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1. Introduction

Modern satellite centers for space monitoring and remote 
sensing of the Earth (RSE) promptly receive, register, pro-
cess, archive and distribute large amounts of data, sometimes 
amounting to hundreds of gigabytes. At the present stage 
of the development of science, hyperspectral AI is actively 
being investigated. Aerospace remote sensing images have 
various characteristics – spectral, radiometric, spatial res-
olutions, geometric dimensions of the scene. Hyperspectral 
AI RSE are important for observing and studying changes 
in the Earth’s surface, monitoring natural resources and the 
consequences of emergencies, etc.

Thus, hyperspectral AI are characterized by three features: 
spectral resolution, number of channels and inter-channel cor-
relation. These signs were studied separately, which suggests 
their interaction. Therefore, one of the key tasks in the field of 
remote sensing is the archiving of hyperspectral AI in order to 
increase the efficiency of data transmission over communica-
tion channels of limited bandwidth and their compression.

Currently, the development of software systems for the 
transmission of such data is an urgent task. In solving this 
problem, there are two areas of research: the development of 
compression algorithms used in ground-based remote sens-
ing data reception and processing centers; the development 
of algorithms used onboard the spacecraft. Research is ac-
tively being conducted in the field of developing compression 
algorithms of the first direction, in which there are many 
publications. In the second direction of research, there is a 
potential for the development of algorithms dictated by the 
necessary list of problems to solve the compression problem, 
therefore this problem is relevant.

2. Literature review and problem statement

Hyperspectral aerospace images are necessary for mon-
itoring natural resources and the consequences of emergen-
cies, etc. In solving this problem, there are various areas of 
research in which research is actively conducted in the field 
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hyperspectral images, prediction is performed in the spectral 
region. The proposed lossless compression schemes produce 
an average compression ratio reaching 3.85, the best result 
among the compared schemes.

The fast Walsh-Hadamard transformation algorithm 
based on a system of functions and their properties is used 
in signal and image processing. Scientists [5] investigated 
the compression of hyperspectral aerospace images using 
DVP and Walsh-Hadamard transformation (WHT). A 
hybrid technology called Walsh wavelet transformation is 
proposed, consisting of four stages. At the first stage, two 
levels of fiberboard are applied, at the second stage, 2D-UAP 
are applied on each block of the low-frequency range (N=4). 
At the third stage, finding the values from the transformed 
sub-images of each range, then they are compressed by 
arithmetic coding, this is the fourth stage. This technology 
provides a small compression ratio of 1.8.

The paper [6] deals with the compression and classification 
of hyperspectral images using the Discrete Wavelet Technique 
in conjunction with Non-negative Tucker Decomposition. This 
algorithm exploits both the spectral and the spatial information 
of the images. The core idea behind the proposed technique is to 
apply TD on the DWT coefficients of spectral bands of HSIs. 
The results obtained by using the proposed method gives a sat-
isfactory performance in terms of PSNR (Peak signal-to-noise 
ratio). The disadvantage of the method is that the computation-
al load of the proposed method is high, i. e. it is necessary to 
reduce the calculation of the main tensor.

DCT and SPIHT are the most widely used methods of 
hyperspectral image compression. In [7], a DCT-based DSC 
technique was carried out using arithmetic code to evaluate 
their performance on hyperspectral images. DCT-based DSCs 
using arithmetic code were investigated using Samson hyper-
spectral sample data. The performance of these algorithms 
is estimated based on the PSNR of the compressed image 
and the compression ratio. PSNR=42.66152 dB, CR=48 % 
of MSE, it is observed that the difference between the orig-
inal and the restored image is very small. Therefore, it can 
be concluded that the quality suffers and it is necessary to 
pre-process images before converting and compressing them.

In [8], principal component analysis (PCA) to the 
compression of hyperspectral AI was applied. The hybrid 
compression method (DVP-TD) was used, which was ef-
fective because it provided detailed information about the 
spectral ranges of the image. DVP-TD using “global” en-
coding achieves a higher value of the peak signal-to-noise 
ratio (PSNR), shorter execution time and a high compres-
sion ratio of 8.0. The main disadvantage is that the PCA 
covariance matrix, which is used for decorrelation among 
frequency bands, should already be calculated, and therefore 
depends on the data. Therefore, it is necessary to reduce the 
computational load of the proposed method.

In [9], when studying the compression of hyperspectral 
AI, the requirements for an accurate assessment of image 
quality are given, the process of data collection and compres-
sion properties (data quality) are considered. The authors 
divide compression methods into three groups: prediction, 
vector quantization and encoding with transformation. En-
coding with transformation is implemented in three steps: 
the first step is to transform the data into an area where 
the representation of the data is more compact and less 
correlated; the second step is to encode this information in 
as efficient quality as possible; in the last step of encoding, 
information loss occurs through quantization. 

of developing compression algorithms. Lossy compression 
algorithms and methods cover a wide range of compression. 
Among them, the most common are orthogonal and wavelet 
transformations, the JPEG compression algorithm.

Researchers are very interested in the methods of com-
pression of aerospace images with losses, which give signif-
icant results in the efficiency of the compression ratio, the 
use of orthogonal transformations: discrete-cosine transfor-
mation (DCT), discrete wavelet transform (DWT), SPIHT, 
prediction, JPEG, JPEG2000 and at the last stage entropy 
coding. Here are some compression methods and algorithms 
that have significant research results.

The paper [1] presents the results of the research. An 
algorithm based on the third order of the interchannel 
predictor and the inverse pixel search scheme is proposed. 
In particular, an adaptive algorithm of step-by-step search 
and a modified spatio-spectral predictor is proposed, which 
is able to capture most of the correlation by performing a 
search twice in the current range. Channels are divided into 
groups depending on the correlation coefficient of adjacent 
channels, and then, the reordering algorithm is applied to 
each group. The prediction method uses the similarity of 
structures and the ratio of pixels between two adjacent spec-
tral channels and is further encoded by adaptive arithmetic 
coding. The proposed compression scheme produces an aver-
age compression ratio of 3.92.

The paper [2] presents the results of research that im-
proved Shapiro’s EZW algorithm. Hybrid transformations 
consist in the Karhunen-Loève Transform (KLT), which 
decode the spectral data of hyperspectral aerospace images, 
and DWT is applied to spatial data. The proposed image 
compression has a compression ratio of 7.9. Disadvantages: 
wavelet coefficients can be scanned earlier than others in 
low-level subchannels; the basis of the encoder is the EZW 
Shapiro algorithm, encoding residual values and implement-
ing only the dominant block; the algorithm is complicated by 
numerical efficiency.

Researchers [3] investigated the compression of hyper-
spectral AI using the 3D SPIHT algorithm. At the first 
stage, 3D Fiberboard is used, at the second stage, 3D-SPI-
HT is encoded by the algorithm, where there is a signifi-
cant correlation between different channel ranges. After 
decompression, the images are evaluated using the PSNR 
algorithm. The compression base of the PREP and SPIHT 
provides a high compression ratio. Disadvantage: the algo-
rithm can be implemented for any image size, the image size 
proportionally increases the time required for image com-
pression and restoration, which increases the computational 
complexity of the algorithm.

For example, [4] presents approaches to lossless com-
pression of hyperspectral AI using adaptive prediction and 
reverse-search schemes. The proposed scheme is based on 
the prediction approach and uses two new approaches to im-
prove compression performance. The first approach uses spa-
tial correlation of data and formulates the output of spectral 
prediction in the Winner filtering process. In the second ap-
proach, the search scheme is used instead of reference tables, 
which significantly reduces the need for memory. The search 
is significantly reduced using the quantization index. The 
compression scheme proposed by the researchers consists 
of five main modules: internal prediction, inter-/multispec-
tral prediction, search index (BSI), quantization index and 
entropy coding. The proposed scheme supports intra- and 
inter-band prediction, taking into account the properties of 
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The paper [10] considers the technique of channel rear-
rangement and their search makes it possible to determine a 
group of channels that are highly correlated with each other. 
However, studies have shown that the process of calculating 
the spectral correlation matrix takes a lot of time.

The same approach is implemented in [11]. The technique 
of regrouping channels and their search allows determining 
a group of bands that are highly correlated with each other. 
The proposed predictor has a better performance than the 
methods listed in the table. The improvement of the number 
of bits per pixel per channel is reduced using a prediction 
algorithm. The main disadvantage of this method is that it 
depends on the calculation of the spectral correlation matrix, 
which is a time-consuming process.

For example in [12], a group of researchers believe that 
the wavelet transform is one of the current trends in new 
compression algorithms for hyperspectral AI. The use of 
wavelets provides a progressive compressed bitstream, which 
allows achieving compression without loss of quality with 
minimal loss of information. The advantage is provided by 
the use of entropy coding compression. Disadvantages may 
be: partially preserved lossy compression performance; in-
creased complexity of the algorithm in terms of the required 
RAM; relatively low quality with intermediate wavelet 
transformations. 

In [13], the research uses a predictive model on AVIRIS 
images by individualizing, using an autonomous approach, 
a common subset of bands that are not spectrally related to 
any other bands. The main result of this work is a list of bands 
unrelated to others for AVIRIS images. The clustering trees 
obtained for AVIRIS and the relationship between the bands 
they depict are also an interesting starting point for future 
research. This approach needs to be improved to make it 
more reliable, and the development of other approaches that 
aim to improve lossless compression of hyperspectral images 
with reduced complexity of the compression algorithm, even 
with different types of hyperspectral images.

The letter [11] proposes a new lossless hyperspectral 
image compression algorithm using hybrid contextual pre-
diction. Lossless compression algorithms are usually divided 
into two stages: the decorrelation stage and the encoding 
stage. The decorrelation stage supports both in-band and 
inter-band predictions. In-band (spatial) prediction uses 
the median prediction model because the median predictor 
is fast and efficient. Interband prediction uses hybrid con-
textual prediction. The results of the study show that the 
algorithm provides low compression coefficients of 3, 19 with 
low complexity and computational costs.

Attempts have been made [14], a multi-stage algorithm 
has been proposed, including accounting for inter-band cor-
relation and preliminary byte processing of data, which al-
lows to significantly (up to 46 %) increase the degree of data 
compression compared to analogs. A three-stage algorithm 
for compressing multispectral aerospace images based on 
the use of the wavelet transform and taking into account the 
interband dependence is proposed. The research results have 
shown the superiority of the proposed algorithm to varying 
degrees over analogs in compression with more significant 
computational costs. The works of the authors of this study 
with Walsh-Hadamard transformations in comparison with 
the discrete-cosine transformation have not been investigat-
ed in previous works of the authors.  

Based on the above studies of hyperspectral AI in the 
field of compression presented in the works of scientists from 

Russia, China, the USA, India, etc., it can be assumed that 
the developed lossless compression methods and algorithms 
for hyperspectral AI can be improved by reducing their 
computational efficiency and increasing the compression 
ratio due to significant preprocessing steps. In addition, 
new stages of compression preprocessing can be proposed 
on the example of Walsh-Hadamard in comparison with 
discrete-cosine transformation, which effectively increase 
the compression ratio and reduce the time of forward and 
reverse transformations.

3. The aim and objectives of the study

The aim of this work is to describe a compression algo-
rithm taking into account inter-channel correlation, charac-
terized by the Walsh-Hadamard transformation of data with 
a decrease in the range of the initial values by forming a set 
of channel groups with high intra-group correlation of the 
corresponding pairs with the selection of optimal parame-
ters. Improving and obtaining an effective result of compres-
sion of hyperspectral aerospace images can be achieved by 
performing the following objectives:

– to develop a new method to account for inter-channel 
correlation in the form of selecting the number of channels 
by grouping them and selecting the best correlated channel 
that determines the compression sequence; 

– to produce Walsh-Hadamard difference transforma-
tions obtained by forming channel groups, which will allow 
storing data with lower bit depth and excellent quality, de-
pending on the selected quantization coefficient;

– to develop 	 a transformation method in which the 
range of values of the original hyperspectral image will be 
changed by forming additional data structures that are effec-
tively compressed using entropy coding in comparison with 
the Walsh-Hadamard transform and the discrete-cosine 
transform.

4. Materials and methods 

4. 1. Proposed methods and algorithms for processing 
hyperspectral aerospace images

One of the popular graphic formats designed for image 
storage is the JPEG algorithm, which allows lossy and 
lossless image compression. Let’s consider the algorithm of 
operation of a variety of the simplest lossy JPEG encoder, 
the process of which consists of the following stages, Fig. 1:

1. Preprocessing – preprocessing of an image, leading it 
to a convenient representation for subsequent encoding.

2. The DCT is used by the JPEG encoder to transform 
the image from its spatial representation to the spectral one.

3. Quantization is the stage at which the main loss of 
information occurs due to the rounding of non-essential, 
high-frequency DCT coefficients.

4. Compression is the encoding of the received data by en-
tropy algorithms (arithmetic coding, Huffman algorithm, etc.)

An important step in the JPEG algorithm is the DCT, 
which is a kind of Fourier transform. If we consider the 
image as a set of spatial waves, where the X and Y axes cor-
respond to the width and height of the image, and the Z axis 
corresponds to the color values of the corresponding pixels, 
then we can move from the spatial representation of the im-
age to its spectral representation and vice versa [33, 44, 53]. 
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The analysis of existing and separately developed al-
gorithms and methods of compression of hyperspectral AI 
with losses allows us to determine the main directions of 
research in the field of the construction of effective compres-
sion algorithms for solving the problem of compression and 
application in the processing of hyperspectral AI:

– discrete transformations;
– wavelet and orthogonal transformations;
– evaluation of the quality criteria of the reconstructed 

images using quality metrics PSNR, MSE, PMSE, etc.;
– at the stage of compression of the resulting transforma-

tions: adaptive arithmetic coding and Huffman algorithm.
An algorithm and sequence of preprocessing with 

Walsh-Hadamard transformation of hyperspectral AI are 
proposed.

4. 2. Walsh-Hadamard transformation
Algorithms for processing hyperspectral AI with losses 

based on discrete transformations have been developed. The 
sequence of stages is as follows:

1. Transformation of the data structure based on the 
original hyperspectral AI, coefficient values, based on 
Walsh-Hadamard three levels.

2. The original transformation of the data structure 
based on the original hyperspectral AI, storing the values of 
the coefficients, based on the discrete-cosine transformation 
with the generated quantization table.

3. Transformation of the obtained data structures based 
on steps 1–2 by means of the generated coefficient quanti-
zation table.

4. Using standard criteria for the quality of restored 
images.

5. Compression of the obtained structures of stage 4 by 
one of the standard entropy algorithms.

6. Experimental study of conversion algorithms by com-
pression ratio and quality of recovered data.

Let’s look at the stages of the algorithms in more detail.
For a step-by-step description of the transformation, it is 

necessary to introduce the following objects into consideration:
– the source image is the matrix of image values I[m, n, k], 

where m, n, k are the indexes of rows, columns and channels 
of the source image, m=1, 2, ..., M, n=1, 2, ..., N, k=1, 2, ..., K;

– the WHT transformation is filters that divide images 
into low-frequency and high-frequency components (to get the 
original image, you need to combine the components again);

– spectral component (SC) is the spectral component of 
the matrix I[m, n, k].

Consider an example of the Walsh-Hadamard transfor-
mation (WHT) for a fragment of hyperspectral AI.

Let the fragment of AI represent a matrix consisting of 
m rows, n columns and k channels: I[m, n, k]=I[10, 10, 10].

The direct transformation of WHT is presented in the 
matrix form of Hwt2, a fragment of AI is taken (123, 105, 121, 
103, 118, 100, 123, 123, 122, 104), i. e. 

[ ]⋅ = ′2 2, , [ ].wt wtH I m n k H SC

The WHT transform is filters that divide an image into 
low-frequency and high-frequency components. To get the 
original image, you just need to combine these components 
again. An example of direct conversion of hyperspectral 
aerospace images is presented below.
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As a result, after such a transformation, we obtain the 
coefficients of the low-frequency and high-frequency compo-
nents of the SC=114, 9, 112, 9, 114, 9, 123, 0, 123, 9. During 
quantization, high-frequency coefficients (close to zero and 
negative values) are rounded to zero.

It should be noted that the Hwt4 and Hwt8 level matrices 
are calculated in the same way as Hwt2.

At the stage of restoring the original image channels, 
decoding occurs.

[ ] [ ]⋅ =′2 2 , , ,T
wt wtH H SC I m n k

 
 
 
 

Original 
image 

Preprocessing DCT Quantization Compression 

Image 
archive 

 
  

Fig. 1. Stages of operation of the JPEG encoder



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 1/2 ( 115 ) 2022

26

where 2
T
wtH  – inverse wavelet transform WHT, [ ]′ 2wtH SC  – spec- 

tral component. 
An example of the reverse transformation is presented 

as follows:
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By changing the basis of the matrix (H4, H8) 
with each submatrix, we perform a forward and 
reverse calculation, according to which each ele-
ment of the transformed submatrix is calculated 
by the formulas:

[ ] [ ]=
×

= ∑ 1
, , ,

,
2

n

wi
H

m n k H i j
WHT

I

[ ] [ ]=
= × ×∑ 1

, , , ,
n

D wi
WHT m n k H i j HI

where n – dimension of the Hadamard matrix, 
I[ , , ]m n k  – a submatrix of the original matrix, 

Hw – Hadamard matrix, i – the string of the current value 
in the submatrix, j – the column of the current value in the 
submatrix, H – matrix basis. 

The advantage of the Walsh-Hadamard transform is the 
increased ability to detect low-frequency components due 
to the separation of hyperspectral AI channel regions into 
sublevels and the generated quantization coefficient.

4. 3. Discrete-cosine transformation with generation 
of quantization tables

DCT is a transformation whose linear combination 
consists of known basis vectors weighted with n coefficients 
leading to the original vector.

Let’s consider step-by-step transformation of hyperspec-
tral AI channels using DCT.

1. Divide it into s blocks of pixels of size n×n (usually 8×8).
2. Apply DCT to each block, represent each block as a 

linear combination of 64 basic blocks.
3. All s vectors (i=1, 2, ...., s).
4. Generation of the quantization table.
At the first step, as a result of the DCT conversion, two 

filters were built – high-frequency and low-frequency.
For low-frequency and high-frequency filters, we intro-

duce some notation:
– DC – operator for the low-frequency filter;
– AC – operator for the high-frequency filter.
The figure below shows a fragment of the original hyperspec-

tral aerospace image before the DCT transformation (Fig. 2). 
For visualization of matrices (hyperspectral image channels), 
a program was developed for Visual Studio 2017 (C#), which 
demonstrates the exact absolute values in digital form.

Based on the visible values, an algorithm of discrete-cosine 
transformation was proposed, applied specifically to hyperspec-
tral images, since their structure differs from the usual image 
(picture). It was also revealed from previous studies by the 
authors [14] that channels close to each other have a high correla-
tion of the values of the channel matrices, and this was used for 
further effective image compression after the DCT conversion.

In the scientific literature, DCT is a transformation whose 
linear combination consists of known basis vectors weighted 
with n coefficients leading to the original vector. The known 
basic transformation vectors from this class are “sinusoidal”, 
which means that they can be represented by sinusoidal waves 
or strongly localized in the frequency spectrum. The two-di-
mensional transformation of DCT follows the rectilinear form 
of the one-dimensional DCT. Let’s use a two-dimensional 
DCT, formulas:

( ) ( )− −

= =

   + π + π
=       ∑∑

1 1
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2 1 2 11
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2 22
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n j m i
D c c

h hh
I  

 

 
  

Fig. 2. The original data of a fragment of hyperspectral AI
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By ≤ ≤ −0 , 1.i j h  It is divided into blocks of pixels Im,n of 
size h×h (in our fragment h=8), used to find coefficients for 
each pixel block Dij. 

First, the rows of this block are considered using the 
transformation set by the internal sum

 ( )−

=

 + π
=   ∑

1

,
0

2 1
cos .

2

h

m j i mn
y

n j
D C

h
I  

The result of this rotation is a block Dm,j 
of h×h coefficients, in which the first elements 
predominate in the rows, and all other ele-
ments are small. The external sum is equal to

 ( )−

=

 + π
=   ∑
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The result is one large coefficient in the 
upper left corner of the block and h2–1 small 
coefficients in the remaining values. This in-
terpretation considers a two-dimensional DCT 
as two different rotations of dimension n. 

The second interpretation (by h=8) is to 
create 64 blocks of 8×8 values in each. All 
64 blocks are considered as the basis of a 64-di-
mensional vector space (hyperspectral image 
channels). Any block of 8×8 can be expressed 
as a linear combination of these basic images, 
and all 64 weights of this linear combination 
form DCT coefficients.

After the DCT transformation, the frag-
ment of hyperspectral AI has the following 
values, Fig. 3.

It can be seen from Fig. 1 that the high 
values of the conversion coefficients are con-
centrated in the upper left corner and only a small number 
of low-frequency coefficients prevail over the main ones. 
This allows you to reduce the values at the next stages of 
compression. The second step is the process of generating 
quantization tables. Quantization is performed as follows: 

1. The arithmetic mean Iaverage was calculated from all 
the values of the file.

2. To select the numerical quantization index Quant, 
the number for quantization was calculated, Quant= 
=quantValue×Iaverage/100. For example, the numerical quan-
tization index: Iaverage×95 %=285=Quant. At the same time, 
the DC coefficients remain intact. For each hyperspectral AI 
channel, its own quantization table is generated.

For the above fragment of hyperspectral AI, the matrix 
after quantization is shown, Fig. 4. The quantization process 
is key in the compression process, the advantage of repre-
sentation in the frequency domain lies in the visual quality 
of the reconstructed images. As a result, after quantization, 
most of the coefficients are zero.

As a result, most of the zeros will be placed at the end of 
the data compression stream. This stream with many con-
secutive zeros at the end of the block is optimized to achieve 
high compression in the entropy coding of the adaptive 
Huffman algorithm.

To determine the effectiveness of the proposed algorithm, 
a number of experiments were conducted on hyperspectral 
AI (hyperspectral Headwall Nano Hyperspec camera). The 
proposed algorithm is also compared with the experimental 

results obtained for the universal compression algorithms 
of WinRAR, WinZip archivers and Lossless JPEG 2000 
compression using an extension of the JPEG compression 
standard widely used in commercial remote sensing data 
processing systems (Table 1). 

Table 1

Characteristics of test hyperspectral images

Number of channels Image size Size (bytes)

100 100×100 4,080,400

100 200×200 16,160,400

100 300×300 36,240,400

100 400×400 64,320,400

100 614×512 125,747,200

150 100×100 6,120,600

150 200×200 24,240,600

150 300×300 54,360,600

150 400×400 96,480,600

150 614×512 188,620,800

200 100×100 8,160,800

200 200×200 32,320,800

200 300×300 72,480,800

200 400×400 128,640,800

200 614×512 251,494,400

270 100×100 9,140,096

270 200×200 36,199,296

270 300×300 81,178,496

270 400×400 144,077,696

270 614×512 281,673,728

 

 
  

Fig. 3. The coefficients obtained after the DCT conversion

 

 
  

Fig. 4. Generated quantization table after DCT
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The experiments were performed on a PC with an Intel 
Core i5 2.29 GHz processor and 4 GB of RAM running the 
Windows 8.1 operating system.

5. Results of research of the parameters of the 
Walsh-Hadamard transformation and compression of 

hyperspectral images

5. 1. Comparative results of experiments on the num-
ber of channels

Studies have been carried out on the indicators of com-
pression degrees in the context of the number of channels of 
hyperspectral images of orthogonal Walsh-Hadamard trans-
formations, DCT and JPEG 2000 with losses shown in Fig. 5. 
It is shown that DCT prevails over Walsh-Hadamard trans-
formations and JPEG with losses in compression ratio with 
high quality of restored images, where K is the number of 
hyperspectral image channels, D – compression ratio.

As can be seen from Fig. 5, the indicators of the degrees 
of compression of the DCT with losses are superior in the de-
gree of compression of the Walsh-Hadamard transformation 
and the JPEG Lossy compressor.

5. 2. Comparative results of experiments on the selected 
quantization coefficient with high quality and minimal loss

Fig. 6 shows the results of the Walsh-Hadamard trans-
form, discrete-cosine transform, discrete wavelet transform 
and JPEG Lossy algorithm at different loss levels in %, 
from which it can be seen that with increasing quantization 
coefficient, the compression ratio increases. Conversion al-
gorithms by compression ratio D and loss level P (in percent) 
with the number of hyperspectral image channels=100.

Indicators of the quality metrics of the restored imag-
es were determined using PSNR and MSD. The degree of 
distortion compares the ratio between compression and 
distortion in lossy algorithms. The score is defined as the 
average of the number of bits needed to represent each pixel. 
Measured in bits per pixel (bpp – bits per pixel). Distortion 
is usually measured using PSNR. 

5. 3. Comparative results of the dependence of the 
compression ratio on the quality of restored images 

For the transformations of clauses 4.2, 4.3, criteria for 
evaluating the quality of reconstructed images when com-
pressing hyperspectral AI with losses are given, comparative 
characteristics of compression performance in terms of peak 
signal-to-noise ratio (PSNR) are carried out.

Consider the calculation of PSNR in detail:
Let’s introduce some additional notation:
– standard deviation (SD);
– arrays of recovered images ,

ˆ ;m nI
– one-dimensional arrays ′I [ , , ];MSE m n k
– one-dimensional arrays ′I [ , , ].PSNR m n k
Step 1. Calculate the matrix based on 

the original and reconstructed images to 
calculate the standard deviation:

 ( )
= =

−
=

⋅

∑∑
2

, ,
1 1

ˆ

,

M N

m n m n
m n

I I
SD

M N

where Im,n – meaning m, n – pixels of the 
original image, ,m̂ nI  – corresponds to the 
value m, n – pixels of the restored im-
age, M, N – image dimensions. We will 
save the results in a one-dimensional array 

′I [ , , ].MSE m n k
Step 2. Calculate the mean square deviation, PSNR: 

PSNR=10lg10(max[Im,n]2/MSE). We will put the results in a 
one-dimensional array ′I [ , , ].PSNR m n k

Fig. 7 shows the dependence of PSNR on the compression 
ratio D for DCT and the Walsh-Hadamard transformation.

The results of the study show a high degree of com-
pression with minor quality losses of the Walsh-Ha-
damard transform and the discrete-cosine transform, 
so PSNR lies in the range of 25–50. This allows us 
to say about the effectiveness of these stages of the 
Walsh-Hadamard transformation and the discrete-cosine 
transformation in the application of hyperspectral image  
compression.
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6. Discussion of experimental results of transformations 
and compressions of hyperspectral images using various 

stages of the Walsh-Hadamard transformation and 
discrete-cosine transformation

At the end of the research, it was noted that the effi-
ciency in the compression ratio is achieved by applying 
the proposed compression algorithm, taking into account 
the correlation and ordering of channel groups and trans-
formation based on discrete-cosine and Walsh-Hadamard. 
The results of experiments and studies show that this 
algorithm finds the best pairs of correlated channels than 
without ordering (with the selected reference channel), 
while achieving a high degree of compression and minimal 
loss of quality of the restored aerospace images.

The following conclusions should be drawn from the 
conducted studies:

– the compression algorithm based on orthogo-
nal discrete-cosine and Walsh-Hadamard transforma-
tions (Fig. 3, 4), taking into account the inter-band cor-
relation, allows increasing the compression ratio to (D>8) 
compared to universal archivers and the JPEG Lossy 
algorithm (Fig. 5). Unlike [5, 6, 8, 9], the advantages of 
this algorithm are that subtraction (difference transfor-
mation) is effective when selecting a large range of chan-
nels in a group, then the average values of differences will 
be the smallest, which will allow storing in the smallest 
amount on disk than with a small number of K in N, where 
N [2:10]:

– the proposed approach to the formation and or-
dering of a set of channel groups with high intra-group 
correlation has increased the effectiveness of the channel 
subtraction stage (difference transformation), Fig. 6. In 
contrast to the studies [1–3], thanks to the proposed 
algorithm, the best values of the compression ratio are 
achieved by choosing the number of channels in an or-
dered group, at 15>K>10 and taking into account the 
inter-channel correlation of the parameter, the Cog shows 
the highest values in the compression ratio of the channel 
number, at 170>N>0;

– the obtained results of comparing the transformed 
hyperspectral AI with archivers and JPEG 2000 Lossless 
allow us to assert the effectiveness of the indexed conver-
sion method (Fig. 7). In contrast to [4, 7], thanks to the 
use of the channel subtraction stage (difference transfor-
mation) after the Walsh-Hadamard transformation and 
DCT, the compression ratio indicators were achieved at 

D[8:12] and the quality of the restored imag-
es with a loss percentage of 85 or more was 
achieved.

The limitations of this study may be related 
to the amount of data being compressed and the 
recovery time of the original images, and more 
powerful computing resources and occupied 
hard disk space may be required.

The prospects for further research may be 
the compression of hyperspectral images by an 
adaptive algorithm using regression analysis, 
a new model for accounting for interchannel 
correlation based on block-by-block transfor-
mation (SPIHT), as well as a decrease in com-
putational efficiency. The disadvantage of the 
study is small computing resources for larger 
amounts of data.

7. Conclusions

1. An algorithm based on discrete transformations, 
especially Walsh-Hadamard, has been developed, which 
allows increasing the compression ratio of hyperspectral 
images to R=8, which is higher compared to analogs due 
to difference subtraction with small losses of restored 
images at a percentage of 85 or more. Thanks to the pre-
processing of the hyperspectral image, which leads it to a 
convenient representation for subsequent encoding, high 
compression coefficients have been achieved compared to 
previous studies. 

2. An approach to lossy compression of hyperspec-
tral images has been developed, defined in adaptive and 
difference transformations based on the Walsh-Had-
amard transform, the discrete-cosine transform and the 
generated quantization table, while the PSNR lies in the 
30–50 range, the percentage of quality of the restored 
images is preserved up to 85 %. The result is achieved 
thanks to the quantization table and its parameters, where 
Quant=5. This means rounding the values of the original 
image after transformations to a loss level of only 5 %, 
so the quality of the restored images varies from 85 % or 
more. 

3. The results of comparing the transformed hyper-
spectral image using the obtained quantization coeffi-
cients are developed and obtained, which indicate the 
effectiveness of using discrete-cosine transformations 
with adaptive Huffman coding. Adaptive coding of the 
Huffman algorithm after Walsh-Hadamard transforma-
tions and DCT, which generates an intuitive program 
code table, has been developed and proposed. This mod-
ification made it possible to increase the degree of com-
pression of hyperspectral images due to the analysis of the 
frequencies of channel pairs, since codes of shorter length 
are allocated to more common values. 
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