
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 1/9 (115) 2022

56

Copyright © 2022, Authors. This is an open access article under the Creative Commons CC BY license

DEVELOPING THE
ALGORITHM AND

SOFTWARE FOR
ACCESS TOKEN

PROTECTION USING
REQUEST SIGNING
WITH TEMPORARY

SECRET
V a s y l B u k o v e t s k y i

Corresponding author
Postgraduate Student*

E-mail: bukovetsky@outlook.com
V a s y l R i z a k

Doctor of Physical and 	
Mathematical Sciences, Professor*

*Department of Solid State Electronics 	
and Information Security

State Institution of Higher Education 	
«Uzhhorod National University»

Narodna sq., 3, Uzhhorod, Ukraine, 88000

This paper proposes a method for protecting the access
tokens in client-server data exchange without saving the state
based on the formation of the signature of the request using a
temporary secret. The devised method allows one not to trans-
fer access tokens with each request, which would make it pos-
sible for the attacker to authenticate as a valid user when com-
promising the connection, for example, when using a «person in
the middle» attack.

Two variants of the method have been proposed and sub-
stantiated – simplified and improved, the scope of which
depends on the needs for protection and technical capabilities of
their implementation. The robustness of both variants is ensured
by the practical inability to select the initial input data of the
hash function used to form the signature. The improved version
also makes it possible to protect access tokens at the stage of
receiving them and provides protection against the attack of the
recurrence of the request. Initial user authentication protection
is achieved by using the Diffie–Hellman protocol to exchange a
secret and access token. Using query IDs and time labels pre-
vents the query from being reused.

Advanced security for access tokens is important because
having an attacker’s access token gives the attacker full control
over the user account. The use of SSL/TLS may not produce the
desired level of protection for such important data.

It was established that the use of the proposed method does
not add significant time costs. The SHA-256 hash function
example shows that the relationship between message size and
extra time to send and receive a message is linear. When using
the proposed method in the browser, the absolute value of addi-
tional time spent for messages from 100 bytes to 2,048 KB rang-
es from 0.4 ms to 142 ms. Given this, the proposed method could
be used without significant impact on the experience of use

Keywords: access token protection, client-server message
signature, authentication, session security

UDC 004.056.53
DOI: 10.15587/1729-4061.2022.251570

How to Cite: Bukovetskyi, V., Rizak, V. (2022). Developing the algorithm and software for access token protection using request

signing with temporary secret. Eastern-European Journal of Enterprise Technologies, 1 (9 (115)), 56–62. doi: https://doi.org/

10.15587/1729-4061.2022.251570

Received date 27.12.2021

Accepted date 07.02.2022

Published date 28.02.2022

1. Introduction

The rapid development of the Internet and related tech-
nologies has opened the way to the creation of dynamic web
resources and client-server applications that can provide
the user with personalized services. Such functionality is
achieved by constantly exchanging data of the client appli-
cation with the server. The most common data transfer pro-
tocol on the Internet is HTTP, which is a protocol without
saving the state. Using the protocol without saving the state
requires the constant transfer of identifying user data in each
request. One of the most common methods of identification
in such communication is to attach a certain token of access
to each new request. Examples of such tokens are session ID
and JSON Web Token.

The number of client-server applications used in every-
day life is growing day by day. Bank branches are closed,
instead, they develop applications that make it possible to
receive all the services directly from a smartphone. Many
states have also taken a course on digitalization, with many
public services becoming available online. Now one can
launch a business from a computer or smartphone, view

medical information, view information about the existing
property, and even transfer ownership of it. This gives at-
tackers more and more motives to carry out attacks. Previ-
ously, the maximum profit of the attacker could be a profile
on the forum; now their goals are accounts in banking and
government systems.

Data transmission over the network opens up many
opportunities for attacks, the main goal of which can be the
access token. Obtaining this information would allow the
attacker to be represented by the user even without knowing
his basic data to log in to the web service (usually a username
and password). Such web services can be online banking,
a public service portal, smart home system management, etc.

The most common method of protection is to use SSL/TLS
encryption protocols. SSL/TLS are cryptographic protocols
that ensure that a secure connection between the client and
the server is established. According to Google, as of August 27,
2021, from 79 % to 98 % (depending on the platform) pages
were loaded via HTTPS (based on SSL/TLS cryptographic
protocols) [1].

It is these cryptographic protocols that the data privacy
protection feature relies on in most modern web applications.

Information and controlling system

57

However, the HTTPS and SSL/TLS protocols have
drawbacks and may not always be used due to technical
limitations.

Thus, studies on the development of improved methods
of data protection in data transmission systems without pre-
serving the state are relevant.

2. Literature review and problem statement

The danger of a MITM attack is becoming increasingly
urgent every year. As already mentioned, most modern web
applications put the function of protecting access tokens that
are transmitted with each request to the HTTPS protocol.

HTTPS is an extension of the HTTP protocol, where
transport is performed on top of the SSL (TLS) protocol.
The protocol provides authentication and encryption of
transmitted data.

The use of a secure HTTPS connection is actively pro-
moted by developers of modern browsers, so some of the new
features and APIs are available only in a protected context [2].

The literature describes in detail the different methods
of attacks and vulnerabilities of these widely used protocols.

Paper [3] considers possible backdoors in many popular
implementations of the Diffie Hellman algorithm in TLS,
especially when used for HTTP transport by browsers.

Internet users depend daily on the HTTPS protocol for
secure communication with the sites they intend to visit.
Over time, many attacks on HTTPS and the certificate trust
model it uses have been implemented and/or improved.
Meanwhile, the number of certification authorities trusted
by browsers (respectively, trusted by their actual users) has
increased while proper analysis of the procedure for issuing
basic certificates has decreased. Study [4] investigates and
classifies visible HTTPS security issues, conducts a sys-
tematic analysis of previous and current calls, and creates
a context for future actions. It also offers a comparative as-
sessment of current proposals to improve the infrastructure
of certificates used in practice.

The increased implementation of the HTTPS protocol
has allowed the creation of an Internet network in which
most of the transmitted data is encrypted, but these security
achievements often stand in the way of a government that
seeks to see and control user communications.

In 2019, the Government of Kazakhstan carried out an
unprecedented large-scale HTTPS interception attack, forc-
ing users to trust their own root certificate. The authors of
work [5] were able to detect the interception and track its
scale and evolution using measurements from vantage points
in the country and remote measurement methods. The attack
was aimed at connecting up to 37 unique domains, with a fo-
cus on social media and communication services indicating
a motive – surveillance. The attack affected much of the con-
nections running through the country’s largest Internet service
provider, Kazakhtelecom. Continuous real-time measurements
showed the interception system was shut down after 21 days.
Subsequently, the two main browsers (Mozilla Firefox and
Google Chrome) completely blocked the use of the root cer-
tificate of Kazakhstan. However, this incident sets a dangerous
precedent not only for Kazakhstan but also for other countries
that may be trying to bypass encryption on the Internet.

In [6], it is empirically assessed whether browser se-
curity warnings are effective enough to clearly inform the
user of the possible dangers associated with their current

connection. The study used telemetry from Mozilla Firefox
and Google Chrome browsers, which allowed the authors to
analyze more than 25 million warning impressions. During
the study, users missed a tenth of Mozilla Firefox malware
and phishing warnings, a quarter of Google Chrome malware
and phishing warnings, and a third of Mozilla Firefox’s SSL
warnings. This demonstrates that safety warnings can be
effective in practice; security experts and system architects
should not reject the purpose of transmitting security in-
formation to end-users. The authors also found that user
behavior depends on warnings. Unlike other warnings, users
continued to miss 70.2 % of Google Chrome’s SSL warnings.
This indicates that the experience of using the warning can
have a significant impact on user behavior.

Consequently, statistics on skipping SSL error warnings
call into question the possibility of full use of HTTPS to pro-
tect the privacy of access tokens in its current implementation.

In [7], a study of user behavior was conducted to assess
whether improved browser security indicators and increased
awareness of phishing led to improved user ability to defend
themselves against phishing attacks. Participants were shown
a number of websites and asked to identify which ones were
phishing. To obtain objective quantitative data, eye tracking
was used to determine which visual cues attract users’ atten-
tion when they determine the authenticity of websites. The
results show that users have successfully detected only 53 % of
phishing websites, even when they have been prepared to iden-
tify them, and that they usually spend very little time looking
at security indicators compared to website content during
evaluation. Interestingly, the general technical knowledge of
users does not correlate with improved detection rates.

Paper [8] describes the method of attacking MITM on
HTTPS using public and free tools.

From works [3–8] we can conclude that the use of the
HTTPS protocol does not guarantee the complete security of
the transmitted data. More and more methods of bypassing
protection appear each time, which enables attackers, during
a known but not yet corrected vulnerability, to carry out
a MITM attack.

Because of the nature of the HTTP protocol where each
request is completely isolated from the previous ones, an
identification system is applied using an access token that
can be transmitted in Cookies, in headers, or in the body of
a message. An access token can be considered more valuable
than other data that are transferred because owning it makes
it possible to receive temporary or permanent access to the
information system, even without knowing the initial data
for authentication.

The problem of stealing the data of the session has al-
ready been considered in work [9], which described possible
techniques of attacks, as well as methods of counteraction.
The proposed methods of counteraction are the use of proto-
cols such as HTTPS, constant reauthorization of the user, en-
cryption of access tokens at the application level. Paper [10]
describes session hijacking protection based on linking the
access to the client’s IP address and web browser data.

3. The aim and objectives of the study

The purpose of this work is to devise a user identification
algorithm in applications that use the HTTP or HTTPS
protocol, in which access tokens will not be sent with each
new request. This would reduce the possible damage from

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 1/9 (115) 2022

58

the attack when compromising the methods of protection of
the highest level.

At the same time, the proposed method should be easy to
implement, understandable, and not create additional strong
load on the server and client.

To accomplish the aim, the following tasks have been set:
– to construct an algorithm for exchanging requests

without constant transfer of access markers in open form, as
well as its implementation;

– to analyze possible methods of bypassing the algorithm
and build its improved version;

– to determine the influence of the proposed algorithm
on the speed of data exchange.

4. The study materials and methods

To construct the algorithm, we have selected the JavaScript
programming language, which is the de facto primary lan-
guage for developing the client part of web applications.
PHP is selected to develop the server part.

The choice of PHP as a language for the development of
the server part is due to its widespread use in the development
of web applications; it is used by 78.3 % of websites [11]. Us-
ing JavaScript to develop a client part is obvious – it is the
primary language for developing the client side of websites,
and can also be used to develop full-fledged applications.

Servers were used to execute the server part of the code:
Supermicro X9SCI (Taiwan production) with Intel® Xeon®
E3-1230 processor (release – second quarter of 2011, frequency
3.20 GHz, 4 core/8 streams), 12 GB of DDR3 RAM with a fre-
quency of 1,600 MHz and two Seagate ST4000NM033-3ZM
hard drives (manufactured in China) combined into a Level
1 RAID array. Ubuntu 20.04 operating system with PHP ver-
sion 7.2; server with Intel ® Xeon® E-2176G (release – third
quarter of 2018, frequency 4.70 GHz, 6 cores/12 streams),
64 GB of DDR4 RAM with a frequency of 2,666 MHz, and
two hard drives HGST HUH721008AL (made in Thailand)
are combined into a Level 1 RAID array. Ubuntu 20.04 ope
rating system with PHP version 7.2.

To build the client part, the Google Chrome browser ver-
sion 93 was used, running on a computer with the Windows
10 operating system version 20H2, on an AMD FX-8300 pro-
cessor (3.3 GHz, 8 cores, 8 streams), 16 GB of DDR3 memory,
and an SSD with a Kingston SHFS37A120G disk.

5. Results of studying methods for protecting access
tokens based on the signature of requests with

a temporary secret

5. 1. Results of constructing an algorithm for exchang-
ing requests without constant transmission of access to-
kens in an open form

The most common procedure of data exchange between
the client and the server has been considered. The client ini-
tiates a new session by sending his username and password
in the body of the first request. The server may respond
negatively (if the login information is incorrect) or posi-
tively. In the case of a positive response, the server sends ac-
cess tokens. With each subsequent request, the client sends
the received access tokens in the body of the request, in
a separate header, or in a cookie. According to the received
access token, the server would look for the user correspond-

ing to it in the database, and, in relation to this, it would
form its request.

Fig. 1 shows a screenshot of Charles Web Debugging
Proxy, which makes it possible to intercept and analyze traffic.
Fig. 1 demonstrates the access token that is transmitted in
the cookie header. In the case of compromise of encryption,
the attacker could have access to it.

Fig. 1. Unsecured request to the server in which the access
token is transmitted in the cookie header, in the sid field

(circled in red)

To solve the problem with the constant transfer of the
token, one needs to make some changes to this procedure.
With initial successful authorization, instead of an access
token, the server would send the token ID and secret. At the
same time, the server must remember the affination of the
user – the identifier of the token – the secret. The received
token ID and the secret the client remembers by the end of
the session.

For each new server request, the client prepares the
following data: query body, token ID, salt and query signa-
ture. To form a signature, the client combines the body of
the request, secret, and salt, and applies the hash function;
its result would be the signature of the current request. After
that, the client can send the relevant data through the rele-
vant transport protocol, for example, HTTP. In this case, the
token ID, salt, and signature of the request would be sent via
HTTP headers. Fig. 2 shows the scheme of operation of such
an algorithm.

The algorithm does not involve the use of any particular
hash function but the main part of the defense mechanism
depends on it. It can be argued that as long as the source
data cannot be retrieved from the result of the hash function,
the corresponding access tokens cannot be obtained from the
query signature.

Accordingly, the algorithm should use a hash func-
tion, which is cryptographically robust, and, accordingly,
for which no methods for selecting collisions were found.
Because of this, the use of such popular hash functions as
MD5 [12–14], SHA1 [15, 16] is not recommended.

However, the algorithm is not tied to a specific hash func-
tion and, if a vulnerability is found, would make it possible to
quickly switch to a safer alternative.

Information and controlling system

59

When using the developed algorithm, the data sent with
each request would not be enough for the attacker to form
a new query under the user’s guide. Of course, this method
of transfer will not protect the data sent from disclosure but
could significantly reduce the chances of an attacker gaining
full control over the user account.

5. 2. Results of analysis of possible methods of bypass-
ing protection and development of an improved algorithm
by requests without constant transmission of access to-
kens in an open form

It should be noted that access tokens can be intercepted
during the initial secret exchange, so at this stage, it is recom-
mended to use the Diffie-Hellman protocol (or similar asym-
metric protocol) to exchange keys and subsequent encrypted
secret transmission.

Obviously, a symmetrical method is not suitable for this
task because the client and server cannot know in advance

the key with which it would be possible to perform a secure
exchange of access tokens.

In addition, this method does not protect against attack
with a repeat of the request. If an attacker intercepts a com-
munication channel and receives one of the requests sent by
the user, he will be able to send it again and the server, having
checked all the data, will accept this request as authentic.
This can lead to significant problems because such a request
can be, for example, obtaining the latest banking operations,
which will make it possible to receive permanent fresh data
while the current access token is valid.

To correct this shortcoming, one needs to add several ad-
justments to the procedure. When exchanging access tokens,
the server must forward its current time. In this case, the
client should remember the difference in the time and time
of the server. When creating a new server request, the client
must add their current time to each request, taking into con-
sideration the difference between the server and their own.

Fig. 2. Flowchart of the basic messaging algorithm without constant transfer of the access token

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 1/9 (115) 2022

60

In addition to the current time, one also needs to send
a fairly long random value, which, in addition to sending
in an open view, one needs to attach to the message before
creating the signature value. Similarly, one must add a cli-
ent timestamp to the string that will be passed to the hash
function to generate the signature. It is most convenient to
use a timestamp in UNIX format for this because the algo-
rithm uses only the calculation of the absolute time diffe
rence in seconds.

The server must keep a history of random values and
reject all requests if random values are repeated. Adding
a timestamp to a query will make it possible for only a short-
term history of random values to be kept in memory. If the
difference between server time and a label in a message varies
by more than the predefined storage time of random values,
then such requests can be automatically rejected. Under
normal circumstances, it is enough to store random values for
a few seconds – enough time to initialize the connection and
correct other possible delays on the network; because of this,

the base of such values will not be large. The scheme of work
of the improved algorithm is shown in Fig. 3.

To store random values, one can use a database of key-
value type, such as Redis, Memcached, and others. This will
make it possible to make only minimal delays in obtaining
and storing this data, and will also make it possible to scale
the system more efficiently for large loads.

There are only two possible ways to obtain an access token
using a MITM attack: by finding the initial data that were used
in the message signature and intercepting access tokens at the
session authorization stage. The security guarantee in the first
case is the irreversibility of the hash function [17], which will
be used to form the signature of the message, until the result
of the hash function can produce the initial data until one can
get access tokens that were part of the generated signature.

Based on the practical inability to reverse the conversion of
the hash function, the server can be sure of user authentication
because only the correct user has one of the parts of the input
data of the following function: the secret of the access token.

Fig. 3. Flowchart of the improved messaging algorithm without permanent passing of access token

Information and controlling system

61

5. 3. The impact of the proposed algorithm on the
speed of data exchange

To determine the feasibility of the developed algorithm,
it is necessary that the overheads are not too large and do
not significantly slow down the communication between the
server and client. To determine the effectiveness, the imple-
mentation of the protocol using PHP languages – the server
part and JavaScript – the client part was implemented.

Measurements were carried out using the built-in Java
Script capabilities, from the beginning of the query formation
to the receipt of the full server response. For each of the sizes
of the message, 100 measurements were carried out. Table 1
gives the average time spent per query.

As can be seen from the measurement results, the in-
crease in costs is almost linear. Moreover, on small messages,
additional costs are 10 or more times less than the time to
transmit a message by the usual method.

6. Discussion of results of the development of the access
token protection algorithm

The built algorithms rely on the stability of the hash
function to determine the initial input parameters. As long
as this statement is true, it will not be possible to reproduce
enough information to represent the user from the message
being transmitted.

Unlike SSL/TLS protocols, the developed algorithms
make it possible to protect access tokens not just by encrypt-
ing them but generally excluding them from transmitted
messages. At the same time, the improved algorithm also
excludes the open transfer of access tokens at the initial stage
of connection. In combination with SSL/TLS or another en-
cryption method, the developed algorithm will significantly
improve the security of the connection.

As one can see from the data in Table 1, the use of our
algorithms does not add significant time costs in the ex-
change of data. At the same time, the costs on small volumes
are small enough to be completely invisible to the user.
At the same time, the increase in time spent remains almost

linear, as in the case of an unprotected connection. Using
a more powerful server does not significantly improve the
speed of the algorithm. The most resource-consuming part
of the algorithm is the calculation of the result of the hash
function, while both the client and the server perform
almost identical operations. With high probability, the
client will use less powerful equipment than the server, so,
first of all, all future optimizations and improvements in
terms of speed should be carried out in the client part of
the algorithm.

Storing random values to control query duplicates does
not make noticeable slowdowns in the data exchange process,
so the average difference between queries that used and did

not use comparisons of random va
lues with previous ones was ~1.2 ms.

The use of the Diffie-Gelman
algorithm does not affect the over-
all speed of operation because it
is used only at the initial stage of
obtaining an access token.

The largest time spent is when
calculating the hash function for
the signature. It should be noted
that for measurements, the imple-
mentation of a hash function writ-
ten in JavaScript was used, the use
of more optimal tools for this task
may reduce the time in the pro-
posed algorithm.

The proposed algorithm has
some fundamental limitations. The
algorithm protects only access to-
kens from interception, not the
entire message. The attacker will
still be able to read the contents of
the message if additional security
methods are not used.

The proposed solution also has drawbacks. The solu-
tion is characterized by additional overhead costs for the
calculation of the signature. Moreover, these costs increase
with the size of the message. On very large messages (for
example, when transferring files), such costs can become
noticeable to the user. This disadvantage can be eliminated
by using a more optimized algorithm for calculating the
hash function.

The proposed solution can be used in practice in its cur-
rent form. However, additional analysis and verification are
required for real use.

7. Conclusions

1. A platform-independent algorithm and client-server
messaging software have been created that allows one not
to transmit access tokens with each request. Unlike security,
based solely on the use of SSL/TLS encryption protocols, the
developed algorithm significantly reduces the likelihood of
receiving access tokens in case of interception and decryption
of a message by an attacker. This is achieved by reducing the
frequency of transmission of access tokens in the data ex-
change process. The algorithm is easy to implement because
it is based on functions already available in any modern pro-
gramming language. The algorithm can easily be integrated
into existing systems. The proposed algorithm can be used in

Table 1

Time spent on different-size data transmission, protected and unprotected 	
by the constructed algorithm

Message
size

Time with unpro-
tected connection

(server with
processor Intel®
Xeon® E3-1230)

Query time when
using simple pro-

tection (server with
processor Intel®
Xeon® E3-1230)

Time with unpro-
tected connection

(server with
processor Intel®

Xeon® E-2176G)

Query time when
using simple pro-

tection (server with
processor Intel®

Xeon® E-2176G)

100 bytes 43.2 ms 43.6 ms 39.3 ms 39.4 ms

1 Kb 50.2 ms 51.1 ms 43.4 ms 44.5 ms

8 Kb 52.9 ms 54.2 ms 48.1 ms 50.1 ms

16 Kb 55.8 ms 57.9 ms 50.5 ms 51.3 ms

32 Kb 61.1 ms 63.8 ms 57.6 ms 59.7 ms

64 Kb 71.4 ms 76.3 ms 64.8 ms 68.3 ms

128 Kb 85.1 ms 93.1 ms 75.9 ms 81.8 ms

256 Kb 122 ms 137 ms 110.9 ms 123 ms

512 Kb 194 ms 222 ms 174.2 ms 197.4 ms

1024 Kb 380 ms 452 ms 320.1 ms 381 ms

2048 Kb 890 ms 1,032 ms 798.4 ms 903 ms

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 1/9 (115) 2022

62

pairs with HTTPS to enhance the protection of client-server
communication and privacy.

2. Possible attacks on the proposed algorithm, such as
the attack of re-query and interception of markers at the
stage of the first exchange, have been considered. An algo-
rithm with improved protection has been proposed. In the
improved version of the algorithm, the process of initial
exchange of access markers to increase the level of security
has been changed. In addition, the improved algorithm was
supplemented with verification for re-sending the message.
The improved algorithm is also easy to implement and can
be easily integrated into existing systems. Unlike the solu-
tions proposed in [9, 10], the developed algorithms signifi-

cantly improve the protection of the session from MITM
attacks (man in the middle). This is achieved due to the lack
of sufficient data in the messages to form a message on behalf
of the user.

3. It is established that the developed protection algo-
rithms do not add significant additional time costs to the
transmission of messages. On small messages, the increase
in time does not exceed 10 ms, such additional costs will not
be noticeable to the user. On large messages (up to 2 MB),
additional time costs are up to 140 ms, which will also be
practically not noticeable to the user in most scenarios of
using the algorithm, while the increase in time costs occurs
linearly, relative to the size of the message.

References

1.	 HTTPS Encryption on the Web. Google Transparency Report. Available at: https://transparencyreport.google.com/https/

overview?hl=en

2.	 Features restricted to secure contexts. Available at: https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts/

features_restricted_to_secure_contexts

3.	 Dorey, K., Chang-Fong, N., Essex, A. (2017). Indiscreet Logs: Diffie-Hellman Backdoors in TLS. Proceedings 2017 Network and

Distributed System Security Symposium. doi: https://doi.org/10.14722/ndss.2017.23006

4.	 Clark, J., van Oorschot, P. C. (2013). SoK: SSL and HTTPS: Revisiting Past Challenges and Evaluating Certificate Trust Model

Enhancements. 2013 IEEE Symposium on Security and Privacy. doi: https://doi.org/10.1109/sp.2013.41

5.	 Raman, R. S., Evdokimov, L., Wurstrow, E., Halderman, J. A., Ensafi, R. (2020). Investigating Large Scale HTTPS Interception in

Kazakhstan. Proceedings of the ACM Internet Measurement Conference. doi: https://doi.org/10.1145/3419394.3423665

6.	 Akhawe, D., Felt, A. P. (2013). Alice in Warningland: A Large-Scale Field Study of Browser Security Warning Effectiveness.

22nd USENIX Security Symposium. Washington, 257–272. Available at: https://www.usenix.org/conference/usenixsecurity13/

technical-sessions/presentation/akhawe

7.	 Alsharnouby, M., Alaca, F., Chiasson, S. (2015). Why phishing still works: User strategies for combating phishing attacks. Interna-

tional Journal of Human-Computer Studies, 82, 69–82. doi: https://doi.org/10.1016/j.ijhcs.2015.05.005

8.	 Chordiya, A. R., Majumder, S., Javaid, A. Y. (2018). Man-in-the-Middle (MITM) Attack Based Hijacking of HTTP Traffic Using

Open Source Tools. 2018 IEEE International Conference on Electro/Information Technology (EIT). doi: https://doi.org/10.1109/

eit.2018.8500144

9.	 Kumar Baitha, A., Smitha Vinod, P. (2018). Session Hijacking and Prevention Technique. International Journal of Engineer-

ing & Technology, 7 (2.6), 193. doi: https://doi.org/10.14419/ijet.v7i2.6.10566

10.	 Singh, T., Meenakshi (2020). Prevention of session hijacking using token and session id reset approach. International Journal of

Information Technology, 12 (3), 781–788. doi: https://doi.org/10.1007/s41870-020-00486-w

11.	 Historical trends in the usage statistics of server-side programming languages for websites (2021, November 1). W3Techs. Available

at: https://w3techs.com/technologies/history_overview/programming_language

12.	 Dougherty, C. R. (2008). MD5 vulnerable to collision attacks. Vulnerability Note VU#836068. Software Engineering Institute.

Carnegie Mellon University. Available at: https://www.kb.cert.org/vuls/id/836068/

13.	 Wang, X., Yu, H. (2005). How to Break MD5 and Other Hash Functions. Lecture Notes in Computer Science, 19–35. doi: https://

doi.org/10.1007/11426639_2

14.	 Libed, J. M., Sison, A. M., Medina, R. P. (2018). Enhancing MD5 Collision Susceptibility. Proceedings of the 4th International

Conference on Industrial and Business Engineering. doi: https://doi.org/10.1145/3288155.3288173

15.	 Wang, X., Yin, Y. L., Yu, H. (2005). Finding Collisions in the Full SHA-1. Lecture Notes in Computer Science, 17–36. doi: https://

doi.org/10.1007/11535218_2

16.	 Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y. (2017). The First Collision for Full SHA-1. Lecture Notes in Com-

puter Science, 570–596. doi: https://doi.org/10.1007/978-3-319-63688-7_19

17.	 Goldreich, O. (2001). Foundations of Cryptography. Volume 1: Basic Tools. Cambridge University Press. doi: https://doi.org/

10.1017/cbo9780511546891

