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In a variety of engineering, scientific challenges, mathema
tics, chemistry, physics, biology, machine learning, deep learning, 
regression classification, computer science, programming, artifi
cial intelligence, in the military, medical and engineering indus
tries, robotics and smart cars, fuzzy nonlinear equations play  
a critical role. As a result, in this paper, an Optimization Algorithm 
based on the Euler Method approach for solving fuzzy nonlinear 
equations is proposed. In mathematics and computer science, the 
Euler approach (sometimes called the forward Euler method) is 
a firstorder numerical strategy for solving ordinary differential 
equations (ODEs) with a specified initial value. The local error is 
proportional to the square of the step size, while the general error 
is proportional to the step size, according to the Euler technique.  
The Euler method is frequently used to create more complica
ted algorithms. The Optimization Algorithm Based on the Euler 
Method (OBE) uses the logic of slope differences, which is compu
ted by the Euler approach for global optimizations as a search 
mechanism for promising logic. Furthermore, the mechanism of 
the proposed work takes advantage of two active phases: explo
ration and exploitation to find the most important promising areas 
within the distinct space and the best solutions globally based on 
a positive movement towards it. In order to avoid the solution of 
local optimal and increase the rate of convergence, we use the ESQ 
mechanism. The optimization algorithm based on the Euler me 
thod (OBE) is very efficient in solving fuzzy nonlinear equations 
and approaches the global minimum and avoids the local minimum. 
In comparison with the GWO algorithm, we notice a clear supe
riority of the OBE algorithm in reaching the solution with higher 
accuracy. We note from the numerical results that the new algo
rithm is 50 % superior to the GWO algorithm in Example 1, 51 % in 
Example 2 and 55 % in Example 3
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1. Introduction

The paper [1–3] developed the concept of fuzzy numbers 
and arithmetic operations on them, which was expanded 
in [4]. Later, the work [5] contributed significantly by de-
veloping the main thought of LR fuzzy numbers and then 
presented a computational formula toward fuzzy number 
operations. The solution of the mentioned equations, the 
main parameters of which are fuzzy numbers has emerged as 
one of the key areas for the application of fuzzy numbers as 
the theory of fuzzy numbers has progressed. The solution of 

fuzzy equations is necessary in diverse fields such as chemis-
try, economics, physics, and others.

Take a look at the set of j nonlinear equations:

gd jχ χ χ1 2 0, , , ,…( ) =  d j= …1 2, , , .

The general form of the nonlinear equation for j = 1 can be 
stated simply according to a value for the variable x, which is 
computed as follows:

G χ( ) = 0, (1)
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where G denotes any nonlinear function of χ and gi denotes a 
mapping from Rn to Rn. The value of X is then referred to the 
root or solution of this equation, which could be one of several. 
The above-mentioned equation appears frequently in engi-
neering, natural and social sciences. Several approaches have 
been proposed and used to gain its solution. However, fuzzy 
numbers are used to represent the parameters of these struc-
tures of nonlinear equations instead of clear numbers. Thus, 
the final results are dependent on the roots of the fuzzy equa-
tion [6]. Some standard analytical techniques [7–9] are not 
suitable for solving systems of nonlinear equations of the form:

h k f r u zχ χ χ χ5 4 3+ + + − = ,

χ χ− ( )=csc ,w

where χ, h, k, f, r, u, and w are fuzzy numbers. Therefore, we 
need to suggest the metaheuristic methods to find the solu-
tion to this type of equation. 

Therefore, studies that are devoted to solving fuzzy non-
linear equations and finding the optimal solution to the equa-
tions with the fewest number of iterations and in record time 
compared to the GWO method are of scientific relevance. 

2. Literature review and problem statement

Actually, the Euler method calculates the penchant and 
solves ordinary differential equations (ODE) using a spe-
cial Euler formulation [10]. OBE’s fundamental notion is 
grounded on the Euler method’s suggested calculated pen-
chant concept. The OBE employs the calculated penchant 
as searching reasoning to find the most convenient area in 
the area of search and construct a group of statutes for the 
development of a population group based on the logic of the 
swarm-based optimization technique. The next subsections 
go over the mathematical formula for OBE. Some researchers 
have solved fuzzy nonlinear equations by some methods. In 
2004, the work [6] proposed Newton’s method. The disad-
vantage of the method is that it requires the calculation of 
the Hessian matrix. In 2006, the steepest descent method 
was proposed [11]. One of the disadvantages of the method 
is that it is slow. In 2008, the Harmonic Newton method was 
proposed [12], which is an ineffective way to get to the roots. 
In 2010, they used the Broyden’s method [13]. Broyden’s me-
thod requires calculating the inverse of the Hessian matrix.  
Also in 2010, the work [14] used the general iterative method 
for an ineffective method with all kinds of equations. In 2011, 
the work [15] used the iterative secant method. One of the 
disadvantages of the method is that it sometimes does not 
reach the solution. In 2016, some iterative methods were used 
to solve fuzzy equations such as the Bisection method [16], 
the False Position method [17], and the secant method modi-
fied in [18]. One of the disadvantages of these methods is that 
they are very slow to reach a solution. In 2018, a new class of 
paired gradient method [19] and Barzilai-Borwein gradient 
method were used [20]. These methods need to calculate 
the gradient vector at each iteration. In the same year, some 
numerical methods were proposed [21]. One of the disadvan-
tages of these methods is that they are old, traditional and 
need an initial point. Stirling’s-like method [22] does not 
guarantee reaching a solution. In 2019, the Chord Newton 
method was used [23], which needs to compute a Hessian 
matrix for each iteration. In 2020, the accelerated method 

was proposed [24]. This method does not guarantee reaching 
a solution. The quasi-Newton method was proposed to solve 
nonlinear fuzzy equations [25]. One of the disadvantages of 
the method is that it requires calculating the inverse Hessian 
matrix for each iteration. In 2021, they proposed four nu-
merical methods for solving fuzzy equations [26]. Traditional 
numerical methods need an initial point. A Special Iterative 
Algorithm [27], the Free Levenberg-Marquardt method [28] 
were proposed. One of the disadvantages of the method is 
that it requires calculating the inverse Hessian matrix for 
each iteration. The Shamanskii method was used in [29]. 
One of the disadvantages of the method is that it does not 
guarantee reaching a solution. Spectral CG algorithm for 
solving fuzzy nonlinear equations was developed in [30]. This 
method does not reach a global solution. 

All this allows us to assert that it is expedient to conduct 
a study on metaheuristic methods for solving fuzzy nonlinear 
equations, which is an effective optimization algorithm me-
thod that depends on the Euler method. 

3. The aim and objectives of the study

The aim of the study is to develop metaheuristic methods 
for solving nonlinear fuzzy equations by using numerical 
methods such as Euler iterative method. The OBE technique 
is easy to use and does not require many complications, as is 
the case of traditional numerical methods.

To achieve this aim, the following objectives are ac-
complished:

– to find the minimum of fuzzy equations;
– to get the best value for variables;
– to get the best value for functions.

4. Materials and methods

In this paper, fuzzy nonlinear equations are solved using  
a stochastic swarm-based model. The proposed OBE approach 
is expressed in a non-metaphorical manner, focusing on the 
mathematical essence as a set of active rules that are applied at 
the right time. It is not recommended to use metaphors with the 
population-based models because the only advantage is that it 
hides the basic structure of the equations used by the optimizers.  
As a result, OBE accounts for the Euler method’s core logic 
as well as a throng of the agent’s population-based evolution.

This stage’s logic is to construct an initial swarm that will 
evolve throughout the specified number of iterations. For 
a population of size N, N sites are generated at random in OBE. 
Each individual in the population, Xn (n = 1,2,…, N), is a D di-
mensional optimization problem solution. The initial positions 
are created at random in general using the following concept:

x L rand U Ln l l l l, .= + ⋅ −( )
The problem’s 1th variable l = 1,2,…, D has lower and 

upper limits Ll and Ul, respectively, and is a random number 
range [0, 1]. Only a small number of solutions are generated 
by this rule.

The proposed work uses the Euler method to explore 
the solution space and construct an appropriate global and 
local search. Furthermore, it is used to determine the pro-
posed OBE search mechanism. The SM formula is defined 
as follows:
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k rand uw b= × − ×( )1
2Dχ

χ χ ,

u round rand rand= +( ) × −( )1 1 ,

SM RK= ( )χ χD ,

χRK uk= 1,

where rand1 and rand2 are two random values ranging from 0 
to 1. Delta X is defined by the following formula:

D = × ×χ 2 rand Stp ,

Stp rand randb avg= × − ×( ) +( )χ χ γ ,

γ χ= × − × −( )( ) × − ×





rand rand u l
i

in exp ,4
max

where Xw and Xb are determined by the following:

if g(χn)<g(χbi)
 χb = χn

 χw = χbi

else
 χb = χbi

 χw = χn

end.

In the next step, we explain the solution update for the 
above technique.

The OBE algorithm uses a search mechanism (SM) based 
on the Euler method to update the current solution location 
at each iteration, 

if rand<0.5
(exploration phase)

 
χ χ χ

µ χ χ
n c c

m c

r SF g

SF SM randn

+ = + × × ×( ) +

+ × + × × −( )
1

else
(exploitation phase)

 

χ χ χ

µ χ χ
n m m

r r

r SF g

SF SM randn

+ = + × × ×( ) +

+ × + × × −( )
1

1 2  (4)

end

where r is an integer that can be either 1 or –1, g is a random 
number between 0 and 2, SF is a coping mechanism, where μ 
is a number chosen at random.

The formula of SF is as follows:

SF rand g= × −( ) ×2 0 5. ,  (5)

g ex rand
i

i
= × − × × 











α β
max

, (6)

where maxi stands for the largest number of iterations. The 
formulas of Xc and Xm are as follows:

χ ϑ χ ϑ χc n r= × + −( ) ×1 1,  (7)

χ ϑ χ ϑ χm best lbest= × + −( ) ×1 , (8)

where ϑ is a random number between 0 and 1. Xbest has shown 
to be the most effective solution so far. At each iteration, 
Xlbest represents the best position.

Enhanced Solution Quality (ESQ) is used by the OBE 
algorithm to improve the quality of the solutions and then 
override the local improvement on each iteration. ESQ is used 
to generate the answer (Xnew 2) using the following technique:

if randm<0.5
 if w<1

  χ χ χ χnew new new avgr w randm2 1 1= + × × −( ) +

 else

  

χ χ χ

χ χ

new new avg

new avg

r w

u randm

2 1

1

= −( )+ × ×

× × −( ) +  (9)

 end
end

w rand ex c
i

i
= ( ) − 











0 2. .
max

,  (10)

χ
χ χ χ

avg
r r r=

+ +1 2 3

3
,  (11)

χ κ χ κ χnew avg best1 1= × + −( ) × , (12)

where k is a random value between 0 and 1, and in this paper, 
c is a random number that equals 5×rand, xbest is the better 
solution found so far, r is an integer number that can be 1, 0, 
or –1. The present solution (i.e., f (Xnew 2)>f(Xn)) may not 
have the best fitness than the solution determined in this 
section (Xnew 2). Another new solution (Xnew 3) is developed 
in order to have another shot at developing a decent solution. 
It is defined as follows:

if rand<w

χ χ χ

χ ν χ χ
new new new

RK b new

rand

SF rand

3 2 2

2

= − ×( ) +

+ × × + × −( )( )  (13)

end

where ν is a random number with a value of two multiplied 
by rand [31].

Algorithm 1. The OBE pseudo-code
Phase One. Initialization
Set up variables a and b to their default values
OBE population χn (j = 1,2,…, D) should be generated.
Determine each population member’s objective function.
Find the χw, xb, and χbest solutions.
Phase Two. Operators of OBE
 for s = 1:maxs
  for j = 1:D
   for t = 1:L
 Eq. (1) is used to determine the position χj+1,k

 End for
  Enhance the solution quality
  if rand<0.5
   Determine position χnew2 using Eq.(9)
   if g(χj)>(χnew2)
    if rand<w
     Determine position χnew3 using Eq. (13)
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    end
   end
  end
  Positions χw and χb should be updated.
 end for
  Position χbest should be updated.
   j = j+1
 end
Phase Three. Return χbest.

Here we reach the end of a detailed explanation of the 
method, and in the next part we deal with the numerical 
results of the OBE technique [31].

All computations are performed in MATLAB 2021b on 
a Windows 10 HP system with an Intel Core i5 CPU, 4 GB 
of RAM, and 500 GB of hard disk space, with a maximum 
iteration count of 500 for solution stopping.

The limits of work in solving fuzzy nonlinear equations 
have been narrowed, since only nonlinear equations have been 
solved without solving exponential or trigonometric equations.

5. Numerical results of the examples

Throughout this section, we will use numerical examples 
to demonstrate the efficiency and applicability of the OBE 
technique, which is applied to solve fuzzy non linear equations. 
The following are some instances from [8]. Table 1 shows some 
examples of fuzzy nonlinear equations solved by the Optimiza-
tion Algorithm Based on the Euler Me thod (OBE) technique.

Table	1

Examples	of	fuzzy	nonlinear	equations	solved		
by	the	new	algorithm

Examples Range fmin

f1
23 4 5 1 2 3 1 2 3= ( ) + ( ) = ( ), , , , , ,χ χ  [8],

3 1 1 02+( ) ( ) + +( ) ( ) − +( ) =ς χ ς ς χ ς ς ,

5 3 3 02−( ) ( ) + −( ) ( ) − −( ) =ς χ ς ς χ ς ς .

For ς = 1

4 1 2 1 2 0 4 1 2 1 2 02 2χ χ χ χ( ) + ( ) − = ( ) + ( ) − =. .

For ς = 0

3 0 0 1 0 5 0 0 3 02 2χ χ χ χ( ) + ( ) − = ( ) + ( ) − =.

[0, 2] 0

f2
23 4 5 1 2 3 1 2 3= ( ) + ( ) = ( ), , , , , ,χ χ  [8],

4 2 2 3 3 02+( ) ( ) + +( ) ( ) − +( ) =ς χ ς ς χ ς ς ,

8 2 4 9 3 02−( ) ( ) + −( ) ( ) − −( ) =ς χ ς ς χ ς ς .

For ς = 1

6 1 3 1 6 02χ χ( ) + ( ) − = ,

6 1 3 1 6 02χ χ( ) + ( ) − = .

For ς = 0

4 0 2 0 3 0 8 0 4 0 9 02 2χ χ χ χ( ) + ( ) − = ( ) + ( ) − =.

[0, 2] 0

f3
3 21 2 3 2 3 4 3 4 5 5 8 13= ( ) + ( ) + ( ) = ( ), , , , , , , ,χ χ  [8],

1 2 2 2 03 2+( ) ( ) + +( ) ( ) − +( ) =ς χ ς ς χ ς ς ,

3 4 8 4 03 2−( ) ( ) + −( ) ( ) − −( ) =ς χ ς ς χ ς ς .

For ς = 1

2 1 3 1 4 03 2χ χ( ) + ( ) − = ,

.2 1 3 1 4 03 2χ χ( ) + ( ) − =
For ς = 0

χ χ χ χ3 2 3 20 2 0 2 0 3 0 4 0 8 0( ) + ( ) − = ( ) + ( ) − =,

[0, 2] 0

Table 1 gives examples of fuzzy nonlinear equations that 
have been solved by the Optimization Algorithm Based on 
the Euler Method (OBE) technique. 

5. 1. Efficiency of the Optimization Algorithm Based 
on the Euler Method (OBE) technique 

The minimum fuzzy nonlinear equations were found as 
shown in the fourth column of Table 2, where the Optimi-
zation Algorithm Based on the Euler Method (OBE) tech-
nique was very effective in reaching the global solution to 
the above problems. 

Table	2
Numerical	results

Exam-
ple

Itera-
tions

X-Best F-Best(OBE)
F-Best Grey Wolf 
Optimizer (GWO)

1 500

0.43426

6.153e-012 9.041e-06
0.5

0.5

0.53066

2 500

0.65139

2.0313e-010 4.1164e-05
0.78078

0.78078

0.83978

3 500

0.83929

2.9951e-011 4.7088e-05
0.91082

0.91082

1.0564

5. 2. F-Best
The aim of the paper was to find the best value for the 

given functions, and by using the Optimization Algorithm 
Based on the Euler Method (OBE) technique, the best va-
lues for the fuzzy nonlinear equations were obtained, as found 
in the fourth column of Table 2, thus achieving the desired 
purpose of the Optimization Algorithm Based on the Euler 
Method (OBE) technique. 

At the end of this section, we note that the Optimization 
Algorithm Based on the Euler Method (OBE) technique is 
an effective way to find roots for equations, reach the global, 
and avoid the local solution of the given functions.

5. 3. Best Root Value
We got the roots of the given equations where the best 

value was found for each variable as shown in the third 
column of Table 2 and also shown in Fig. 1–3, where these 
graphics are figures of the values of the variables in the three 
problems. Where Fig. 1 refers to plotting the solution to the 
first equation, Fig. 2 refers to plotting the solution to the 
second equation. The OBE algorithm has been compared 
with the Grey Wolf Optimizer (GWO) algorithm [32]. There 
are previous papers that dealt with the topic of solving fuzzy 
nonlinear equations using swarms, for more see [33, 34].

Fig. 3 shows the solution of three equations when us-
ing the Optimization Algorithm Based on the Euler Me-
thod (OBE) technique. The plot reaches the peak when the 
value is 0.92 and it starts to decrease reaching zero when the 
value is 1.05.
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Fig.	1.	Solution	to	problem	1	using	Optimization	Algorithm	

Based	on	the	Euler	Method	(OBE)	technique

 

Fig.	2.	Solution	to	problem	2	using	Optimization	Algorithm	
Based	on	the	Euler	Method	(OBE)	technique

 
Fig.	3. Solution	to	problem	3	using	Optimization	Algorithm	

Based	on	the	Euler	Method	(OBE)	technique

6. Discussion of the results of developing metaheuristic 
techniques for solving fuzzy nonlinear equations using 

numerical methods

In this paper, one of the metaheuristic methods for solving 
fuzzy nonlinear equations is proposed, which is an effective 
optimization algorithm method that depends on the Euler 
method. This method was proposed because it is very effective 
in finding the roots of fuzzy nonlinear equations and has glo bal 
convergence, unlike some numerical algorithms whose con-
vergence is local and needs an initial point close to the exact 
solution and may diverge from the approximate solution if the 
initial point is outside the range of the appro ximate solution.

At the beginning of the paper, it deals with the issue of lo-
cal and global convergence, and after obtaining the numerical 
results in Table 2 and Fig. 1–3, we prove that the Optimiza-
tion Algorithm Based on the Euler Method (OBE) technique 
has global convergence compared to the GWO algorithm.  
The researchers did not address the solution of fuzzy non-
linear equations with metaheuristic algorithms before.

Table 2 indicates the numerical results of the new tech-
nique, where the best value of the variables and the best value 
of the functions were recorded, as the method converged 
towards the global in all the given functions compared to the 
GWO algorithm. 

The limits of the study are the minimization of functions 
to obtain the required roots. One of the difficulties that we 
encountered in the paper is how to program the OBE algo-
rithm and the problems using Matlab.

One of the disadvantages of the algorithm is that it needs 
many iterations to reach the solution, and we will overcome 
this problem in the future.

7. Conclusions

1. The new method is more efficient than the intelligent 
swarming methods because the intelligent swarming me-
thods work in a random way. 

2. We obtained encouraging results and convergence to-
wards global in solving all the fuzzy nonlinear equations, as 
the results show that the solution of the equations reached 
the global minimum of the equations.

3. We can develop a method to use in artificial neural net-
works for data classification and approximate functions, and 
we can get encouraging results based on solving nonlinear 
equations, and they can be applied also in several other areas, 
including video cameras, smart cars, air conditioners, boilers, 
ships, and automatic washing machines.
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