 (63)

Here

( ) ( )
( )( )

( )( )

( ) ( )

3
0 1 2 0 1 0

2
0 0 1 0 1 0

0

2 2
0 2 0 1 0 1 0 1 0

0

0 0 0 0
exp exp ,

j j

j j

kj

k j

k j k j

g g t t

g t g g
q

g

g g g g t t g

g

l l

 
 α − + α − + 
 α α − − = + + × 
 
 α − α + −
 +
  

    α + α − α + α
× +        ε ε    

( ) ( ) ( )

( ) ( ) ( )

2
0 1 0 0

1 0 31
1 0 0

2
1 0 1 0 0

2 0 32
0 0

exp

d ,

exp

k k
k

k

k

k k
k

k

g t l
f

g

g t l
f

g

−

   α − α   τ ρ + − α ρ ρ +      α   ε   γ = ρ 
   α − −α  + τ ρ + − α ρ ρ       α  ε    

∫

( )1
1

0
lim ,s

s

f
ε→

τ =
ε

( )
( )

( ) ( ) ( )
( ) ( )

3
0 0

1

1 1
1 0 0 2

1
1 2

0 30 30 0 0 0 2

0 0 0 0

d2

2

exp exp ,

nk

n n

k

n n n n

k n
k k k n n n

k n k n

t

p

p p

G p p

l l

−

− −

−
− −

=

  ′α ψ +′′  ψ +′  = ρ ×′ + α ψ − α ψ′   
 +α υ υ + +α ψ α ψ − ψ′′ ′′ 

    α + α − α + α
× +    ε ε     

∫
 

( )

( )

( )
( ) ( ) ( ) ( )

( )

( )

( )

( )

11 12

3 3
0 0 0 0

1 1
1 0 1 0

0

1 1
0 2 0 2

0 0
21 30 31 2

2
0 0 2

2 2
exp

n

n n n n

n n n n
n

n n n n

n

n n n

d

f f

p p

p pl

p p

f f f

p p

− −

− −

− −

−

=

 ρ × ρ ×
 

    ′ ′−α ψ −′′ −α ψ −′′    
    × − α ψ + +′ × − α ψ + +′α     = +       ε′ ′+α ψ  +α ψ       

 + υ + ρ × +
 
 × α ψ − ψ′′ 

 ( ) ( ) ( ) ( ) ( )
( )

1
0

1

0 0
2 30 32

2
0 0 2

exp d ,n

n

n n n

l

f

p p

−

−

 
 
 
 
  α   − ρ    ε 
 
 ρ υ + ρ ×
 
 × α ψ − ψ′′ 

∫



( ) ( )0 *
2 20

lim ,s sf f
ε→

= ρ  ( ) ( )0 *
3 30

lim .s sf f
ε→

= ρ

The definition of the constants Tjt, Fkt (t=1, 2, 3...)  in-
variably reduces to systems whose matrices coincide with 
the matrices of systems (62), (63).

The system of infinite linear algebraic equations (63) is 
always solvable under physically meaningful conditions im-
posed on the right-hand side [26, 29, 30]. The decidability and 
convergence of the reduction method for (63) is proved in [26].

6. Discussion of the results of studying the behavior 
of the solution to the problem of elasticity theory for a 

radial inhomogeneous cylinder of small thickness

An asymptotic theory of a radial inhomogeneous cyl-
inder of small thickness is constructed. Assuming that the 
elastic moduli are arbitrary positive continuous functions 
along the radius, the values of which vary within the same 
order, boundary value problems (3), (5) are formulated.

An algorithm for constructing particular solutions of equi-
librium equations (3) for special types of loads (6) is present-
ed. Having a set of such solutions, it is possible to construct 
solutions of the equilibrium equations for arbitrary boundary 
conditions specified on the lateral surface by smooth functions, 
having previously approximated them by polynomials. In the 
case when a smooth load is specified on the lateral surface of the 
cylinder, using the first iterative process of the asymptotic in-
tegration method, particular solutions (21), (22) of equilibrium 
equation (3), i.e., inhomogeneous solutions, are constructed.

Using the method of asymptotic integration of the equa-
tions of the theory of elasticity, homogeneous solutions are 
constructed, i.e. any solutions of equilibrium equations (3) 
satisfying homogeneous boundary conditions (23). It is 
shown that the first iterative process corresponds to a cer-
tain penetrating solution (28). The stress state determined 
by the penetrating solution (28) is equivalent to the shear 
force X and the bending moment Mb relative to the OY axis 

in the z=0 plane. The second iterative process determines the 
solution (31) of the edge effect type, which is similar to the 
edge effect in the applied theory of shells. Solutions (36) corre-
sponding to the third iterative process have the character of a 
boundary layer. These solutions are localized at the ends of the 
cylinder, and they decrease exponentially with distance from 
the ends. Boundary layer solutions are absent in applied shell 
theories. The first terms of its asymptotic expansion are equiv-
alent to the Saint-Venant’s edge effect in the theory of inhomo-
geneous plates. Penetrating solution (28) and solutions (31), 
which have the character of the edge effect, determine the inter-
nal stress-strain state of a radial inhomogeneous cylinder. It is 

found that homogeneous solutions 
are composed of three types: pene-
trating solutions, solutions such as 
a simple edge effect, and boundary 
layer solutions.

It should be noted that the 
method of asymptotic integration 
of the equations of the theory of 
elasticity does not allow to correct-
ly solve the problem of the theory 
of elasticity for thick radial inho-
mogeneous cylinders. The division 
of the stress-strain state into inter-
nal and boundary layer solutions 

is valid only for a cylinder of small thickness. The obtained 
asymptotic formulas (28), (31), (36), which are typical for 
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thin cylinders, are not suitable for radial inhomogeneous thick 
cylinders.

When the values of the elastic modulus for a radial inho-
mogeneous cylinder do not change within the same order of 
magnitude, but strongly differ from each other, then a weak 
boundary layer appears. Then the processes of determining 
the penetrating solution and the weak boundary layer are not 
separated. In such cases, the asymptotic integration method is 
not effective for solving the problem of elasticity theory.

7. Conclusions

1. In the case when a smooth load is specified on the lateral 
surface of a radial inhomogeneous cylinder having order O(1) 
with respect to ε, the inhomogeneous solutions are constructed 
by an asymptotic method. In particular, when the lateral sur-
face of the cylinder is loaded by forces polynomially depending 
on the axial coordinate, the construction of inhomogeneous 
solutions is reduced to solving a recurrent system of boundary 
value problems.

2. Using the method of separation of variables, the for-
mulated boundary value problem is reduced to a spectral 
problem. As ε→0, three groups of asymptotic solutions of 
the spectral problem are obtained by the method of as-
ymptotic integration based on three iterative processes. 
The overall solution will be the sum of the solutions of the 
respective three iterative processes.

3. On the basis of asymptotic analysis, the features of the 
stress-strain state in a radial inhomogeneous cylinder are 
revealed. The solutions corresponding to the first iteration 
process are penetrating solutions. Penetrating solutions 
are determined through the shear force X and the bending 
moment Mb relative to the OY axis in the z=0 plane. The 
stress state corresponding to the second iteration process 
represents edge effects in the applied theory of shells. The 
third iterative process determines solutions that have the 
character of a boundary layer and are localized at the ends 
of the cylinder. It is found that the penetrating solution and 
solutions having the character of the edge effect determine 
the internal stress-strain state of a radial inhomogeneous 
cylinder.
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