
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/9 (116) 2022

60

1. Introduction

The rapid development of electronic devices, commu-
nications, and Internet technologies in recent decades has
provided the possibility of almost instantaneous exchange
of personal and collective data. Adversaries can relatively
easily obtain huge amounts of confidential data using access
to electronic sensors, computers, mobile terminals, and var-
ious social networks. This raises security issues in the use
and transmission of data. Of particular importance among
the most important components of information security are
encryption and hashing, which are the most widely used
cryptographic methods for ensuring the confidentiality, in-
tegrity, and availability of data.

Hashing was originally used to check the integrity
of messages but has now become widespread in computer
science and programming to optimize critical data opera-
tions. The field of application of the hashing mechanism is
extremely wide.

Modern secure hash algorithms are crucial for the integ-
rity of data and confirmation of the authorship of informa-
tion during its transmission and storage in infocommunica-

tion systems and general-purpose networks. Hash functions
are used to perform authentication, verify the integrity
of information, protect data and files, including, in some
cases, the detection of malicious software and much more.
Hash functions solve the problem in terms of the volume of
incoming data, which is why algorithms that can operate
with concise values are very popular in the modern world
of digital technologies. The hash mechanism is also used to
reduce the time required to generate and verify a signature,
as well as to reduce its length.

Hashing is also a fundamental transformation for
blockchain technology, applied in areas such as financial
transactions, user identification, or the creation of cyber-
security technologies. A blockchain is a connected chain
of records called blocks. Each block contains its own hash
value, the hash value of the previous block, and a time-
stamp, which prevent an attacker from making changes to
the data [1, 2].

The very first hash function was built around the DES
(Data Encryption Standard) block cipher. Since then, a lot
of new hash functions have been developed using new con-
structions and ways of constructing them. Conventionally,

Copyright © 2022, Authors. This is an open access article under the Creative Commons CC BY license

How to Cite: Sakan, K., Nyssanbayeva, S., Kapalova, N., Algazy, K., Khompysh, A., Dyusenbayev, D. (2022). De-

velopment and analysis of the new hashing algorithm based on block cipher. Eastern-European Journal of Enter-

prise Technologies, 2 (9 (116)), 60–73. doi: https://doi.org/10.15587/1729-4061.2022.252060

DEVELOPMENT AND
ANALYSIS OF THE NEW

HASHING ALGORITHM
BASED ON BLOCK CIPHER

K a i r a t S a k a n *
PhD Student**

S a u l e N y s s a n b a y e v a
Doctor of Technical Sciences, Professor**

N u r s u l u K a p a l o v a
Candidate of Technical Sciences, Associate Professor**

K u n b o l a t A l g a z y
Corresponding author

PhD**
A r d a b e k K h o m p y s h *

PhD**
D i l m u k h a n b e t D y u s e n b a y e v

Software Engineer**
*Faculty of Information Technology

Al-Farabi Kazakh National University
Al-Farabi ave., 71, Almaty, Republic of Kazakhstan, 050040

**Information Security Laboratory
Institute of Information and Computational Technologies

Shevchenko str., 28, Almaty,
Republic of Kazakhstan, 050010

This paper proposes the new hash algorithm HBC-
256 (Hash based on Block Cipher) based on the symmet-
ric block cipher of the CF (Compression Function). The
algorithm is based on the wipe-pipe construct, a modified
version of the Merkle-Damgard construct. To transform
the block cipher CF into a one-way compression func-
tion, the Davis-Meyer scheme is used, which, according
to the results of research, is recognized as a strong and
secure scheme for constructing hash functions based on
block ciphers. The symmetric CF block cipher algorithm
used consists of three transformations (Stage-1, Stage-2,
and Stage-3), which include modulo two addition, circu-
lar shift, and substitution box (four-bit S-boxes). The four
substitution boxes are selected from the “golden” set of
S-boxes, which have ideal cryptographic properties.

The HBC-256 scheme is designed to strike an effec-
tive balance between computational speed and protection
against a preimage attack. The CF algorithm uses an AES-
like primitive as an internal transformation.

The hash image was tested for randomness using the
NIST (National Institute of Standards and Technology)
statistical test suite, the results were examined for the pres-
ence of an avalanche effect in the CF encryption algorithm
and the HBC-256 hash algorithm itself. The resistance of
HBC-256 to near collisions has been practically tested.

Since the classical block cipher key expansion algo-
rithms slow down the hash function, the proposed algo-
rithm is adapted for hardware and software implementa-
tion by applying parallel computing. A hashing algorithm
was developed that has a sufficiently large freedom to
select the sizes of the input blocks and the output hash
digest. This will make it possible to create an almost uni-
versal hashing algorithm and use it in any cryptographic
protocols and electronic digital signature algorithms

Keywords: hash function, hash digest, block cipher,
hash function security, collision

UDC 51-74, 519.688, 004.056
DOI: 10.15587/1729-4061.2022.252060

Received date 27.01.2022

Accepted date 22.03.2022

Published date 29.04.2022

Information and controlling system

61

hash function constructs can be divided into three catego-
ries: hash functions based on block ciphers, hash functions
based on arithmetic functions, and special hash functions.

Designed hash functions must be subject to rigorous
security checks. When designing an efficient hash function
based on block ciphers, it is recommended to use well-stud-
ied cryptographic transformations and constructions that
allow their subsequent software, firmware, and hardware
implementations. The intensive development of informa-
tion technology capabilities, including computing power,
contributes to the emergence of new and modification of
existing attacks, which requires constant development and
updating of protection systems.

Thus, the area of research under consideration is rele-
vant. A comprehensive study of the block cipher components
used in the development of hash functions, as well as their
relevance to modern technologies, is necessary and requires
continuous and breakthrough scientific research.

2. Literature review and problem statement

As it is known, standards for the IT industry should be
harmonized with international technical regulations, as our
country is integrating into the global economy. In the area
of information security, each state strives to develop its own
national standards in the field of cryptography.

In 2015, the US state standard FIPS 202, SHA-3 (Kec-
cak hash function), a variable bit length hashing algorithm,
was approved and published. Keccak is based on the Sponge
(cryptographic sponge) construction [3]. SHA-3 is one of
the most widely used hash functions. At the moment, it is
known that the scientific community is conducting a variety
of studies on the strength of its latest version since previous
versions of SHA-3 were broken or had vulnerabilities. The
SHA-3 hashing process consists of two steps: absorption and
compression. At the first stage, each message block of a fixed
length of r bits is added to the current state of the matrix and
24 rounds of the compression function f are performed. At
the second stage, the state matrix is truncated to the desired
hash digest length by iteratively executing the compression
function f.

Japan has the JIS X 5057-2: 2003 (ISO/IEC 10118-2:
2000) standard. “Information Technology. Security meth-
ods. Hash functions. Part 2. Hash functions using n-bit
block cipher” [4]. The hash function of this standard is suit-
able for environments where the n-bit block cipher algorithm
is already implemented. Since 2018, SHA-1 has been used as
a standard JIS hash function.

In 2016, China approved the standard “GB/T 32905-2016
Information security technology SM3 cryptographic hash al-
gorithm”. In 2017, SM3 was standardized by the International
Organization for Standardization (ISO IEC.10118-3) [5]. SM3
is a 256-bit hash algorithm, for a message M of length 𝑙 (𝑙<264)
generates a 256-bit hash value and uses the Merkle-Damgard
structure. It is mainly used in electronic signatures, cryp-
tographic checksums, and pseudo-random number generators.

Since 2015, Ukraine has been operating the National
Standard “DSTU 7564:2014 Information Technologies.
Cryptographic information protection. Hashing func-
tion” [6]. It was developed for the gradual replacement of the
interstate standard GOST 28147:2009. The Kupyna hash
function uses the Davies-Meyer scheme and its permutations
are built on the Kalyna block cipher.

South Korea uses its own LSH hashing standard, devel-
oped in 2014. LSH is one of the cryptographic algorithms
approved by the Korean Cryptographic Module Verification
Program. The advantage of this algorithm is that it more
than doubles the performance of international standards
(SHA2/3) in various software environments. LSH is still
protected from known hash attacks. LSH is collision-re-
sistant for q<2n/2 and has preimage resistance and second
preimage resistance for q<2n in an ideal cipher model, where
q is the number of requests for the LSH construction [7].

The interstate standard GOST 34.11-2018 has been put
into effect in the Russian Federation. “Information Technol-
ogy. Cryptographic information protection. Hashing func-
tion”, which is prepared on the basis of the application of the
standard GOST R 34.11-2012 (“Streebog”). The algorithm
calculates a hash function with an input data block size of
512 bits and a hash code size of 256 or 512 bits. It uses a com-
pression function based on three transformations: nonlinear
bijective transformation, byte permutation, linear transfor-
mation (SPL) [8]. This standard has been adopted in Arme-
nia, Kyrgyzstan, Republic of Kazakhstan, and Tajikistan.

A new standard “STB 34.101.77-2020 Information Tech-
nologies and Security” has been put into effect in Belarus
since 2020. “Cryptographic algorithms based on the sponge
function” [9]. The cryptographic hashing algorithm used in
this standard is based on the cryptographic sponge function.

In Republic of Kazakhstan, foreign cryptographic algo-
rithms and standards are currently used in the existing elec-
tronic data protection systems. Since this poses a security
risk, the creation of a domestic hashing algorithm to control
the integrity of confidential information is an urgent task
for our country. This work is targeted at the development of
domestic information security systems and the creation of
software and hardware packages for their practical use.

To date, standards for hash functions and cryptographic
hashing algorithms have been adopted in many foreign coun-
tries, including the United States, Japan, China, Ukraine,
South Korea, etc.

Republic of Kazakhstan uses international standards and
mainly foreign hardware and software. The creation of do-
mestic algorithms for cryptographic information protection,
including hashing algorithms, is an urgent and necessary task.

The development of cryptographic primitives makes
progress, and hash functions are used in many applications
and on various platforms, which forces us to place high de-
mands on their strength. In this regard, a lot of research is
being carried out in the field of developing new and modify-
ing existing hash algorithms.

The work [10] shows several attacks of finding the second
preimage (pseudo-preimage) and collisions on the cryp-
tographic hash function Kupyna-256 and Kupyna-512. Since
Kupyna uses the wide-pipe construction, it is difficult to build
a pseudo-preimage attack on it. The authors of the paper argue
that there were not so many cryptanalytic studies of Kupina.
They demonstrated all known attacks on it and their qualita-
tive and quantitative indicators. In addition, the paper empha-
sizes that the modular constant addition operation provides
additional resistance to the “meet-in-the-middle” attack.

In [11], a lightweight one-way cryptographic hash algo-
rithm LOCHA was developed to create a hash digest of a
fixed and relatively small length for a power-intensive wireless
network. The focus is on lightening the algorithm so that when
used in networks such as WSNs (Wireless Sensor Networks),
nodes can successfully run the algorithm with low power con-

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/9 (116) 2022

62

sumption. The use of simple mathematical operations such as
residue of division (mod), arithmetic modulo addition, and two
substitution tables of 97 and 67 primes ensures high perfor-
mance in obtaining a 96-bit hash digest. Despite the simplicity
of implementation, this algorithm is not limited in scope. This
is because LOCHA has proven to be more secure than other
strong hashing algorithms such as MD5, SHA1. But, over time,
the reliability of such hash functions can decrease due to the
small and static size of their hash digest.

The work [12] proposes a hash function model with
scalable output. The model is based on an artificial neural
network (ANN) trained to mimic the chaotic behavior of the
Mackey-Glass time series. This hashing method can be used
to check data integrity and generate a digital signature. This
makes it possible to create cryptographic services according
to user requirements and time constraints due to output scal-
ability. The authors confirm that changing the ANN architec-
ture, that is, adding neurons to the output layer or removing
them, makes it possible to obtain hash digests of the desired
length. The results of three independent tests confirm that the
hashing algorithm on ANN satisfies all the requirements for a
hash function that creates short-term hash digests.

The paper [13] considers a hashing algorithm, deter-
mined by a timestamp, for the secure distribution of data be-
tween vehicles. The proposed algorithm fulfills all the basic
properties such as preimage resistance, collision resistance of
a one-way hash function without a key.

One method to make cryptographic hash functions more
resistant to future attacks is through combinations of hash
functions. The work [14] analyzes hash combinators, such as
XOR combiner, concatenation combiner, and Hash-Twice,
which combine two or more hash functions. The paper
presents some approaches for combining two or more hash
functions that do not provide n-bit security of preimage
stability. Several attacks are defined by which second pre-
image resistance does not provide n-bit security of combined
hash functions using concatenation and cascade methods
of two n-bit hash functions. The upper security bound for
the indicated hash combinators is also determined, based
on the most well-known general attacks on preimages and
attacks on finding the second preimage. In tabular form, the
updated security status of the above hash combinators after
the authors received new research results is presented. This
shows that the security of most combinators is not as high as
expected. As a result, given the basic security requirements,
these hash combinators of two or more n-bit hash functions
do not provide greater, sometimes even n-bit security. There-
fore, the development of one n-bit ideal hash function is
considered to be still relevant.

An extended overview of the current state of security
of hash functions is presented in the paper [15]. The work
highlights the existing models and security aspects in the
development of a compression function through a modular
approach, which refers to the creation of a hash function
based on a block cipher or permutation. This paper, which
presents modern scientific views and the process of modular
design, substantiates its relevance and demonstrates the key
points in the development. The authors pose open problems
of modular design and present ways to solve them.

The paper [16] describes a hash function developed on
the basis of a block cipher. The authors, using the Davis-Mei-
er mode, built a new hash function, which was investigated
for safety against collisions, and also presented approaches
for using k-fold hash input lengths. The developed hash

function inherits all the properties of a random oracle with
a high degree. The developed double-length hash functions
(DLHF) can be used on devices with a limited size since the
block cipher used provides O(2128) security.

The work [17] describes hashing modes (schemes) used as
a transformation of block ciphers into a compression function.
The AES (Advanced Encryption Standard) block cipher algo-
rithm is considered as a compression function, various modes
for hashing are investigated and several preimage attacks are
carried out, it is also described in detail how to reduce the
complexity of attacks by applying key neutral bits.

One of the significant problems in cryptography is ensur-
ing resistance to multicollisions. This problem arose from the
birthday attack, the answer to which was to double the length
of the resulting hash value. This solution turned out to be in-
adequate to the available computing resources of the society
and the time constraints for hashing. Increasing the bit depth
in the Wide Pipe design obviously negatively affects the per-
formance of computing resources. In 2010, a modification of
Fast Wide Pipe [18] was proposed, which made it possible to
double the computational speed compared to Wide Pipe. Each
internal state value is divided into two halves. The first half is
fed to the input of the compression function, and the second is
added to the result of the same iteration. However, this scheme
requires additional computer memory, so research work in this
direction continues.

The hashing algorithms considered in [3–9] are the state
standards of the countries of the world developed in the field
of IT technologies. Each state seeks to create its own reliable
cryptographic standards, including those for hash functions.
Kazakhstan does not have its own cryptographic standard,
as well as its own standard for hashing data. Therefore, for
Kazakhstan, the issue of creating its own hashing standard,
which determines the algorithm and procedure for calcu-
lating the hash function of the transmitted information, is
relevant. In this regard, comprehensive studies of existing
hashing algorithms are being carried out, and work is under-
way to develop a domestic reliable hashing algorithm. The
new hashing algorithm proposed in this paper can become a
candidate for the state standard.

The papers [10–18] present the effective methods and
structures of hash functions developed to date. Hashing
algorithms for various purposes have been studied in detail,
including lightweight hashing algorithms and hashing al-
gorithms for blockchain technology. The results of various
cryptographic attacks of finding the first preimage, as well
as the search for collisions of the first and second kind for
hash functions are analyzed. In these papers, various tech-
niques have been applied to improve the performance of
hashing. The difference of the algorithm proposed by us lies
in the fact that to increase the speed in one round we apply
a non-linear cryptographic primitive with a special principle
twice. In addition, when calculating each new byte, linear
and non-linear functions are performed alternately. This
approach to building a hash function is not considered in
other works and is characterized by increased computational
performance without compromising the security of a hash
function built based on block ciphers.

3. The aim and objectives of the study

The aim of this work is to develop a fast and reliable hash
function based on a symmetric block cipher algorithm, as

Information and controlling system

63

well as to study and evaluate its reliability using cryptanal-
ysis methods.

To achieve this aim, the following objectives were set:
– to develop a symmetric block encryption algorithm;
– to develop a hash algorithm that meets the basic require-

ments for cryptographic hash functions, and provides high per-
formance and flexibility in hardware-software implementation;

– to conduct a study and evaluate the reliability of the
developed hash algorithm by methods of statistical and cryp-
tographic analysis;

– to implement hardware-software implementation of
the developed hash algorithm.

4. Materials and methods

It is worth noting that designing a good hash algorithm
is more difficult than designing a symmetric encryption
algorithm. A cryptographic hash function is a mathematical
algorithm that converts an arbitrary array of data into a
fixed-length string [19]. The main requirement for cryp-
tographic hash functions is that for any message represented
in binary form, the value of the hash digest must be quickly
and efficiently calculated. Besides, a high-quality hash func-
tion should have a number of properties [20, 21]. The most
convenient and popular hashing method involves dividing
a message into blocks of a fixed length, after which these
blocks are iteratively processed.

Currently, the most popular and security-oriented ap-
proach is to build hash functions based on block ciphers. In this
approach, a block cipher is taken as the compression function,
with two inputs representing a message block and a key [22].
The work [23] presents 64 possible PGV schemes (Preneel, Go-
vaerts, and Vandewalle) for constructing hash functions based
on the block cipher { } { } { }× →: 0,1 0,1 0,1 ,

n n n
E where n is the

block length in bits. Of the 20 collision-resistant PGV schemes,
the most commonly used is the Davies and Meyer scheme:

()− −= ⊕1 1, ,i i i iy f h M y where yi and Mi are the input of the
compression function f, and yi is its output [24]. To develop our
HBC-256 hash algorithm, we use the Davis and Meyer scheme.

Currently, the most widespread is the assessment of the
cryptographic strength of hashing and encryption algorithms
based on the methods of linear and differential cryptanalysis.
Differential cryptanalysis technique is to track the change
in the difference between the output bits depending on the
change in the input bits at each round of transformation. It
should be noted that the presence of the “avalanche effect”
in the algorithm is a necessary condition for ensuring cryp-
tographic resistance to differential cryptanalysis [25, 26].

The following two criteria are usually used to analyze
the avalanche effect:

– avalanche criterion;
– strict avalanche criterion.
If the avalanche criterion requires an average change of

50 % of the bits in the output sequence when each bit in the
input sequence changes, then the strict avalanche criterion
requires a change with a probability of 1/2 of each partic-
ular bit in the output sequence when each particular bit in
the input sequence change; and they are estimated by the
following relations, respectively:

– ε = −2 1 ,a ik here i is the number of the modified bit in
the input sequence, ki is the probability of changing half of
the bits in the output sequence when changing the ith bit at
the input, εα is the avalanche parameter;

– ε = −,2 1 ,s si jk where i is the number of the modified bit
in the input sequence, j is the number of the analyzed bit in the
output sequence, ks i,j is the probability of changing the jth bit
in the output sequence when the ith bit at the input changes as
compared to the output value with the unchanged input value.

The hash digest h(M) for any message of arbitrary
length M must satisfy the properties of pseudo-randomness.
This is one of the main requirements for hashing algo-
rithms, i.e. it should be difficult to distinguish a hash-based
pseudo-random number generator from a random number
generator. For a hash digest to be considered random and
unpredictable, at least it is necessary that there is no period,
and that various combinations of bits of a certain length are
distributed evenly over its entire length. This requirement
can be statistically interpreted as the complexity of the law
of generating a pseudo-random sequence of the hashing al-
gorithm [27–29].

A hash function h is said to be collision resistant if it is
computationally undecidable to find any two inputs that map
to the same hash pattern for the given hash function. Colli-
sion attacks are carried out to establish two different mes-
sages M1 and M2 with the same hash digests h(M1)=h(M2).
In the classical attack, unlike a preimage attack, the crypt-
analyst does not deliberately select the hash value.

A hash function is said to be near-collision resistant if it
is computationally difficult to find any two messages M1 and
M2 such that their hash digests. h(M1) and h(M2) differ by
only a few bits for a given hash function [30]. A pair of mes-
sages M1 and M2, with M1≠M2, is called an -near collision
for, if () ()()1 2,d h M h M ≤  holds, where d is the Hamming
distance [31].

To study the reliability and performance of the developed
algorithm, we used its software and hardware-software
implementation, written in C++ in the Qt Creator 4.15.2
integrated development environment using the Qt library
version 5.15, as well as a software package for statistical
analysis, developed at the Institute of Information and
Computational Technologies of the Committee of Science
of the Ministry of Education and Science of the Republic of
Kazakhstan.

5. Results of development of the new hash algorithm and
its security study

5. 1. Development of the new encryption algorithm
5. 1. 1. Encryption algorithm scheme
The CF encryption algorithm belongs to the class of

symmetric block cipher with a block and key length of
128 bits. The algorithm uses both linear (modulo 2 addition,
cyclic left shifts) and nonlinear (four substitution S-boxes)
transformations. The cipher structure is a variant of a substi-
tution-permutation network (SP-network) with four rounds
(R1=4) [32]. One round of encryption consists of three
transformations called Stage-1, Stage-2, and Stage-3 and is
shown in Fig. 1.

The values of the input text A(a0, a1, a2, …, a15) are writ-
ten as the 4˟4 square matrix A:

 
 
 =
 
  

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

.A

a a a a
a a a a
a a a a
a a a a

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/9 (116) 2022

64

Stage-1 transformation. This transformation, which con-
sists of two steps, is used to obtain from a given matrix А a
new matrix of the same size.

Step 1. The intermediate values cij of the matrix A are
calculated by adding the element of the matrix aij modulo 2
with the remaining three elements of the ith row and three
elements of the jth column.

Step 2. At this step, the new value i jc passes through
the substitution S-box (SBOX procedure) to be stored in the
same place as the new value of the matrix А.

The Stage-1 transformation, consisting of the 1st and
2nd Steps, can be written as:

()
= = ≠

  
= ⊕ ⊕ ⊕         

= 

∑ ∑
3 3

0 0,

,

,

i j i k k j
k k k i

i j i j

c a a

a SBOX c

= 0,1,2,3;i = 0,1,2,3,j 		 (1)

where cij is the intermediate value of the matrix А, SBOX is the
substitution S-box, ⊕∑ denotes the sum of terms modulo 2.

SBOX procedure. The nonlinear bijective transformation
S is defined through the SBOX procedure. The four substi-
tutions S0, S1, S2, S3 are specified, where →4 4(2) (2)

: ,iS Z Z
= 0, ,3.i Four “golden” S-boxes as per Table 1 were select-

ed for the transformation [33].

Table 1

Four “golden” S-boxes

X 0 1 2 3 4 5 6 7 8 9 A B C D E F S-box

S0(x) 0 F B 8 C 9 6 3 D 1 2 4 A 7 5 E Serpent, S3

S1(x) 2 E F 5 C 1 9 A B 4 6 8 0 7 3 D HB-1, S2

S2(x) 7 C E 9 2 1 5 F B 6 D 0 4 8 A 3 HB-2, S0

S3(x) 4 A 1 6 8 F 7 C 3 0 E D 5 9 B 2 HB-2, S1

Serpent is the lightweight cipher Serpent, HB-1 is the
lightweight cipher Hummingbird-1, HB-2 is the lightweight
cipher Hummingbird-2.

The principle of SBOX operation is shown in Fig. 2.
The input is one byte i ja of the matrix А, which has a
binary representation ()= 7 6 5 4 3 2 1 0 2

.i j b b b b b b b ba S-boxes per-
form the replacement procedure at the nybble or quadbit
level, called the left nibble t1=b7b6b5b4 and the right nibble

t0=b3b2b1b0 (written in binary). Further, according to the
table, p1=Si(t1) and p0=Sj(t0) are determined. The indices i
and j of the matrix element correspond to the numbering of
the S-boxes. Further, the resulting nibbles through the ith
and jth S-boxes are combined into a byte. Here, the nibbles
are swapped, i.e. p1 is stored in the right nibble, and p0 is
stored on the left. The byte thus obtained is sent to the out-
put aij=(q7q6q5q4q3q2q1q0)2. Therefore, ()= .i j i jSBOX aa

Stage-2 transformation. This transformation consists
of two operations: cyclic shift and XOR. The elements of
the matrix A obtained in Stage-1 are stored in the form of a
one-dimensional array (a00, a01, a02, a03, a10, a11, a12, a13, a20,
a21, a22, a23, a30, a31, a32, a33). Then all the elements of the
array are perceived as bytes, and their bit representations are
combined using the concatenation operator:

W=a00‖a01‖a02‖a03‖a10‖a11‖a12‖a13‖a20‖a21‖a22‖a23‖a30‖a31‖
a32‖a33. Next, a cyclic left shift is performed in 1-bit incre-
ments: = 1V W  until a 16-byte result is obtained V=b00‖
b01‖b02‖b03‖b10‖b11‖b12‖b13‖b20‖b21‖b22‖b23‖b30‖b31‖b32‖b33. After
that, the XOR operation is performed byte by byte: A=W⊕V,
and the obtained bytes are accepted as new values of the
4×4 matrix A from left to right, from top to bottom.

Stage-3 transformation. This transformation is similar
to the Stage-1 transformation. Here, too, the transformation
consisting of two steps is performed with the matrix A. The
difference is that the elements of the matrix are calculated
from bottom to top, from right to left.

Let’s write this transformation, consisting of the 1st and
2nd steps, similar to the previous one:

()
= = ≠

  
= ⊕ ⊕ ⊕         

= 

∑ ∑
3 3

0 0,

,

,

i j i k k j
k k k i

i j i j

c a a

a SBOX c

= 3,2,1,0;i = 3,2,1,0.j 		 (2)

At the end of each round, the values obtained after the
Stage-3 transformation are summed modulo 2 with the
round key values.

5. 1. 2. Round key schedule algorithm
This section discusses an algorithm CFKey for deploying

round keys based on a master key K(k0,k1,k2,…,k15) with a
length of 16 bytes. We assume that the master key K is the
round key K0. The total number of round keys is the same as
the number of rounds R1 of the encryption algorithm. The
values of the round key K0(k0,k1,k2,…,k15) are stored in a 4×4
matrix A in the following form:

Fig. 1. General scheme of the encryption algorithm

Stage 1

Stage 2

Stage-3

Ciphertext 16 bytes

Plaintext 16 bytes
𝑟𝑟𝑟𝑟0

𝑟𝑟𝑟𝑟𝑖𝑖

𝑖𝑖=
1,

...
,𝑅𝑅

1

Fig. 2. General scheme of the encryption algorithm

Information and controlling system

65

   
   
   = =
   
     

00 01 02 030 1 2 3

10 11 12 134 5 6 7

20 21 22 238 9 10 11

30 31 32 3312 13 14 15

.A

a a a ak k k k
a a a ak k k k
a a a ak k k k
a a a ak k k k

 	 (3)

The CFKey key schedule algorithm consists of the
StageKey-1, StageKey-2, and StageKey-3 transformations. The
presented round key schedule algorithm is schematically shown
in Fig. 3.

Note that the CFKey algorithm is functionally very
similar to the CF algorithm: the StageKey-1 and StageKey-3
transformations are completely identical to the Stage-1 and

Stage-3 transformations, respectively. The difference lies in
StageKey-2. This transformation consists of only one opera-
tion, which is a cyclic shift. It also performs a one-bit cyclic
left shift. There is no XOR operation in StageKey-2.

The CFKey algorithm is repeated R2=8 times, and then
the resulting 16-byte result is added with the round key Ki–1
modulo 2 (ХOR) and finally the next round key Ki, where
i=1,…,R1 is formed.

5. 2. Development of the hash algorithm based on the
encryption algorithm

5. 2. 1. General information on the hash algorithm
The HBC-256 (Hash-based on Block Cipher) data hash al-

gorithm is based on the proposed Compression Function (CF)
block cipher. The compression function takes two inputs – a
128-bit message block mj and a 128-bit round encryption key –
and outputs an intermediate 128-bit hash code. The design uses
a well-established approach to building a hash function – the
Merkle-Damgard construct with the most common wide-pipe
modification capable of withstanding a length extension attack.
To create the final n-bit hash digest, the message block size and
the size of the intermediate hash code should have the same
length of w bits, where n<w. To meet the requirements of wide-
pipe modification, in one hashing cycle we simultaneously exe-
cute CF 3 times for different mj, j=0, 1, 2. This is why the length
of the intermediate hash code w is equal to 128*3 bits [34].

The general scheme of hashing the message K(M0,M1,M2,…,
Mt-1) is shown in Fig. 4, where Mr(m0,m1,…,mk–1), r=0,1,…,
t–1 (for k=3). The proposed algorithm suggests taking the mes-
sage М itself as the master key, and the previous intermediate
hash code −1

j
ih for the encrypted text. Based on the blocks of the

message Mr, the required number R1 of round keys is generated.

Fig. 3. Scheme for generating round keys

StageKey 1

StageKey 2

Stagekey 3

𝐾𝐾𝑖𝑖 (16 bytes)

𝐾𝐾𝑖𝑖−1 (16 bytes)

𝑖𝑖=
1,

…
,𝑅𝑅

1

𝑗𝑗=
1,

…
,𝑅𝑅

2

Fig. 4. General scheme of the hash algorithm

(𝑅𝑅1+1) x 128 bit (𝑅𝑅1+1) x 128 bit (𝑅𝑅1+1) x 128 bit

𝑀𝑀𝑟𝑟 (3*128 bit)

128 bit

CFKey

128 bit

CFKey

128 bit 128 bit 128 bit

𝑝𝑝0 𝑝𝑝1 𝑝𝑝2

384 bit

𝒉𝒉

256 bit

128 bit

CF 128 bit
0ℎ𝑖𝑖𝑖𝑖

128 bit

CF 128 bit
1ℎ𝑖𝑖𝑖𝑖

128 bit
CF 128 bit

2ℎ𝑖𝑖𝑖𝑖

128 bit 128 bit ⨁

СomF

ℎ𝑖𝑖
0
−1 ℎ𝑖𝑖

1
−1 ℎ𝑖𝑖

2
−1

𝑟𝑟𝑟𝑟0
2 𝑟𝑟𝑟𝑟1

2 𝑟𝑟𝑟𝑟2
2 … … 𝑟𝑟𝑟𝑟𝑅𝑅1

2𝑟𝑟𝑟𝑟0
1 𝑟𝑟𝑟𝑟1

1 𝑟𝑟𝑟𝑟2
1 … … 𝑟𝑟𝑟𝑟𝑅𝑅1

1𝑟𝑟𝑟𝑟0
0 𝑟𝑟𝑟𝑟1

0 𝑟𝑟𝑟𝑟2
0 … … 𝑟𝑟𝑟𝑟𝑅𝑅

0
1

PerF (384 bit)

𝑚𝑚0 𝑚𝑚1 𝑚𝑚2
128 bit

CFKey

128 bit ⨁
128 bit

⨁
128 bit

128 bit

ℎ𝑖𝑖
0 ℎ𝑖𝑖

1 ℎ𝑖𝑖
2

128 bit 128 bit

128 bit

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/9 (116) 2022

66

To enhance collision resistance, we use the Davies-Mey-
er scheme, where the CF output is summed (XOR op-
eration) with the result of the previous hashing iterati-
on −1.j

ih The pj value is the result of the ith iteration of the
Davies-Meyer hash function. This scheme is used in hash
algorithms based on block ciphers and acts as a one-way
compression function.

5. 2. 2. Hash algorithm execution order
First, the block M0 consisting of the first 384 bits of the

message М is taken and divided into three 128-bit parts
m0, m1, m2. Based on each mj, separate round keys j

irk are
generated using the CFKey round key schedule algorithm,
where i=1,2,…,R1 and j=0,1,2. At the very beginning, the
initialization vector or hash code takes on the value 0,
i.e. = 128

0 0 .jh To obtain 1 ,jh for all three parts, the CF
encryption algorithm is simultaneously executed, taking
as input the round key 0

jrk and 0 .jh Further, according
to the Davies-Meyer scheme, we obtain pj as the result of
summing 1

jh and 0
jh modulo 2. After that, using the PerF

(Permutation Function) procedure, the values of all three
pj are permuted, which are then divided into three parts,
each 128 bits long. The PerF byte permutation procedure is
carried out as per the formula:

+ +

+ +

= 
= 
= 

3

3 1 16

3 2 32

,

,

,

i i

i i

i i

h p

h p

h p

 = 0,...,15,i 			 (4)

where 0 1 2|| || .p p p p= The 16-byte intermediate hash di-
gests hj(j=0, 1, 2) are determined by 0 1 2

1 1 1|| || .h h h h=
Formula (4) can be represented in Table 2.

Table 2

Byte permutation (х are byte positions, starting from 0)

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PerF(x) 0 16 32 1 17 33 2 18 34 3 19 35 4 20 36 5

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PerF(x) 21 37 6 22 38 7 23 39 8 24 40 9 25 41 10 26

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

PerF(x) 42 11 27 43 12 28 44 13 29 45 14 30 46 15 31 47

In subsequent iterations, the resulting 3 parts are accept-
ed as 0 .jh Then again, the CF encryption algorithm is exe-
cuted with the updated values 0

jh and the following round
key. This procedure for each Mr (m0, m1, m2) is repeated R1
times, r=0, 1, …, t–1. When calculating the intermediate
hash digest of the block Mr+1 (m0, m1, m2), the values of the
initialization vector 0

jh will take the values of the interme-
diate hash digest of the block Mr (m0, m1, m2).

After processing the last block Mt-1, from the obtained
hash digest of length 384 bits using the ComF (Compression
Function), we determine the final hash digest h of length
256 bits:

()=
1 1 1

0 1 2, , .R R Rh ComF h h h 				 (5)

The order of padding. The HBC-256 algorithm iterative-
ly processes 384-bit blocks of the input message M. If the
length of М is a multiple of 384, then at the end of М, one
more 384-bit block is added, consisting of zero bits, except
for the first and last bits, which are equal to one. If the length

of М is not a multiple of 384, then М is padded with so many
bits that it is a multiple of 384. Suppose that the length of the
input message M is not a multiple of 384 and is equal to l bits.
We add a bit “1” at the end of M, after that, we add s zero bits,
where (l–2)≡smod384 and add the last bit “1”.

The order of division into parts. For hashing, the pad-
ded message М is divided into t blocks of 384 bits each as
follows: M=M ‖Pad(M)=M0‖M1‖M2‖…‖Mt-1. Pad is abbrevi-
ated from “padding”.

The hashing process is iteratively performed according
to the scheme in Fig. 1 with the input message Mr with a
length of 384 bit, r=0, 1, …, t–1.

Obtaining a hash digest. The final hash digest is deter-
mined through the ComF procedures. In our case, the values
of the first and second block are taken as the final hash di-
gest, the length of which is 256 bits: 0 1

1 1 .||h h h=

5. 3. Proposed hash algorithm security study
Table 3 presents data on the complexity of attacks for

every three problems when probability p=0.5.

Table 3

Data on the complexity of finding preimages and collisions

Specifications
Problems

Finding a
preimage

Finding the sec-
ond preimage

Finding a
collision

Value of k at
p=0.5 and N=2256 k=0.69*2256 k=0.69*2256+1 k=0.83*2128

Method applied Brute force Brute force
Birthday
paradox

Here, k is the minimum number of different (different
from each other) hashed data required for the attack, N is
the number of possible hash digests relative to the length of
the hash digest.

5. 3. 1. Assessment of the “avalanche effect” of the
hash algorithm

The analysis of the propagation of the avalanche effect
and the implementation of the avalanche effect after the 1st,
2nd, and 4th rounds were carried out according to the CF
encryption algorithm scheme. The results after the 4th round
are presented in Table 3. As an example, a 128-bit message
M0 in the form 0xcc156c4ce024d5113d680d7cce6d8b2 was
selected for the analysis. For 1≤i≤128, 128 plaintexts Mi were
generated with the difference of one bit from M0 as follows:

()129 0 1 .iM M i− = ⊕ <<
After applying CF to these 129 messages Mi (i=0, 1, …,

128), the corresponding 128-bit ciphertexts Ci were obtained.
Then the probabilities ki (i=1, 2, …, 128) between the cipher-
text C0 and the remaining 128 ciphertexts were calculated.
Table 4 gives the calculated probability ki.

Next, we consider the avalanche effect of the HBC-256
hashing algorithm. The value M0=0384 is taken as an ex-
ample of a 384-bit original message M0. To analyze the av-
alanche effect of the HBC-256 algorithm, 384-bit messages
were generated as follows:

()385 0: 1 ,i iM M iM − = ⊕ << = 1,2, ,384.i 		 (6)

Table 5 shows the dynamics of statistical indicators of
the avalanche parameter εα depending on the number of
hashing rounds.

Information and controlling system

67

Table 5

Statistical indicators of the avalanche parameter εα of the
hash algorithm

Statistical indi-
cators εα

Round
1

Round
2

Round
4

Round
8

Round
12

Largest value 0.7240 0.1870 0.1770 0.1720 0.1720

Least value 0.5940 0 0 0 0

Arithmetic mean 0.6645 0.0399 0.0407 0.0405 0.0398

Geometric mean 0.0007 0.0009 0.0009 0.0009 0.0009

Variance 0.6560 0.0310 0.0160 0.0150 0.0260

Mode 0.6670 0.0310 0.0360 0.0360 0.0310

Fig. 5 shows the probabilities ki of change after the 4th
round, showing an almost uniform distribution.

Fig. 5 above vertically represents the probability of a
change in the avalanche effect from a change in the bits,
which is represented horizontally.

5. 3. 2. Statistical analysis of the algorithm
To assess the randomness, we checked the hash digests

using the software package “Automated system for the selec-
tion of statistical tests by D. Knuth and graphic tests”, which
implements a set of statistical tests [35]. For this, 60 files
of different formats were selected, each of which contained
from 20 to 1,000 KB of information. Data on files for analy-
sis are presented in Table 6.

After processing each file with the HBC-256 algorithm,
a corresponding 256-bit hash digest was obtained. Graphical
and evaluation statistical tests were applied to the new 60 files
with hash digest sequences. In graphical tests, the statistical
properties of hash patterns are displayed as graphical depen-
dencies, and in evaluation tests, the statistical properties are
determined by numerical characteristics. As a result, according
to the relevant data, a conclusion is made about the success of
the passed test. Fig. 6, 7 show data on the number of files that
successfully passed the graphics and evaluation tests.

Table 4

Analysis of the avalanche effect of the CF algorithm after the 4th round

i ki i ki i ki i ki i ki i ki i ki i ki

1 0.48 17 0.44 33 0.52 49 0.52 65 0.44 81 0.42 97 0.54 113 0.45

2 0.56 18 0.49 34 0.50 50 0.57 66 0.48 82 0.51 98 0.52 114 0.43

3 0.52 19 0.55 35 0.59 51 0.55 67 0.48 83 0.48 99 0.46 115 0.58

4 0.53 20 0.54 36 0.50 52 0.53 68 0.47 84 0.52 100 0.38 116 0.48

5 0.53 21 0.48 37 0.50 53 0.51 69 0.47 85 0.52 101 0.49 117 0.53

6 0.52 22 0.46 38 0.52 54 0.52 70 0.49 86 0.53 102 0.46 118 0.45

7 0.41 23 0.42 39 0.49 55 0.52 71 0.50 87 0.48 103 0.49 119 0.50

8 0.43 24 0.45 40 0.46 56 0.56 72 0.61 88 0.51 104 0.51 120 0.46

9 0.54 25 0.50 41 0.48 57 0.55 73 0.51 89 0.59 105 0.45 121 0.48

10 0.45 26 0.55 42 0.52 58 0.41 74 0.54 90 0.45 106 0.46 122 0.39

11 0.51 27 0.55 43 0.48 59 0.51 75 0.51 91 0.38 107 0.47 123 0.52

12 0.43 28 0.42 44 0.45 60 0.58 76 0.45 92 0.53 108 0.55 124 0.51

13 0.49 29 0.52 45 0.53 61 0.52 77 0.54 93 0.45 109 0.53 125 0.45

14 0.55 30 0.46 46 0.50 62 0.50 78 0.52 94 0.51 110 0.58 126 0.55

15 0.50 31 0.45 47 0.55 63 0.65 79 0.51 95 0.52 111 0.46 127 0.52

16 0.52 32 0.53 48 0.47 64 0.52 80 0.52 96 0.48 112 0.51 128 0.47

Fig. 5. Probabilities of bit change

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

20
8

21
7

22
6

23
5

24
4

25
3

26
2

27
1

28
0

28
9

29
8

30
7

31
6

32
5

33
4

34
3

35
2

36
1

37
0

37
9

AVALANCHE EFFECT

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/9 (116) 2022

68

The number of files that have passed
graphical and evaluation tests are presented
in Fig. 6, 7.

5. 3. 3. Near-collision resistance
To check the degree of resistance to -near

collision, it is enough for us to conduct ex-
perimental studies using a large number of
hash patterns. 25 thousand messages were
randomly generated and their hash digests
were calculated. The number of all possi-
ble combinations from the resulting set of
all hash digests of 2 hash digests is equal
to =2

25000 312,487,500.C Using the software,
Hamming distances were calculated for all
pairs of hash digests, the values of which are
in the range [0, 256], as well as the minimum
and maximum Hamming distances, which are
81 and 175, respectively. By setting 20,= we
determined the number of pairs of messages
with reasonably good Hamming distances:

(), 148108 309,283,762,�i jM Md ≤ =≤

, 1, ,25,000,i j =  e.g.,98.97().5%i j≠

Using this formula, we can determine the
number of all cases in the given example from
108 to 148.

5. 4. Software and hardware-software
implementation of the developed hashing
algorithm

5. 4. 1. Software implementation of the
HBC-256 algorithm

The software implementation of the HBC-
256 hashing algorithm is made in the form of
a data hashing program ISL_HASH 1.0. The

Fig. 6. Results of graphic tests

60 60 60 60 58 60
55

60

0

20

40

60

N
U

M
BE

R
 O

F
FI

L
E

S

GRAPHIC TESTS
Histogram of the distrib. of elements Distribution on the plane
Checking the series Checking for monotony
Byte autocorrelation function Bit autocorrelation function
Graphic spectral test Linear complexity profile

Fig. 7. Results of evaluation tests

60 59 59 58 60 59 56 55
60 60

0

10

20

30

40

50

60

N
U

M
BE

R
 O

F
FI

L
E

S

EVALUATION TESTS

Check 0 and 1 Checking uncoupled series
Symbol test Interval check
Checking combinations Coupon collector test
Check permutations Checking for monotony
Correlation check Linear complexity test

Table 6

Plaintext files used in testing the hashing algorithm

File number File type Description

1,2,3 *.docx Microsoft Word document

4,5,6 *.xls Microsoft Excel document

7,8,9 *.pptx Microsoft PowerPoint document

10,11,12 *.pdf Cross platform open format

13,14,15 *.rar Archived RAR document

16,17,18 *.zip Archived ZIP document

19,20,21 *.jpg Graphic document in raster format

22,23,24 *.png Graphic document in raster format

25,26,27 *.gif Graphic document in raster format

28,29,30 *.txt Text file

31,32,33 *.lex Adobe Linguistic Library Data file

34,35,36 *. djvu Graphic and text format document

37,38,39 *.html Web document

40,41,42 *.xml Web document

43,44,45 *.wmz Vector image media file

46,47,48 *.mp3 Sound information document

49,50,51 *.mp4 Sound/video information document

52,53,54 *.cat System file for merging files

55,56,57 *.dll Dynamic Link Library file

58,59,60 *.log Event log file

Information and controlling system

69

program is designed to obtain a hash image of data of arbi-
trary length. The input data is the content of any file stored
on an external storage medium or text entered through the
on-screen form. The output is displayed on the screen and
can be saved as a “*.hash” file. The program is implemented
in C++. No pre-installation is required to run the program.
The result of the hash image is displayed as hexadecimal
numbers.

Fig. 8 shows the working window of the ISL_HASH
1.0 data hashing program, where the “2015-856.pdf” file is
hashed using the HBC-256 algorithm.

The following are the main technical characteristics of
the ISL_HASH 1.0 data hashing program:

– Program type: 32-bit GUI application.
– Product version: 1.0.
– Executable file name: ISL_HASH.EXE.
– Executable file size: 13.5 MB.

5. 4. 2. 1. Hardware-software platform and implemen-
tation technology choice

The development board MYIR Z-turn was chosen for
implementation. This board is equipped with a single-chip
system (hereinafter SoC) Xilinx Zynq XC7Z020, a high-
speed USB OTG interface chip, 1GB RAM, and a 16MB
NAND Flash memory chip.

The SoC includes:
– Artix-7 field-programmable gate array (hereinafter

FPGA);
– microprocessor with Cortex A9 core.
The program code of hashing algorithm HBC-256 for

the Cortex processor was written in the C programming
language using assembler inserts.

The FPGA design was made using the VHDL technolog-
ical markup language.

5. 4. 2. 2. Working principle of the Product
The Cortex processor is designed to implement the func-

tions of interacting with a PC, supporting the USB interface,
and controlling the FPGA, on which the hardware-software
implementation of the HBC-256 algorithm is performed.

Power supply and data exchange with the PC are car-
ried out via the USB interface. Upon initiation, a connec-
tion to the PC is established in the Mass Storage Device
(MSD) mode. As a drive for storing data, fast RAM is used,
in which a 512 MB area is allocated for this purpose. The
Cortex processor continually scans this area of memory

against the FAT file system for new files. After detecting a
new file copied by means of the operating system, the pro-
cessor sends data blocks to the FPGA via the internal AXI
bus using Direct Memory Access (DMA) technology. The
FPGA, having received the next data block, performs the
transformation in accordance with the description of the
HBC-256 algorithm. At the end of the transfer of blocks,
the central processor reads the result of the hash algorithm
from the FPGA and creates a new file in the area allocated
for storing data with a name corresponding to the name of
the source file, but with the additional extension “hash”.

Also, additional debugging information
is written to this file – the size of the
source file, the number of blocks, the time
of the hashing operation, and the speed of
the transformation.

5. 4. 2. 3. Debug board resource sta-
tistics

The Cortex processor operates at
667 MHz, the FPGA at 150 MHz. The
final consumption of the board is about
0.3W. FPGA resources involve 2,370 log-
ical cells, 32 clock cycles for transforming
one 384-bit block (Table 7).

In Table 7 we can see the hashing speed
of 5 files of different sizes.

Table 7

Examples of performance research results

Item File size, bytes Execution speed, Mb/s

1 384,000 179.832

2 1,024,000 179.885

3 64,000,000 179.917

4 128,000,000 179.916

5 246,000,000 179.918

6. Discussion of the hash algorithm

6. 1. Discussion of the developed symmetric block
encryption algorithm

The peculiarity of using block ciphers in hashing algo-
rithms is that the security of a hashing algorithm directly
depends on the cryptographic strength of the cipher used in
it. That is, when using strong block encryption algorithms,
the security of the hashing algorithm is guaranteed. But one
of the disadvantages of this approach is the reduction in the
speed of the algorithm. This is because, during the hashing
process, the round keys are updated each time iteratively,
depending on the amount of data, i.e. round encryption keys
are continuously generated. The developed CF encryption
algorithm uses byte data processing, which improves its
performance. Alternate execution in one round of linear
and non-linear transformations, which are the operation of
adding matrix elements modulo two and the replacement
table (S-box), provides the diffusion property of the cipher.
The proposed algorithm is characterized by the following
features:

1. The number of rounds of the used block cipher is
reduced, without prejudice to its cryptographic strength,
in order to increase the performance of the developed hash-
ing algorithm. The non-linearity of the transformations at

Fig. 8. ISL_HASH 1.0 data hashing program window

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/9 (116) 2022

70

Stage-1 and Stage-3 is ensured by the fact that the S-box is
executed twice in one round.

2. The structure of the algorithm provides for the simul-
taneous execution of several CF compression functions of
128-bit length, which, using parallel computing also speeds
up the hashing process. In this paper, we consider the case
when k=3, i.e. three 128-bit blocks of hashable data are pro-
cessed simultaneously. With the increase in the technical
characteristics of the processor, the number of simultaneous-
ly processed blocks can be increased.

3. Instead of traditional 8-bit S-boxes, four 4-bit S-boxes
are used. Such an original approach gives the algorithm an-
other advantage, which lies in the fact that, depending on the
arrangement of the matrix elements, the same values of the
input data take on different values at the output.

6. 2. Discussion of the developed hash algorithm
Typically, the design of a hash function uses the Wide

Pipe construction to deal with multiple collisions. The
essence of this construction is to increase the size of the
internal state, which makes the search for multiple collisions
resource-intensive. However, this scheme requires addition-
al memory. This shortcoming in the proposed algorithm is
eliminated by the fact that in one hashing cycle, the CF al-
gorithm is executed k=3 times for different mj, j=0, 1, 2. The
general scheme of the developed hash algorithm HBC-256 is
illustrated in Fig. 4. Therefore, the length of the intermedi-
ate hash image w is 128*3 bits. By adjusting the parameter
k, performance can be improved. The flexibility in optimi-
zation, the possibility of parallel computing in hardware
implementation and the achievement of an optimal balance
of resources/performance should also be noted.

6. 3. Discussion of HBC-256 hash algorithm security
study

When evaluating the security of any hash function, three
problems are examined [36]:

1. Preimage search, i.e. the search for the message M
itself with a known hash digest h(M).

2. The search for a second preimage, i.e. search for a
message M2 with known M1, with M1≠M2 and h(M1)=H(M2).

3. Collision search, i.e. search for any two messages M1
and M2 such that M1≠M2 and h(M1)=H(M2).

The listed problems in relation to the HBC-256 algo-
rithm are specified by the following parameters. The length
of the HBC-256 hash digest is n=256 bits, so the number
of all possible hash digests is N=2256. For each of the three
problems, we define k as the minimum number of implemen-
tations with a probability p=0.5. Table 3 presents data on
the complexity of attacks for each task.

First, we are discussing the analysis of the avalanche effect
of the CF encryption algorithm. As is known, the range of
variation of the avalanche parameter lies in the range from 0
to 1, inclusive. The closer the value of the avalanche parameter
is to zero, the more the avalanche effect appears in the encryp-
tion algorithm. The experiment (Table 4) showed that 98.5 %
of the ki values (probabilities) of the considered rounds lie in
the interval (0.41; 0.59). The average of all changes is equal
to 49.93 %. Therefore, changing a bit in the input yields about
50 % changes in the output. The analysis showed that the av-
erage values of the avalanche parameter εα for rounds 1, 2, and
4 are 0.074, 0.071, and 0.073, respectively. The algorithm’s av-
alanche effect is high even after the first round of encryption.
For the purity of the experiment, the avalanche criterion was

used for the analysis after the 8th, 16th, and 24th rounds of en-
cryption and confirmed the necessary degree of propagation
of the avalanche effect of the CF algorithm.

Next, we are considering the analysis of the avalanche
effect of the HBC-256 hashing algorithm. We examined the
hashing results after the 1st, 2nd, 4th, 8th, and 12th rounds. Af-
ter the first round, the avalanche parameter average of 0.66
was found to be the worst. However, due to the high spread
of the avalanche effect of the CF algorithm, starting from the
2nd round of hashing, an acceptable level of bit diffusion is
observed. In Table 5, it could be seen that the hash function
after the 1st round does not provide the required degree of
the avalanche effect. Its values obtained, depending on the
location of the changed bit, are in the interval (0.594, 0.724),
which is far from 0. But after the 2nd and subsequent rounds,
the statistical indicators take almost the same values, i.e. the
range of their deviation from each other is very narrow.

The statistical indicators of the avalanche parameter εα
of the HBC-256 algorithm given in Table 5 give positive
results in evaluating the effectiveness of the algorithm.
From Fig. 5, we can conclude that a change in one bit of the
input data leads to a 50 % change in the 328-bit hash code.
The χ2 (Chi-square) value of the ki probabilities is 189.49.
Further, with a confidence value α=0.05 and a degree of
freedom df=383, the permissible level of agreement with
the null hypothesis H0 is α= =χ =2

0.05, 383 429.63.df In our case,

α= =χ = > χ =2 2
0.05, 383189.49 429.63,df therefore the obtained re-

sults ki are positive and, accordingly, the hash algorithm
HBC-256 meets the requirements of the avalanche criterion.

Next, we consider the results of graphical and evaluation
statistical tests in Fig. 6, 7. During the study, depending on
the type of file, different results were obtained for different
tests. From the evaluation of the results, it can be argued
that the resulting hash digests are statistically secure. Thus,
the HBC-256 hashing algorithm under consideration has
good statistical properties.

Here we are discussing the results of the analysis for
near-collision resistance. As a result, we were able to es-
tablish that the number of pairs of hash digests that have a
Hamming distance between 108 and 148 is almost 99 % of
all possible pairs. This means that hash digests are protect-
ed from attack by near collisions. For a near collision, the
Hamming distance between two messages should be small,
namely up to 16 bits [37]. According to the results of the
analysis, the HBC-256 algorithm is resistant to the attack
associated with near collisions.

6. 4. Discussion of software and hardware-software
implementation of the developed hashing algorithm

6. 4. 1. Software implementation
To conduct a comparative analysis of the results of the

developed HBC-256 hashing algorithm, we considered the
following two hashing algorithms based on block ciphers:

1) The GOST-R 34.11-2012 Streebog cryptographic al-
gorithm for calculating the hash function, which in 2013 was
adopted as a state standard in the Russian Federation. For
the analysis, a variant of the algorithm with a hash image
size of 256 bits was chosen.

2) The MGR cryptographic algorithm for calculating
the hash function proposed by Indian scientists Khushboo
Bussi, Dhananjoy Dey, and others [38]. According to the
authors, this hash function is a modification of the Streetbog
algorithm, where an AES-like block cipher is used as a com-
pression function.

Information and controlling system

71

A comparative analysis of the Streebog, MGR, and HBC-
256 algorithms was carried out in terms of their efficiency.
When testing, all-time measurements were performed on a
PC with an Intel(R) Core i7-8700 processor with a frequen-
cy of 2.90 GHz and 4 GB RAM.

Table 8

Efficiency results of hash-functions

File size GOST-R MGR HBC-256 (software implementation)

1 MB 3.34 sec. 1.2 sec. 0.58 sec.

5 MB 16.52 sec. 5.84 sec. 2.98 sec.

10 MB 33.01 sec. 11.50 sec. 5.6 sec.

20 MB 66.13 sec. 22.95 sec. 11.94 sec.

From Table 8, it can be seen that the software implemen-
tation of the HBC-256 algorithm showed the best results in
terms of performance compared to the Streebog and MGR
algorithms.

6. 4. 2. Hardware-software implementation (Product)
From Tables 7, 8 we can see that our hardware-software

implementation of the HBC-256 algorithm showed very
good results of performance compared to our software im-
plementation.

The hardware-software implementation performed can
compete with analogs performing hash transformation un-
der existing algorithms. The Product in terms of execution
speed and the number of FPGA resources is commensurate
with or surpasses the existing analogs. At the same time,
since a commercially available, not a tailor-made, debug
board was chosen as the hardware platform, it is possible to
improve some parameters of the Product, namely:

– dimensional overall features;
– replacing the SoC with a less functional one (less than

10 % of FPGA resources are used, one Cortex processor core
is disabled), which will reduce power consumption;

– optimization and parallelization of hardware imple-
mentation to achieve an optimal balance of FPGA resourc-
es/performance;

– increase the amount of RAM to be able to process
larger files.

6. 5. Limitations and further theoretical and practical
studies of the hash algorithm

In practical use, the developed hashing algorithm does
not require significant restrictions. The results of the study,
obtained during the assessment of reliability and speed,
showed that the developed hash function fully complies
with the main requirements. It was noted that, taking into
account modern technological capabilities, the length of the
hash digest can be increased. With regard to the amount
of hashed information, the parameter k indicated in Fig. 4
should be taken into account. The amount of information to
be hashed should be more than 16(k–1) bytes. In our case,
for k=3, the amount of hashed information must be at least
32 bytes. Otherwise, the round keys of the last part are not
used. Research work in this direction will be continued.

A theoretical study of the four 4-bit S-boxes presented
in the paper is required. We have considered the first four
S-boxes with good cryptographic properties indicated in [33].
Future studies will analyze the influence of the selected four
S-boxes on each other since the question of the independence
of the choice of S-boxes remains open. Since the S-box is the

only cryptographic primitive that provides non-linearity in
the algorithm, it should not have any weaknesses.

In the future, in research work, the security of the de-
veloped hashing algorithm should be analyzed at a deeper
level. It is supposed to carry out a number of cryptographic
attacks, as well as differential and linear cryptanalysis. The
results of these studies will be used to improve the proposed
hashing algorithm.

7. Conclusions

1. As is commonly known, hash functions are built ac-
cording to an iterative scheme with a number of transforma-
tions performed at each step. The transformations include
a compressing function, the role of which can be performed
by a block cipher. To implement such a scheme, the authors
developed a new CF algorithm. Theoretical and experimen-
tal tests have shown that the algorithm fully complies with
the basic cryptographic requirements. It is assumed that the
study of the cryptographic strength of the CF encryption
algorithm will be continued in subsequent works.

2. In this paper, we propose a security-oriented hash
algorithm HBC-256 based on the CF block cipher. The com-
pression function is based on a Merkle-Damgard construct
using a wide-pipe modification that is not susceptible to
length expansion attacks. In order to turn the block cipher
CF into a one-way compression function, the Davies-Meyer
scheme is applied. The scheme of the algorithm is built in
such a way as to increase performance through parallel com-
puting by manipulating the parameter k, the number of parts
from 3 to 8, depending on the amount of hashed data. The
next stage of work will be a further study of the reliability of
the proposed HBC-256 algorithm using other cryptanalysis
methods and collision search attacks.

3. The hash digest was tested for randomness using the
NIST and statistical test suite. From the results obtained,
it was found that the binary sequence generated by the
proposed algorithm is close to random. The results were
examined for the presence of an avalanche effect in the CF
encryption algorithm and the HBC-256 hash algorithm
itself. Based on the tests and studies carried out, it has been
found that the CF encryption algorithm, and therefore the
hashing algorithm itself, is efficient to provide a good ava-
lanche effect. The paper presents the statistical indicators
of the avalanche parameter εα, which shows acceptable
results. The resistance of HBC-256 to near collisions has
been practically tested. Thus, the HBC-256 algorithm is
resistant to attacks related to near collisions. The reliabil-
ity of the algorithm against various attacks is currently
being studied.

4. The structure of the algorithm makes it possible to
increase its performance in hardware-software implementa-
tion. In addition, the algorithm can be efficiently implement-
ed in hardware.

Acknowledgments

The research work was carried out within the framework
of the project OR11465439 – “Development and research of
hashing algorithms of arbitrary length for digital signatures
and evaluation of their strength” at the Institute of Informa-
tion and Computational Technologies.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/9 (116) 2022

72

References

1.	 Teeluck, R., Durjan, S., Bassoo, V. (2020). Blockchain Technology and Emerging Communications Applications. Security and

Privacy Applications for Smart City Development, 207–256. doi: https://doi.org/10.1007/978-3-030-53149-2_11

2.	 Chen, J., Gan, W., Hu, M., Chen, C.-M. (2021). On the construction of a post-quantum blockchain for smart city. Journal of

Information Security and Applications, 58, 102780. doi: https://doi.org/10.1016/j.jisa.2021.102780

3.	 Dworkin, M. J. (2015). SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. NIST. doi: https://doi.org/

10.6028/nist.fips.202

4.	 X 5057-2:2003 (ISO/IEC 10118-2:2000). Available at: http://kikakurui.com/x5/X5057-2-2003-01.html

5.	 The SM3 Cryptographic Hash Function. Available at: https://tools.ietf.org/id/draft-oscca-cfrg-sm3-02.html

6.	 DSTU 7564:2014. Information Technologies. Cryptographic Data Security. Hash function. Available at: http://online.budstandart.com/

ru/catalog/doc-page?id_doc=66229

7.	 Kim, D.-C., Hong, D., Lee, J.-K., Kim, W.-H., Kwon, D. (2015). LSH: A New Fast Secure Hash Function Family. Lecture Notes in

Computer Science, 286–313. doi: https://doi.org/10.1007/978-3-319-15943-0_18

8.	 GOST 34.11-2018. Information technology. Cryptographic data security. Hash-function. Available at: https://docs.cntd.ru/

document/1200161707

9.	 STB 34.101.77-2020. Informatsionnye tekhnologii i bezopasnost’. Kriptograficheskie algoritmy na osnove sponge-funktsii. Vzamen

STB 34.101.77-2016. Available at: http://www.apmi.bsu.by/assets/files/std/bash-spec24.pdf

10.	 Zou, J., Dong, L. (2018). Cryptanalysis of the Round-Reduced Kupyna. Journal of Information Science and Engineering, 34 (3),

733–748. doi: https://do.org/10.6688/JISE.201805_34(3).0010

11.	 Chowdhury, A. R., Chatterjee, T., DasBit, S. (2014). LOCHA: A Light-weight One-way Cryptographic Hash Algorithm for Wireless

Sensor Network. Procedia Computer Science, 32, 497–504. doi: https://doi.org/10.1016/j.procs.2014.05.453

12.	 Tchórzewski, J., Jakóbik, A., Iacono, M. (2021). An ANN-based scalable hashing algorithm for computational clouds with

schedulers. International Journal of Applied Mathematics and Computer Science, 31 (4), 697–712. doi: https://doi.org/10.34768/

amcs-2021-0048

13.	 Mondal, A., Mitra, S. (2016). TDHA: A Timestamp Defined Hash Algorithm for Secure Data Dissemination in VANET. Procedia

Computer Science, 85, 190–197. doi: https://doi.org/10.1016/j.procs.2016.05.210

14.	 Bao, Z., Dinur, I., Guo, J., Leurent, G., Wang, L. (2020). Generic Attacks on Hash Combiners. Journal of Cryptology, 33 (3), 742–823.

doi: https://doi.org/10.1007/s00145-019-09328-w

15.	 Andreeva, E., Mennink, B., Preneel, B. (2015). Open problems in hash function security. Designs, Codes and Cryptography, 77 (2-3),

611–631. doi: https://doi.org/10.1007/s10623-015-0096-0

16.	 Naito, Y. (2012). Blockcipher-Based Double-Length Hash Functions for Pseudorandom Oracles. Lecture Notes in Computer

Science, 338–355. doi: https://doi.org/10.1007/978-3-642-28496-0_20

17.	 Bao, Z., Ding, L., Guo, J., Wang, H., Zhang, W. (2020). Improved Meet-in-the-Middle Preimage Attacks against AES Hashing

Modes. IACR Transactions on Symmetric Cryptology, 318–347. doi: https://doi.org/10.46586/tosc.v2019.i4.318-347

18.	 Nandi, M., Paul, S. (2010). Speeding Up the Wide-Pipe: Secure and Fast Hashing. Lecture Notes in Computer Science, 144–162.

doi: https://doi.org/10.1007/978-3-642-17401-8_12

19.	 A study on hash functions for cryptography (2002). SANS Institute. Available at: https://www.giac.org/paper/gsec/3294/study-

hash-functions-cryptography/105433

20.	 Al-Kuwari, S., Davenport, J., Bradford, R. (2011). Cryptographic Hash Functions: Recent Design Trends and Security Notions.

IACR. Available at: https://eprint.iacr.org/2011/565.pdf

21.	 Denton, B., Adhami, R. (2012). Modern Hash Function Construction. Available at: https://www.researchgate.net/

publication/267298547_Modern_Hash_Function_Construction

22.	 Hosoyamada, A., Yasuda, K. (2018). Building Quantum-One-Way Functions from Block Ciphers: Davies-Meyer and Merkle-Damgård

Constructions. Advances in Cryptology – ASIACRYPT 2018, 275–304. doi: https://doi.org/10.1007/978-3-030-03326-2_10

23.	 Preneel, B., Govaerts, R., Vandewalle, J. (1993). Hash functions based on block ciphers: a synthetic approach. Lecture Notes in

Computer Science, 368–378. doi: https://doi.org/10.1007/3-540-48329-2_31

24.	 Manuel, S., Sendrier, N. (2007). XOR-Hash: A Hash Function Based on XOR. In WEWRC ’07.

25.	 Vergili, I., Yucel, M. D. (2001). Avalanche and Bit Independence Properties for the Ensembles of Randomly Chosen n×x S-Boxes.

Turkish Journal of Electrical Engineering & Computer Sciences, 9 (2), 137–145. Available at: https://journals.tubitak.gov.tr/

elektrik/issues/elk-01-9-2/elk-9-2-3-0008-1.pdf

26.	 Mulyarchik, K. S. (2013). Lavinnyy effekt v algoritmakh shifrovaniya na osnove diskretnykh khaoticheskikh otobrazheniy. Doklady

BGUIR, 6 (76), 86–91. Available at: https://libeldoc.bsuir.by/bitstream/123456789/1592/1/Mulyarchik_Lavinniy.PDF

27.	 Dobrovolsky, Y., Prokhorov, G., Hanzhelo, M., Hanzhelo, D., Trembach, D. (2021). Development of a hash algorithm based on

cellular automata and chaos theory. Eastern-European Journal of Enterprise Technologies, 5 (9 (113)), 48–55. doi: https://doi.org/

10.15587/1729-4061.2021.242849

Information and controlling system

73

28.	 Kapalova, N., Khompysh, A., Arici, M., Algazy, K. (2020). A block encryption algorithm based on exponentiation transform. Cogent

Engineering, 7 (1), 1788292. doi: https://doi.org/10.1080/23311916.2020.1788292

29.	 Algazy, K. T., Babenko, L. K., Biyashev, R. G., Ishchukova, E. A., Kapalova, N. A., Nysynbaeva, S. E., Smolarz, A. (2020). Differential

Cryptanalysis of New Qamal Encryption Algorithm. International Journal of Electronics and Telecommunications, 4, 647–653. doi:

https://doi.org/10.24425/ijet.2020.134023

30.	 Lamberger, M., Mendel, F., Rijmen, V., Simoens, K. (2011). Memoryless near-collisions via coding theory. Designs, Codes and

Cryptography, 62 (1), 1–18. doi: https://doi.org/10.1007/s10623-011-9484-2

31.	 Maram, B., Gnanasekar, J. M. (2016). Evaluation of Key Dependent S-Box Based Data Security Algorithm using Hamming

Distance and Balanced Output. TEM Journal, 5 (1), 67–75. doi: https://dx.doi.org/10.18421/TEM51-11

32.	 Biyashev, R. G., Kalimoldayev, M. N., Nyssanbayeva, S. E., Kapalova, N. A., Dyusenbayev, D. S., Algazy, K. T. (2018). Development

and analysis of the encryption algorithm in nonpositional polynomial notations. Eurasian Journal of Mathematical and Computer

Applications, 6 (2), 19–33. doi: https://doi.org/10.32523/2306-6172-2018-6-2-19-33

33.	 Saarinen, M.-J. O. (2012). Cryptographic Analysis of All 4 × 4-Bit S-Boxes. Lecture Notes in Computer Science, 118–133. doi:

https://doi.org/10.1007/978-3-642-28496-0_7

34.	 Kosta, B. P., Sanyasi, P. (2021). Design and Implementation of a Strong and Secure Lightweight Cryptographic Hash Algorithm

using Elliptic Curve Concept: SSLHA-160. International Journal of Advanced Computer Science and Applications, 12 (2). doi:

https://doi.org/10.14569/ijacsa.2021.0120279

35.	 Kapalova, N. A., Nysanbaeva, S. E. (2008). Analiz statisticheskikh svoystv algoritma generatsii psevdosluchaynykh posledovatel’nostey.

Mater. X Mezhdunar. nauch.-prakt. konf. Informatsionnaya bezopasnost’. Ch. 2. Taganrog: Izd-vo TTI YuFU, 169–172.

36.	 Ivanov, M. A. Khesh-funktsii. Teoriya, primenenie i novye standarty (chast’ 1). Available at: https://docplayer.com/28902735-

Hesh-funkcii-teoriya-primenenie-i-novye-standarty-chast-1.html

37.	 Kumar, M., Dey, D., Pal, S. K., Panigrahi, A. (2017). HeW: AHash Function based on Lightweight Block Cipher FeW. Defence

Science Journal, 67 (6), 636. doi: https://doi.org/10.14429/dsj.67.10791

38.	 Bussi, K., Dey, D., Mishra, P. R., Dass, B. K. (2019). MGR Hash Functions. Cryptologia, 43 (5), 372–390. doi: https://doi.org/

10.1080/01611194.2019.1596995

