
Information technology

117

1. Introduction

The use of distributed computing to perform large-scale
tasks in various applied industries is relevant and cost-effective.
Grid technologies are used to perform computations based on
distributed decentralized computing resources. The problem
of using decentralized resources of the grid environment is the
complexity of setting up and configuring the environment for
executing tasks. Cloud technologies are focused on centralized
configuration of the task execution environment. The combina-
tion of grid and cloud computing concepts for interoperability
and integration began in 2010 [1]. There is no significant in-
compatibility between the definitions of grid [2] and cloud [3],
the main difference is in purpose and scale.

This confirms the possibility of integrating these technolo-
gies, which will allow to consider grid resources as distributed
and heterogeneous resources for storing data and performing
computations, and cloud computing as services deployed on
these resources. This principle focuses on the infrastructure
aspects of cloud computing, defined as IaaS (Infrastructure
as a Service). Solving the problem of interoperability between
grid and cloud is a powerful business and scientific model.

The main differences between grid and cloud computing,
on which the solution to the problem of interoperability
should be focused, are presented in Table 1.

Table 1

Conceptual differences between grid and cloud computing

Concept Grid Cloud

Combining or coor-
dinating resources

from different
domains

Yes No

Computing/data
warehouse abstrac-

tions

Executable Task
File/Data File

Server/Application/
Service/Disk Space

Quickly turn
on/off virtual ma-

chines (API-based)
No Yes

Interactivity No Yes

Individual runtime No Yes

Pricing model
Free use model

(investment and
maintenance)

Pay per unit of
resource use

THE DEVELOPMENT OF
THE SYSTEM FOR ARC

NORDUGRID BASED
GRID-COMPUTING

ORGANIZATION USING
VIRTUAL ENVIRONMENTS

OF THE DOCKER
PLATFORM

O l g a P r i l a
Corresponding author

PhD, Associate Professor*
E-mail: olga.prila1986@gmail.com

V o l o d y m y r K a z y m y r
Doctor of Technical Sciences, Professor*

V o l o d y m y r B a z y l e v y c h
PhD, Associate Professor, Head of Department*

O l e k s a n d r S y s a *
*Department of Information and Computer Systems

Chernihiv Polytechnic National University
Shevchenka str., 95, Chernihiv, Ukraine, 14027

The study of modern frameworks and means of
using virtualization in a grid environment confirmed the
relevance of the task of automated configuration of the
environment for performing tasks in a grid environment.

Setting up a task execution environment using
virtualization requires the implementation of appropriate
algorithms for scheduling tasks and distributed storage
of images of virtual environments in a grid environment.
Existing cloud infrastructure solutions to optimize the
process of deploying virtual machines on computing
resources do not have integration with the Arc Nordugrid
middleware, which is widely used in grid infrastructures.
An urgent task is to develop tools for scheduling tasks
and placing images of virtual machines on the resources
of the grid environment, taking into account the use of
virtualization tools.

The results of the implementation of services of
the framework are presented that allow to design and
perform computational tasks in a grid environment
based on ARC Nordugrid using the virtual environment
of the Docker platform. The presented results of the
implementation of services for scheduling tasks in a grid
environment using a virtual computing environment are
based on the use of a scheduling algorithm based on the
dynamic programming method.

Evaluations of the effectiveness of the solutions
developed on the basis of a complex of simulation
models showed that the use of the proposed algorithm
for scheduling and replicating virtual images in a
grid environment can reduce the execution time of a
computational task by 88 %. Such estimates need further
refinement; it is predicted that planning efficiency will
increase over time with an increase in the number of
running tasks due to the redistribution of the storage of
virtual images

Keywords: grid, cloud computing, virtualization,
task scheduling, replication

UDC 004.272.2:004.75
DOI: 10.15587/1729-4061.2021.249462

How to Cite: Prila, O., Kazymyr, V., Bazylevych, V., Sysa, O. (2021). The development of the system for ARC Nordugrid based

grid-computing organization using virtual environments of the Docker platform. Eastern-European Journal of Enterprise Tech-

nologies, 6 (2 (114)), 117–124. doi: https://doi.org/10.15587/1729-4061.2021.249462

Received date 02.11.2021

Accepted date 03.12.2021

Published date 29.12.2021

Copyright © 2021, Authors. This is an open access article under the Creative Commons CC BY license

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/2 (114) 2021

118

Methods for scheduling tasks that provide the necessary
level of quality of service to users are important for the grid en-
vironment. Methods for scheduling tasks should be integrated
with the mechanisms for placing tasks on virtual machines and
mechanisms for placing virtual machines, respectively.

In [11] a mechanism for replication and deletion of vir-
tual images in the case of a limited storage resource in a
distributed environment is presented. It is envisaged to use
a weighted algorithm for calculating priorities, taking into
account the parameters of the resource cost, the number
of requests to the file and the storage time of the file in the
storage. This algorithm has been proven to be effective com-
pared to LRU (least recently used) and LFU (least used)
in terms of number of successful tasks, unsuccessful task
execution, and cost of using storage resources. The use of
the algorithm increases the number of successfully complet-
ed tasks by 15 % compared to LRU and by 10 % compared
to LFU [11]. The mechanism is not focused on integration
with planning methods in a grid environment, but it can be
used to implement replication and redistribution of virtual
machine images in a grid environment.

In [12], an approach is proposed that uses the dynamic
programming method and the knapsack problem 0–1 (knap-
sack problem 0–1) strategy to optimize resource consump-
tion and power consumption in a distributed environment.
Physical servers are represented by knapsacks, while VMs
are virtual machines – their items. To host the virtual ma-
chine, a server is selected whose parameters are most con-
sistent with the parameters of this VM. If the server cannot
accept a virtual machine deployment request, the virtual
machine deployment requests will be sorted in descending
order. Comparison of the proposed algorithm with the Open
Stack algorithm, the default algorithm in CloudSim, the
random placement algorithm and the first match algorithm
is presented. The results of the assessment and comparison
showed the advantage of the model developed by the au-
thors for scheduling the placement of virtual machines and
requests on the resources of the cloud environment. The
proposed approach is focused on optimizing the costs and
energy consumption of cloud resources. For optimization
according to other criteria, in particular, according to the
execution time of computations, it is necessary to adapt the
presented algorithm.

In [13], the metaheuristic algorithm MOACS (Multi-ob-
jective ant colony system) is proposed, the criteria for opti-
mizing the placement of which is to maximize the number
of dismissed physical servers and minimize the number of
migrations of virtual machines. Evaluations of the efficiency
of the proposed algorithm for cloud storage resources are
presented. For optimization according to the criterion of the
execution time of calculations, which is determined by the
optimization criterion within this study, it is necessary to
adapt the presented algorithm.

The study showed that there are no full-fledged solutions
for the use of dynamic virtual images in a grid environment, in
particular, based on the ARC Nordugrid middleware. In par-
ticular, the problems of combining and coordinating resources
of different domains for cloud infrastructures, interactivity
and setting up a runtime environment for grid infrastructures
are unresolved. The scheduling engines presented do not have
integration with middleware used in grid infrastructures.

All this suggests that it is advisable to develop tools for
using virtualization in a distributed grid environment, as
well as methods for scheduling tasks and placing images of

The combination of grid and cloud computing concepts
will effectively solve large-scale problems of various applied
industries using distributed computing resources and the
ability to flexibly configure the task execution environment.

2. Literature review and problem statement

The study is focused on an overview of solutions for
using virtual images in a grid environment based on the
ARC Nordugrid middleware [4], which is the most popular
for building grid infrastructures, on the one hand. In addi-
tion, studies of existing algorithms for scheduling tasks in a
distributed environment using virtualization are presented.

ARC Nordugrid introduced the Run Time Environment,
which can be defined as Docker and Singularity images [4].
However, the implemented tools do not provide the ability to
use dynamic environments when performing tasks in a grid
environment, since the installed RTEs must be enabled by
the resource administrator and the required RTEs must be
enabled before using them.

[5] proposes expanding grid systems with cloud resourc-
es, which will allow additional resources to be used when
grid resources are overloaded with the HTCondor batch
system and ARC NorduGrid middleware. The presented
solution allows the deployment of a virtualized grid cluster
using ARC middleware in any public or private cloud – the
PaaS (Platform as a Service) model for running grid pro-
grams. However, the problems of scheduling the execution of
tasks and monitoring of virtual machines are not solved. The
need for additional research is noted to estimate the costs of
sending and storing images of virtual machines.

The RainBow framework provides the ability to in-
stall software on a virtual machine using Windows and
GNU/Linux. However, for the presented solution, estimates
of the efficiency of performing computational tasks are not
given, in particular, according to the computation time.
Optimizing the placement of virtual machine images on
distributed resources is also not considered.

The work [7] presents solutions for the deployment of the
computational element Arc Nordugrid on the resources of
the cloud infrastructure using the Open Stack software. The
presented solution is focused on the use of specific software
for performing computational tasks in the field of phys-
ics (ATLAS [8]) within a private cloud. The efficiency of
using the proposed solutions has been proven, however, the
possibility of configuring virtual images for solving other
types of computational problems is not provided.

The Nimbus project [9] develops open solutions for building
and deploying individual runtime environments in the cloud in
order to solve scientific problems. The solutions are being de-
veloped based on the OpenStack project, are in a state of active
development and maintenance, but are not aimed at providing
integration with middleware for grid infrastructures.

There are solutions for mapping virtual machines to
the corresponding physical resources (Virtual Machine
Placement, VM-PM mapping) of cloud infrastructures with
optimization according to various criteria. In particular,
regarding criteria for energy conservation, load balancing,
ensuring reliability, quality of service, reducing the size of
virtual machine images, resource consolidation, etc. Most
multi-objective optimization solutions focus on two criteria,
only about 10 % of studies take into account several criteria,
which is a highly complex task [10].

Information technology

119

parallel. For example, in the structure of the problem shown
in Fig. 1, the following levels will be introduced:

1) Level 1: includes Block 1;
2) Level 2: includes Block 2, Block 3.
For dependencies between tasks, the dimension of the

transferred data is indicated.

Fig. 1. The structure of the task presented in the DAG form

Sequentially for each level, the planning of the place-
ment of subtasks is performed by exhaustive search. For
each placement option, the value of the objective function is
calculated, taking into account the links with the subtasks
of the previous level and defined as (1):

1
1

_ _1
1

2

,
wait execm

data transfer VI transfer
i

exec

time time
k

time timef

k cost time
=

 + + 
⋅ +  + +=   

 + ⋅ ⋅ 
∑ 	 (1)

1 _
1

1 _

2

,
j

wait exec
m

data transfer
j j

i VI transfer

exec

time time

k time
f f

time

k cost time

−
=

  + +
  ⋅ + + +  = +  +  
 + ⋅ ⋅ 

∑

2,.. ,j N=

where timewait – waiting time in the queue, depending on the
number of tasks in the queue for the resource;

timeexec – execution time of the computational unit on
the selected resource, which depends on the complexity of
the computational task and the computational capacity of
the resource;

timedata_transfer – time spent on data transfer;
cost – cost of using the resource per unit of time (it can

be ignored for non-commercial grid environments);
k1, k2 – normalizing factors of the priority of time or cost

of performing calculations;
mj – the number of computing units at the level;
timeVI_transfer – time to transfer the virtual image.
At each level, only solutions are saved that correspond

to the minimum value of the objective function of each
placement option. Ineffective solutions are rejected and
not considered. The optimal placement of the problem is
determined by going backwards from the bottom up with
the choice of optimal solutions for each placement option
on the level.

The optimal solution to the problem includes optimal
solutions to subproblems that determine the possibility of
using the dynamic programming method.

virtual machines, taking into account the use of virtualiza-
tion technology.

3. The aim and objectives of research

The aim of research is to develop a system for organizing
grid computing with the implementation of task launch ser-
vices using virtual environments, mechanisms for schedul-
ing tasks and replication services and saving virtual images.
This will allow to perform computational tasks of various
applied industries in the grid environment and increase the
efficiency of grid computing.

To achieve the aim, the following objectives were set:
– to develop an algorithm for scheduling tasks in a grid

environment using virtualization and a mechanism for repli-
cating images of virtual machines;

– to evaluate the effectiveness of the developed algo-
rithm for scheduling tasks using virtualization in a grid
environment in comparison with a random algorithm for
scheduling tasks by means of simulation;

– to extend the existing framework for performing tasks
in a grid environment by using a virtual task execution envi-
ronment using Docker software.

4. Materials and methods of research

The research and design of the software was carried out us-
ing systems analysis methods, object-oriented analysis methods
and the UML object-oriented modeling standard. The frame-
work was developed using the NetBeans IDE [16], the git ver-
sion control system [17], and the maven project build tool [18].

To develop a task scheduling algorithm, a dynamic pro-
gramming method was used.

To develop a simulation model of the process of perform-
ing tasks in a grid environment, the methods of simulation
and the GridSim software were used [19]. The adequacy of
the model was assessed by carrying out real experiments on
the basis of the computing resource grid with the installed
back-end of the Arc Nordugrid middleware [4].

5 Results of the development of a grid computing system
using virtual runtime environments

5. 1. Development of an algorithm for scheduling tasks
and a mechanism for replicating images of virtual ma-
chines in a grid environment

To implement the services for scheduling the execution of
tasks, an algorithm is used, presented by the authors earlier
and based on the method of dynamic programming [20].
The algorithm takes into account the parameters of the
problem (dimension of calculations, dimension of data, etc.)
and resource parameters (computational capacity, queue
size, etc.). The task execution time is defined as an objective
function in the algorithm.

The problem in the general case is presented in the form
of a directed acyclic graph DAG (Fig. 1), the vertices of
which are computational subtasks, the arcs are the depen-
dencies between them. The algorithm assumes the intro-
duction of a level in the structure of the problem. The level
is determined by many subtasks that can be performed in

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/2 (114) 2021

120

Thus, the cost of sending the virtual image will be taken
into account when choosing the optimal resource for the task.
The algorithm for choosing a computational node consists in
finding a node for which the value of the objective function is
minimal. The method is applicable in the general case both to
tasks with the structure of the “workflow” type, and to tasks
of the “single computing unit” type (of the simplest type).

Replication of task runner images occurs synchronous-
ly and dynamically as to plan and select a resource to run
a task. To implement the update and redistribution of the
storage of virtual images, the framework services provide
asynchronous replication using resource idle time. The
choice of virtual images for replication is based on the Most
Frequently Used algorithm by storing information about
the frequency of using virtual images. Replication service
runs decentralized on each server at random intervals. A

block diagram of the replication service method is shown
in Fig. 2.

Background tasks distribute virtual images to obtain at
least three copies of images added to the list of images for
replication. Tasks start at a certain interval, which can be
configured.

When choosing a resource to perform a task, provided
the available Scurrent memory size is such that Scurrent<S, the
required number of images will be selected to be deleted
from the resource according to the LRU (least recently
used) principle (2):

3 ,b eS S S= ⋅ + 	 (2)

where Sb – size of the base virtual image;
Se – size of the executable file.

Start

Run replication
service at random

intervals

Calculate the relative
frequency of each image

being used:
F=N/Nmax,

N is the frequency of
using this image. The
value of the maximum

frequency of image use

f>0.1

f>0.01

Delete
image

Add VM image of the list
of images to perform

replication

End

NoYes

Ні
Yes

Fig. 2. Block diagram of the virtual image replication service algorithm

Information technology

121

This approach allows to consider the storage resource con-
straints of a distributed environment when scheduling a task.

5. 2. Evaluation of the efficiency of the task execution
scheduling algorithm using virtual images in a grid envi-
ronment

Evaluation of the effectiveness of the developed algo-
rithm was carried out by simulating the execution of tasks
using the developed algorithm for scheduling tasks and a
mechanism for replicating virtual images and a random
scheduling algorithm. To determine the parameters of the
process of deploying a virtual runtime environment using
Docker software (in particular, the deployment time), real
experiments were carried out on the basis of a computational
resource with the Arc Nordugrid server part installed. Simu-
lation of the execution of 48 tasks with different parameters
and requirements for the execution environment was carried
out. The problem model is determined by the following pa-
rameters:

{ }{ }, , ,N Memory T 	 (3)

where N – predicted number of processor instructions re-
quired to complete the task;

Memory – requirements for memory use (size, MB);
{T} – set of links with other blocks of the task flow (com-

munication between nodes is unidirectional).
Links are characterized by the data capacity parameter –

the amount of data transferred between blocks.
Memory requirements for simplicity are omitted in Fig. 1.

The predicted number of processor instructions is expressed
in abstract units (Kom).

The structure of a grid network can be represented by a
complete graph, the vertices of which are computing resourc-
es, and the arcs characterize the data transmission network
between them. The model of the computing node of the grid
network is represented by the following parameters:

{ }{ }CPU, , , ,Memory QueueSize R 	 (4)

where CPU – processor power;
Memory – available memory;
QueueSize – size of the queue of jobs to the resource;
{R} – set of links with other network nodes (links be-

tween nodes are bidirectional).
Links between nodes are characterized by bandwidth.
According to the simulation results, the average time

to complete tasks using the proposed scheduling algorithm
was 66.4 units of time. The average execution time for the
same set of tasks using a random scheduling algorithm was
302 time units. The distributed environment model was
represented by 3 computing resources. The number of rep-
etitions of experiments at the level was 10. Thus, according
to the results of simulation, it can be concluded that the use
of the proposed scheduling and replication algorithm can
reduce the execution time of computational tasks by 88 %
compared to a random scheduling algorithm.

5. 3. Extension of the existing framework by means of
using a virtual environment for performing tasks in a grid
environment

The developed system is an extension of the framework
for organizing grid computing based on ARC Nordugrid

GRID-WMS [21], built on the client-server architecture
and consisting of the following modules:

– simplicate-core – contains the entity of the project;
– simplicate-dao – responsible for accessing data;
– simplicate-services – contains a layer of services re-

sponsible for the business logic of the application;
– simplicate-webservices – contains REST API and ser-

vices for sending grid tasks for computation;
– simplicate-gridftp-jca is responsible for the connection

between the server and ARC using GridFTP;
– simplicate-frontend provides a user interface for creating

tasks, loading Docker images, checking execution status, etc.
To ensure the execution of tasks in a virtual environ-

ment, changes were made to the simplicate-webservices,
simplicate-services, simplicate-dao and simplicate-core, sim-
plicate-frontend modules of the existing framework. The
framework is implemented using JAX-RS to implement the
REST API, Java EE CDI to apply dependency injection, and
OpenJPA is used to access data. The JavaScript framework
Vue was used to develop the user interface.

The framework implements three main use cases, shown
in Fig. 3.

Let’s take a closer look at each of these scenarios.
The user computes a grid task without using virtualization:
– the user is authorized in the system;
– the user goes to the tasks section;
– the user creates a task;
– the user creates a node that calculates the task, loads

the executable file and defines the necessary parameters;
– the user submits the task for processing.
The user computes the grid task using the new virtual

environment:
– the user is authorized in the system;
– the user goes to the tasks section;
– the user creates a task;
– the user creates a node with the virtual type, which

will calculate the task, load the executable file, the de-
scription of the virtual image and indicate the necessary
parameters;

– the user submits the task for processing.

Fig. 3. Scenarios for using the framework to perform tasks in
a grid environment

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/2 (114) 2021

122

The user computes a grid task using an existing virtual
environment:

– the user is authorized in the system;
– the user goes to the tasks section;
– the user creates a task;
– the user views the list of existing virtual images;
– the user creates a node with the virtual type according

to the template, which will calculate the task, download the
executable file, select the required virtual image and specify
the necessary parameters;

– the user submits the task for processing.
The process of deploying images to remote computing

resources is carried out using the Docker software plat-
form. ARC Nordugrid makes it possible to use Docker
as an RTE by specifying the name of the image that will
be used to compute the task [22]. Docker is an operating
system-level virtualization system that uses containers. In
Docker, applications (processes) are, whenever possible,
placed in separate containers – layers, between which
there is limited interaction. A container is an isolated
Docker environment for executing and running services.
The containers are lightweight, do not require the work
of the hypervisor, and run directly on the core of the host
machine. Thus, it is possible to run more containers than
virtual machines on the same physical hardware. When
defining a task descriptor file, the RTE parameter specifies
the name of the Docker image to use, for example: runtime
environment=”ENV/DOCKER” “debian”.

The container registry stores images – these are im-
mutable templates that contain instructions for creating
a container. The image is defined by a config file called
DockerFile, each statement in the config file creates a layer
in the image. When the configuration file is changed and the
process of rebuilding the image is started, only the changed
layers will be rebuilt. This particular approach makes con-
tainers lightweight and fast when compared to other virtu-
alization technologies.

The Docker Trusted Registry (DTR) is a storage and
delivery system that contains named Docker images and their
versions with different tags – containerized applications that
run on a Docker Universal Control Plane (UCP) cluster. The
default storage driver is Posix Local File System, but DTR
supports settings for storage technologies such as NFS, Ama-
zon S3, Cleversafe, Google Cloud Storage, OpenStack Swift,
and Microsoft Azure [22]. DTR also enables centralized back-
up (replication) of images.

To compute a task using a virtual image, it is necessary to
download the Dockerfile and the executable file required to
complete the task. The Dockerfile should contain instructions

for transferring files to the container if an executable was
specified. In the case of scenario 2, when the user down-
loads a Dockerfile that will be used to build an image to
perform a task, the script that builds the image, notices
it with a tag and starts the container, looks like the one
shown in Listing 1:

Listing 1 – Script to build a virtual image and run it
#!/bin/sh
if [-z «$1»]
 then
 echo «No docker image name supplied»
 exit 1;
fi
IMAGE_NAME=$1
echo «Starting build of Docker image: $IMAGE_

NAME»
echo «$IMAGE_NAME»
docker build -q -t $IMAGE_NAME .
echo $? > build.txt
echo «Starting image: $IMAGE_NAME:latest»
docker run --tty $IMAGE_NAME:latest || exit

A file named build.txt is created in the directory of the
current execution session, containing the result of executing
the docker build command, containing the result of execut-
ing the image build.

If a container is launched based on an existing im-
age (scenario 3), the image launch script will look like the
one shown in Listing 2:

Listing 2 – Script for starting a task using an existing image
#!/bin/sh
if [-z «$1»]
 then
 echo «No docker image name supplied»
 exit 1;
fi
IMAGE_NAME=$1
echo «Starting image: $IMAGE_NAME»
docker run --tty $IMAGE_NAME || exit

Fig. 4, 5 show the results of performing computational
tasks using a virtual environment using the services of the
developed framework.

When defining task parameters using the user interface
of the developed framework, the corresponding Dockerfile
is specified to define the virtual environment for executing
the task.

Fig. 4. Window for creating a task using a virtual image (Type-Virtual)

Information technology

123

6. Discussion of the research results of the services of the
grid computing system using virtual environments

The developed mechanism for scheduling the execution
of tasks, in contrast to the existing ones, is focused on the
integration of methods for placing virtual machines and
methods for scheduling tasks in a grid environment. The
algorithm is based on the dynamic programming method
with optimization according to the criterion of the com-
putation time. The architecture of a distributed storage
of images of virtual machines is formed by synchronous
and asynchronous replication of images using the LRU
(least recently used) and MFU (most commonly used)
algorithms.

Evaluation of the effectiveness of the developed mecha-
nism for scheduling tasks in the grid environment was car-
ried out on the basis of the GridSim complex of simulation
models. The results of the experiments showed that the use
of the proposed algorithms for scheduling and replicating
virtual images can reduce the execution time of a compu-
tational task in a grid environment by 88 % compared to
the random scheduling of the developed approaches by the
criterion of the execution time of computations Using the
replication mechanism of virtual images, shown in Fig. 2 and
formula (2), minimizes the cost of sending images of virtual
machines. An increase in planning efficiency is predicted
with an increase in the number of tasks launched for execu-
tion due to reallocation of the storage of virtual images.

Comparison of the effectiveness of the proposed method
with other available methods of planning and replicating
virtual images is planned in subsequent studies.

The disadvantage of the developed algorithm is the
planning time using the algorithm, which is longer than the
execution time of a random algorithm, but insignificant com-
pared to the task execution time. The use of the algorithm
for scheduling tasks characterized by low dimensionality of
computations and data, as well as for homogeneous distrib-
uted environments, will be impractical.

The services of the developed system allow to design
and perform computational tasks in a grid environment
with loading a new or loaded virtual environment for the
execution of the Docker platform. The developed framework
can be used to plan and execute computational tasks of any
applied industries in a grid environment. The developed
system, in contrast to the existing ones, makes it possible
to configure virtual execution environments for solving
computational problems of various types and scheduling the
execution of tasks with optimization according to the crite-
rion of the computation time.

One of the directions for expanding the functionality of
the services of the developed framework is the implemen-
tation of the integration of other environments for using
virtual machines (for example, Singularity). This will enable
wider use of the framework.

7. Conclusions

1. The algorithm for scheduling tasks in a grid envi-
ronment using virtualization is implemented based on the
dynamic programming method. The mechanism for hosting
and replicating images of virtual machines, in contrast to
the existing ones, is focused on integration with methods of
scheduling tasks in a grid environment.

2. Using the proposed mechanism for scheduling and
replicating virtual images can reduce the execution time of
computational tasks in a grid environment by 88 %.

3. Services of the developed framework allow to design
and perform computational tasks in a grid environment
based on ARC Nordugrid using virtual environments of
the Docker platform. Computational tasks can be repre-
sented by structures of different types, including work-
flow. The image of the virtual environment can be loaded
together with the executable file of the task or selected
from among those stored on the resources of the distrib-
uted environment.

Fig. 5. Window for defining task parameters using a virtual image

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/2 (114) 2021

124

References

1.	 Di Meglio, A., Riedel, M., Memon, S. M., Loomis, C., Salomoni, D. (2011). Grids and Clouds Integration and Interoperability: an overview.

Proceedings of The International Symposium on Grids and Clouds and the Open Grid Forum – PoS(ISGC 2011 & OGF 31). doi:

https://doi.org/10.22323/1.133.0112

2.	 Foster, I. (2002). What is the Grid? A Three Point Checklist. GRIDToday. Available at: https://www.mcs.anl.gov/~itf/Articles/

WhatIsTheGrid.pdf

3.	 Mell, P. M., Grance, T. (2011). The NIST Definition of Cloud Computing. Recommendations of the National Institute of Standards

and Technology. NIST. doi: https://doi.org/10.6028/nist.sp.800-145

4.	 ARC. NorduGrid. Available at: http://www.nordugrid.org/

5.	 Krašovec, B., Filipčič, A. (2019). Enhancing the Grid with Cloud Computing. Journal of Grid Computing, 17 (1), 119–135. doi:

https://doi.org/10.1007/s10723-018-09472-w

6.	 Pogorilyy, S. D., Boyko, Y., Salnikov, A. O., Sliusar, Ie. A., Boretsky, O. (2017). Images of virtual machines running as grid

tasks provisional configuration and formation. Naukovi pratsi Donetskoho natsionalnoho tekhnichnoho universytetu. Seriya:

Informatyka, kibernetyka ta obchysliuvalna tekhnika, 2, 90–97. Available at: http://nbuv.gov.ua/UJRN/Npdntu_inf_2017_2_14

7.	 Haug, S., Sciacca, F. G. (2017). ATLAS computing on Swiss Cloud SWITCHengines. Journal of Physics: Conference Series,

898, 052017. doi: https://doi.org/10.1088/1742-6596/898/5/052017

8.	 ATLAS Experiment. Available at: https://atlas.cern/

9.	 Keahey, K., Riteau, P., Anderson, J., Zhen, Z. (2019). Managing Allocatable Resources. 2019 IEEE 12th International Conference

on Cloud Computing (CLOUD). doi: https://doi.org/10.1109/cloud.2019.00019

10.	 Donyagard Vahed, N., Ghobaei-Arani, M., Souri, A. (2019). Multiobjective virtual machine placement mechanisms using nature-

inspired metaheuristic algorithms in cloud environments: A comprehensive review. International Journal of Communication

Systems, 32 (14), e4068. doi: https://doi.org/10.1002/dac.4068

11.	 Mohammad, S. G. (2019). A dynamic replication mechanism in data grid based on a weighted priority - based scheme. i-Manager’s

Journal on Cloud Computing, 6 (1), 9. doi: https://doi.org/10.26634/jcc.6.1.15897

12.	 Chang, Y., Gu, C., Luo, F. (2016). A novel energy-aware and resource efficient virtual resource allocation strategy in IaaS

cloud. 2016 2nd IEEE International Conference on Computer and Communications (ICCC). doi: https://doi.org/10.1109/

compcomm.2016.7924911

13.	 Ashraf, A., Porres, I. (2017). Multi-objective dynamic virtual machine consolidation in the cloud using ant colony system.

International Journal of Parallel, Emergent and Distributed Systems, 33 (1), 103–120. doi: https://doi.org/10.1080/17445760.20

17.1278601

14.	 Kazymyr, V., Prila, O., Kryshchenko, M. (2017). The use of dynamic virtual images in a grid environment with replication support.

Technical Sciences and Technology, 3 (9), 88–97. doi: https://doi.org/10.25140/2411-5363-2017-3(9)-88-97

15.	 Prila, O., Kazymyr, V., Kryshchenko, M., Sysa, D. (2018). The technology of reliable task execution in grid environment using

dynamic virtual images. 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT).

doi: https://doi.org/10.1109/dessert.2018.8409109

16.	 Apache NetBeans. Available at: https://netbeans.apache.org/

17.	 Git. URL: https://git-scm.com/

18.	 Maven. Welcome to Apache Maven. Available at: https://maven.apache.org/

19.	 GridSim. Available at: https://swmath.org/software/1392

20.	 Prila, O. A. (2013). The algorithm of job scheduling in Grid environment based on the dynamic programming method. Visnyk

Chernihivskoho derzhavnoho tekhnolohichnoho universytetu. Seriya: Tekhnichni nauky, 4 (69), 153–162.

21.	 Prila, O. (2013). Framework for grid application development with support of different types of large-scale computing tasks. Eastern-

European Journal of Enterprise Technologies, 4 (2 (64), 8–14. Available at: http://journals.uran.ua/eejet/article/view/16598

22.	 About Registry. Available at: https://docs.docker.com/registry/introduction/

