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1. Introduction

The rapid development of electronic devices, commu-
nications, and Internet technologies in recent decades has 
provided the possibility of almost instantaneous exchange 
of personal and collective data. Adversaries can relatively 
easily obtain huge amounts of confidential data using access 
to electronic sensors, computers, mobile terminals, and var-
ious social networks. This raises security issues in the use 
and transmission of data. Of particular importance among 
the most important components of information security are 
encryption and hashing, which are the most widely used 
cryptographic methods for ensuring the confidentiality, in-
tegrity, and availability of data.

Hashing was originally used to check the integrity 
of messages but has now become widespread in computer 
science and programming to optimize critical data opera-
tions. The field of application of the hashing mechanism is 
extremely wide.

Modern secure hash algorithms are crucial for the integ-
rity of data and confirmation of the authorship of informa-
tion during its transmission and storage in infocommunica-

tion systems and general-purpose networks. Hash functions 
are used to perform authentication, verify the integrity 
of information, protect data and files, including, in some 
cases, the detection of malicious software and much more. 
Hash functions solve the problem in terms of the volume of 
incoming data, which is why algorithms that can operate 
with concise values are very popular in the modern world 
of digital technologies. The hash mechanism is also used to 
reduce the time required to generate and verify a signature, 
as well as to reduce its length.

Hashing is also a fundamental transformation for 
blockchain technology, applied in areas such as financial 
transactions, user identification, or the creation of cyber-
security technologies. A blockchain is a connected chain 
of records called blocks. Each block contains its own hash 
value, the hash value of the previous block, and a time-
stamp, which prevent an attacker from making changes to 
the data [1, 2].

The very first hash function was built around the DES 
(Data Encryption Standard) block cipher. Since then, a lot 
of new hash functions have been developed using new con-
structions and ways of constructing them. Conventionally, 
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This paper proposes the new hash algorithm HBC-
256 (Hash based on Block Cipher) based on the symmet-
ric block cipher of the CF (Compression Function). The 
algorithm is based on the wipe-pipe construct, a modified 
version of the Merkle-Damgard construct. To transform 
the block cipher CF into a one-way compression func-
tion, the Davis-Meyer scheme is used, which, according 
to the results of research, is recognized as a strong and 
secure scheme for constructing hash functions based on 
block ciphers. The symmetric CF block cipher algorithm 
used consists of three transformations (Stage-1, Stage-2, 
and Stage-3), which include modulo two addition, circu-
lar shift, and substitution box (four-bit S-boxes). The four 
substitution boxes are selected from the “golden” set of 
S-boxes, which have ideal cryptographic properties. 

The HBC-256 scheme is designed to strike an effec-
tive balance between computational speed and protection 
against a preimage attack. The CF algorithm uses an AES-
like primitive as an internal transformation. 

The hash image was tested for randomness using the 
NIST (National Institute of Standards and Technology) 
statistical test suite, the results were examined for the pres-
ence of an avalanche effect in the CF encryption algorithm 
and the HBC-256 hash algorithm itself. The resistance of 
HBC-256 to near collisions has been practically tested.

Since the classical block cipher key expansion algo-
rithms slow down the hash function, the proposed algo-
rithm is adapted for hardware and software implementa-
tion by applying parallel computing. A hashing algorithm 
was developed that has a sufficiently large freedom to 
select the sizes of the input blocks and the output hash 
digest. This will make it possible to create an almost uni-
versal hashing algorithm and use it in any cryptographic 
protocols and electronic digital signature algorithms
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hash function constructs can be divided into three catego-
ries: hash functions based on block ciphers, hash functions 
based on arithmetic functions, and special hash functions.

Designed hash functions must be subject to rigorous 
security checks. When designing an efficient hash function 
based on block ciphers, it is recommended to use well-stud-
ied cryptographic transformations and constructions that 
allow their subsequent software, firmware, and hardware 
implementations. The intensive development of informa-
tion technology capabilities, including computing power, 
contributes to the emergence of new and modification of 
existing attacks, which requires constant development and 
updating of protection systems.

Thus, the area of research under consideration is rele-
vant. A comprehensive study of the block cipher components 
used in the development of hash functions, as well as their 
relevance to modern technologies, is necessary and requires 
continuous and breakthrough scientific research.

2. Literature review and problem statement 

As it is known, standards for the IT industry should be 
harmonized with international technical regulations, as our 
country is integrating into the global economy. In the area 
of information security, each state strives to develop its own 
national standards in the field of cryptography.

In 2015, the US state standard FIPS 202, SHA-3 (Kec-
cak hash function), a variable bit length hashing algorithm, 
was approved and published. Keccak is based on the Sponge 
(cryptographic sponge) construction [3]. SHA-3 is one of 
the most widely used hash functions. At the moment, it is 
known that the scientific community is conducting a variety 
of studies on the strength of its latest version since previous 
versions of SHA-3 were broken or had vulnerabilities. The 
SHA-3 hashing process consists of two steps: absorption and 
compression. At the first stage, each message block of a fixed 
length of r bits is added to the current state of the matrix and 
24 rounds of the compression function f are performed. At 
the second stage, the state matrix is truncated to the desired 
hash digest length by iteratively executing the compression 
function f.

Japan has the JIS X 5057-2: 2003 (ISO/IEC 10118-2: 
2000) standard. “Information Technology. Security meth-
ods. Hash functions. Part 2. Hash functions using n-bit 
block cipher” [4]. The hash function of this standard is suit-
able for environments where the n-bit block cipher algorithm 
is already implemented. Since 2018, SHA-1 has been used as 
a standard JIS hash function. 

In 2016, China approved the standard “GB/T 32905-2016 
Information security technology SM3 cryptographic hash al-
gorithm”. In 2017, SM3 was standardized by the International 
Organization for Standardization (ISO IEC.10118-3) [5]. SM3 
is a 256-bit hash algorithm, for a message M of length 𝑙 (𝑙<264) 
generates a 256-bit hash value and uses the Merkle-Damgard 
structure. It is mainly used in electronic signatures, cryp-
tographic checksums, and pseudo-random number generators. 

Since 2015, Ukraine has been operating the National 
Standard “DSTU 7564:2014 Information Technologies. 
Cryptographic information protection. Hashing func-
tion” [6]. It was developed for the gradual replacement of the 
interstate standard GOST 28147:2009. The Kupyna hash 
function uses the Davies-Meyer scheme and its permutations 
are built on the Kalyna block cipher.

South Korea uses its own LSH hashing standard, devel-
oped in 2014. LSH is one of the cryptographic algorithms 
approved by the Korean Cryptographic Module Verification 
Program. The advantage of this algorithm is that it more 
than doubles the performance of international standards 
(SHA2/3) in various software environments. LSH is still 
protected from known hash attacks. LSH is collision-re-
sistant for q<2n/2 and has preimage resistance and second 
preimage resistance for q<2n in an ideal cipher model, where 
q is the number of requests for the LSH construction [7].

The interstate standard GOST 34.11-2018 has been put 
into effect in the Russian Federation. “Information Technol-
ogy. Cryptographic information protection. Hashing func-
tion”, which is prepared on the basis of the application of the 
standard GOST R 34.11-2012 (“Streebog”). The algorithm 
calculates a hash function with an input data block size of 
512 bits and a hash code size of 256 or 512 bits. It uses a com-
pression function based on three transformations: nonlinear 
bijective transformation, byte permutation, linear transfor-
mation (SPL) [8]. This standard has been adopted in Arme-
nia, Kyrgyzstan, Republic of Kazakhstan, and Tajikistan.

A new standard “STB 34.101.77-2020 Information Tech-
nologies and Security” has been put into effect in Belarus 
since 2020. “Cryptographic algorithms based on the sponge 
function” [9]. The cryptographic hashing algorithm used in 
this standard is based on the cryptographic sponge function.

In Republic of Kazakhstan, foreign cryptographic algo-
rithms and standards are currently used in the existing elec-
tronic data protection systems. Since this poses a security 
risk, the creation of a domestic hashing algorithm to control 
the integrity of confidential information is an urgent task 
for our country. This work is targeted at the development of 
domestic information security systems and the creation of 
software and hardware packages for their practical use.

To date, standards for hash functions and cryptographic 
hashing algorithms have been adopted in many foreign coun-
tries, including the United States, Japan, China, Ukraine, 
South Korea, etc. 

Republic of Kazakhstan uses international standards and 
mainly foreign hardware and software. The creation of do-
mestic algorithms for cryptographic information protection, 
including hashing algorithms, is an urgent and necessary task. 

The development of cryptographic primitives makes 
progress, and hash functions are used in many applications 
and on various platforms, which forces us to place high de-
mands on their strength. In this regard, a lot of research is 
being carried out in the field of developing new and modify-
ing existing hash algorithms. 

The work [10] shows several attacks of finding the second 
preimage (pseudo-preimage) and collisions on the cryp-
tographic hash function Kupyna-256 and Kupyna-512. Since 
Kupyna uses the wide-pipe construction, it is difficult to build 
a pseudo-preimage attack on it. The authors of the paper argue 
that there were not so many cryptanalytic studies of Kupina. 
They demonstrated all known attacks on it and their qualita-
tive and quantitative indicators. In addition, the paper empha-
sizes that the modular constant addition operation provides 
additional resistance to the “meet-in-the-middle” attack.

In [11], a lightweight one-way cryptographic hash algo-
rithm LOCHA was developed to create a hash digest of a 
fixed and relatively small length for a power-intensive wireless 
network. The focus is on lightening the algorithm so that when 
used in networks such as WSNs (Wireless Sensor Networks), 
nodes can successfully run the algorithm with low power con-
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sumption. The use of simple mathematical operations such as 
residue of division (mod), arithmetic modulo addition, and two 
substitution tables of 97 and 67 primes ensures high perfor-
mance in obtaining a 96-bit hash digest. Despite the simplicity 
of implementation, this algorithm is not limited in scope. This 
is because LOCHA has proven to be more secure than other 
strong hashing algorithms such as MD5, SHA1. But, over time, 
the reliability of such hash functions can decrease due to the 
small and static size of their hash digest.

The work [12] proposes a hash function model with 
scalable output. The model is based on an artificial neural 
network (ANN) trained to mimic the chaotic behavior of the 
Mackey-Glass time series. This hashing method can be used 
to check data integrity and generate a digital signature. This 
makes it possible to create cryptographic services according 
to user requirements and time constraints due to output scal-
ability. The authors confirm that changing the ANN architec-
ture, that is, adding neurons to the output layer or removing 
them, makes it possible to obtain hash digests of the desired 
length. The results of three independent tests confirm that the 
hashing algorithm on ANN satisfies all the requirements for a 
hash function that creates short-term hash digests.

The paper [13] considers a hashing algorithm, deter-
mined by a timestamp, for the secure distribution of data be-
tween vehicles. The proposed algorithm fulfills all the basic 
properties such as preimage resistance, collision resistance of 
a one-way hash function without a key.

One method to make cryptographic hash functions more 
resistant to future attacks is through combinations of hash 
functions. The work [14] analyzes hash combinators, such as 
XOR combiner, concatenation combiner, and Hash-Twice, 
which combine two or more hash functions. The paper 
presents some approaches for combining two or more hash 
functions that do not provide n-bit security of preimage 
stability. Several attacks are defined by which second pre-
image resistance does not provide n-bit security of combined 
hash functions using concatenation and cascade methods 
of two n-bit hash functions. The upper security bound for 
the indicated hash combinators is also determined, based 
on the most well-known general attacks on preimages and 
attacks on finding the second preimage. In tabular form, the 
updated security status of the above hash combinators after 
the authors received new research results is presented. This 
shows that the security of most combinators is not as high as 
expected. As a result, given the basic security requirements, 
these hash combinators of two or more n-bit hash functions 
do not provide greater, sometimes even n-bit security. There-
fore, the development of one n-bit ideal hash function is 
considered to be still relevant.

An extended overview of the current state of security 
of hash functions is presented in the paper [15]. The work 
highlights the existing models and security aspects in the 
development of a compression function through a modular 
approach, which refers to the creation of a hash function 
based on a block cipher or permutation. This paper, which 
presents modern scientific views and the process of modular 
design, substantiates its relevance and demonstrates the key 
points in the development. The authors pose open problems 
of modular design and present ways to solve them. 

The paper [16] describes a hash function developed on 
the basis of a block cipher. The authors, using the Davis-Mei-
er mode, built a new hash function, which was investigated 
for safety against collisions, and also presented approaches 
for using k-fold hash input lengths. The developed hash 

function inherits all the properties of a random oracle with 
a high degree. The developed double-length hash functions 
(DLHF) can be used on devices with a limited size since the 
block cipher used provides O(2128) security.

The work [17] describes hashing modes (schemes) used as 
a transformation of block ciphers into a compression function. 
The AES (Advanced Encryption Standard) block cipher algo-
rithm is considered as a compression function, various modes 
for hashing are investigated and several preimage attacks are 
carried out, it is also described in detail how to reduce the 
complexity of attacks by applying key neutral bits.

One of the significant problems in cryptography is ensur-
ing resistance to multicollisions. This problem arose from the 
birthday attack, the answer to which was to double the length 
of the resulting hash value. This solution turned out to be in-
adequate to the available computing resources of the society 
and the time constraints for hashing. Increasing the bit depth 
in the Wide Pipe design obviously negatively affects the per-
formance of computing resources. In 2010, a modification of 
Fast Wide Pipe [18] was proposed, which made it possible to 
double the computational speed compared to Wide Pipe. Each 
internal state value is divided into two halves. The first half is 
fed to the input of the compression function, and the second is 
added to the result of the same iteration. However, this scheme 
requires additional computer memory, so research work in this 
direction continues.

The hashing algorithms considered in [3–9] are the state 
standards of the countries of the world developed in the field 
of IT technologies. Each state seeks to create its own reliable 
cryptographic standards, including those for hash functions. 
Kazakhstan does not have its own cryptographic standard, 
as well as its own standard for hashing data. Therefore, for 
Kazakhstan, the issue of creating its own hashing standard, 
which determines the algorithm and procedure for calcu-
lating the hash function of the transmitted information, is 
relevant. In this regard, comprehensive studies of existing 
hashing algorithms are being carried out, and work is under-
way to develop a domestic reliable hashing algorithm. The 
new hashing algorithm proposed in this paper can become a 
candidate for the state standard.  

The papers [10–18] present the effective methods and 
structures of hash functions developed to date. Hashing 
algorithms for various purposes have been studied in detail, 
including lightweight hashing algorithms and hashing al-
gorithms for blockchain technology. The results of various 
cryptographic attacks of finding the first preimage, as well 
as the search for collisions of the first and second kind for 
hash functions are analyzed. In these papers, various tech-
niques have been applied to improve the performance of 
hashing. The difference of the algorithm proposed by us lies 
in the fact that to increase the speed in one round we apply 
a non-linear cryptographic primitive with a special principle 
twice. In addition, when calculating each new byte, linear 
and non-linear functions are performed alternately. This 
approach to building a hash function is not considered in 
other works and is characterized by increased computational 
performance without compromising the security of a hash 
function built based on block ciphers.

3. The aim and objectives of the study

The aim of this work is to develop a fast and reliable hash 
function based on a symmetric block cipher algorithm, as 
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well as to study and evaluate its reliability using cryptanal-
ysis methods.

To achieve this aim, the following objectives were set:
– to develop a symmetric block encryption algorithm; 
– to develop a hash algorithm that meets the basic require-

ments for cryptographic hash functions, and provides high per-
formance and flexibility in hardware-software implementation;

– to conduct a study and evaluate the reliability of the 
developed hash algorithm by methods of statistical and cryp-
tographic analysis;

– to implement hardware-software implementation of 
the developed hash algorithm.

4. Materials and methods 

It is worth noting that designing a good hash algorithm 
is more difficult than designing a symmetric encryption 
algorithm. A cryptographic hash function is a mathematical 
algorithm that converts an arbitrary array of data into a 
fixed-length string [19]. The main requirement for cryp-
tographic hash functions is that for any message represented 
in binary form, the value of the hash digest must be quickly 
and efficiently calculated. Besides, a high-quality hash func-
tion should have a number of properties [20, 21]. The most 
convenient and popular hashing method involves dividing 
a message into blocks of a fixed length, after which these 
blocks are iteratively processed.

Currently, the most popular and security-oriented ap-
proach is to build hash functions based on block ciphers. In this 
approach, a block cipher is taken as the compression function, 
with two inputs representing a message block and a key [22]. 
The work [23] presents 64 possible PGV schemes (Preneel, Go-
vaerts, and Vandewalle) for constructing hash functions based 
on the block cipher { } { } { }× →: 0,1 0,1 0,1 ,

n n n
E  where n is the 

block length in bits. Of the 20 collision-resistant PGV schemes, 
the most commonly used is the Davies and Meyer scheme: 

( )− −= ⊕1 1, ,i i i iy f h M y  where yi and Mi are the input of the 
compression function f, and yi is its output [24]. To develop our 
HBC-256 hash algorithm, we use the Davis and Meyer scheme. 

Currently, the most widespread is the assessment of the 
cryptographic strength of hashing and encryption algorithms 
based on the methods of linear and differential cryptanalysis. 
Differential cryptanalysis technique is to track the change 
in the difference between the output bits depending on the 
change in the input bits at each round of transformation. It 
should be noted that the presence of the “avalanche effect” 
in the algorithm is a necessary condition for ensuring cryp-
tographic resistance to differential cryptanalysis [25, 26].

The following two criteria are usually used to analyze 
the avalanche effect:

– avalanche criterion; 
– strict avalanche criterion.
If the avalanche criterion requires an average change of 

50 % of the bits in the output sequence when each bit in the 
input sequence changes, then the strict avalanche criterion 
requires a change with a probability of 1/2 of each partic-
ular bit in the output sequence when each particular bit in 
the input sequence change; and they are estimated by the 
following relations, respectively:

–  ε = −2 1 ,a ik  here i is the number of the modified bit in 
the input sequence, ki is the probability of changing half of 
the bits in the output sequence when changing the ith bit at 
the input, εα is the avalanche parameter;

–  ε = −,2 1 ,s si jk  where i is the number of the modified bit 
in the input sequence, j is the number of the analyzed bit in the 
output sequence, ks i,j is the probability of changing the jth bit 
in the output sequence when the ith bit at the input changes as 
compared to the output value with the unchanged input value.

The hash digest h(M) for any message of arbitrary 
length M must satisfy the properties of pseudo-randomness. 
This is one of the main requirements for hashing algo-
rithms, i.e. it should be difficult to distinguish a hash-based 
pseudo-random number generator from a random number 
generator. For a hash digest to be considered random and 
unpredictable, at least it is necessary that there is no period, 
and that various combinations of bits of a certain length are 
distributed evenly over its entire length. This requirement 
can be statistically interpreted as the complexity of the law 
of generating a pseudo-random sequence of the hashing al-
gorithm [27–29]. 

A hash function h is said to be collision resistant if it is 
computationally undecidable to find any two inputs that map 
to the same hash pattern for the given hash function. Colli-
sion attacks are carried out to establish two different mes-
sages M1 and M2 with the same hash digests h(M1)=h(M2). 
In the classical attack, unlike a preimage attack, the crypt-
analyst does not deliberately select the hash value.

A hash function is said to be near-collision resistant if it 
is computationally difficult to find any two messages M1 and 
M2 such that their hash digests. h(M1) and h(M2) differ by 
only a few bits for a given hash function [30]. A pair of mes-
sages M1 and M2, with M1≠M2, is called an -near collision 
for, if ( ) ( )( )1 2,d h M h M ≤  holds, where d is the Hamming 
distance [31].

To study the reliability and performance of the developed 
algorithm, we used its software and hardware-software 
implementation, written in C++ in the Qt Creator 4.15.2 
integrated development environment using the Qt library 
version 5.15, as well as a software package for statistical 
analysis, developed at the Institute of Information and 
Computational Technologies of the Committee of Science 
of the Ministry of Education and Science of the Republic of 
Kazakhstan. 

5. Results of development of the new hash algorithm and 
its security study

5. 1. Development of the new encryption algorithm 
5. 1. 1. Encryption algorithm scheme
The CF encryption algorithm belongs to the class of 

symmetric block cipher with a block and key length of 
128 bits. The algorithm uses both linear (modulo 2 addition, 
cyclic left shifts) and nonlinear (four substitution S-boxes) 
transformations. The cipher structure is a variant of a substi-
tution-permutation network (SP-network) with four rounds 
(R1=4) [32]. One round of encryption consists of three 
transformations called Stage-1, Stage-2, and Stage-3 and is 
shown in Fig. 1. 

The values of the input text A(a0, a1, a2, …, a15) are writ-
ten as the 4˟4 square matrix A:

 
 
 =
 
  

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

.A

a a a a
a a a a
a a a a
a a a a
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Stage-1 transformation. This transformation, which con-
sists of two steps, is used to obtain from a given matrix А a 
new matrix of the same size.

Step 1. The intermediate values cij of the matrix A are 
calculated by adding the element of the matrix aij modulo 2 
with the remaining three elements of the ith row and three 
elements of the jth column.

Step 2. At this step, the new value i jc  passes through 
the substitution S-box (SBOX procedure) to be stored in the 
same place as the new value of the matrix А.

The Stage-1 transformation, consisting of the 1st and 
2nd Steps, can be written as:

( )
= = ≠

  
= ⊕ ⊕ ⊕         

= 

∑ ∑
3 3

0 0,

,

,

i j i k k j
k k k i

i j i j

c a a

a SBOX c

 

= 0,1,2,3;i  = 0,1,2,3,j 		  (1)

where cij is the intermediate value of the matrix А, SBOX is the 
substitution S-box, ⊕∑  denotes the sum of terms modulo 2.

SBOX procedure. The nonlinear bijective transformation 
S is defined through the SBOX procedure. The four substi-
tutions S0, S1, S2, S3 are specified, where →4 4(2 ) (2 )

: ,iS Z Z  
= 0, ,3.i  Four “golden” S-boxes as per Table 1 were select-

ed for the transformation [33].

Table 1

Four “golden” S-boxes

X 0 1 2 3 4 5 6 7 8 9 A B C D E F S-box

S0(x) 0 F B 8 C 9 6 3 D 1 2 4 A 7 5 E Serpent, S3

S1(x) 2 E F 5 C 1 9 A B 4 6 8 0 7 3 D HB-1, S2

S2(x) 7 C E 9 2 1 5 F B 6 D 0 4 8 A 3 HB-2, S0

S3(x) 4 A 1 6 8 F 7 C 3 0 E D 5 9 B 2 HB-2, S1

Serpent is the lightweight cipher Serpent, HB-1 is the 
lightweight cipher Hummingbird-1, HB-2 is the lightweight 
cipher Hummingbird-2.

The principle of SBOX operation is shown in Fig. 2. 
The input is one byte i ja  of the matrix А, which has a 
binary representation ( )= 7 6 5 4 3 2 1 0 2

.i j b b b b b b b ba  S-boxes per-
form the replacement procedure at the nybble or quadbit  
level, called the left nibble t1=b7b6b5b4 and the right nibble 

t0=b3b2b1b0 (written in binary). Further, according to the 
table, p1=Si(t1) and p0=Sj(t0) are determined. The indices i 
and j of the matrix element correspond to the numbering of 
the S-boxes. Further, the resulting nibbles through the ith 
and jth S-boxes are combined into a byte. Here, the nibbles 
are swapped, i.e. p1 is stored in the right nibble, and p0 is 
stored on the left. The byte thus obtained is sent to the out-
put aij=(q7q6q5q4q3q2q1q0)2. Therefore, ( )= .i j i jSBOX aa

Stage-2 transformation. This transformation consists 
of two operations: cyclic shift and XOR. The elements of 
the matrix A obtained in Stage-1 are stored in the form of a 
one-dimensional array (a00, a01, a02, a03, a10, a11, a12, a13, a20, 
a21, a22, a23, a30, a31, a32, a33). Then all the elements of the 
array are perceived as bytes, and their bit representations are 
combined using the concatenation operator: 

W=a00‖a01‖a02‖a03‖a10‖a11‖a12‖a13‖a20‖a21‖a22‖a23‖a30‖a31‖
a32‖a33. Next, a cyclic left shift is performed in 1-bit incre-
ments: = 1V W   until a 16-byte result is obtained V=b00‖ 
b01‖b02‖b03‖b10‖b11‖b12‖b13‖b20‖b21‖b22‖b23‖b30‖b31‖b32‖b33. After 
that, the XOR operation is performed byte by byte: A=W⊕V, 
and the obtained bytes are accepted as new values of the 
4×4 matrix A from left to right, from top to bottom.

Stage-3 transformation. This transformation is similar 
to the Stage-1 transformation. Here, too, the transformation 
consisting of two steps is performed with the matrix A. The 
difference is that the elements of the matrix are calculated 
from bottom to top, from right to left. 

Let’s write this transformation, consisting of the 1st and 
2nd steps, similar to the previous one:

( )
= = ≠

  
= ⊕ ⊕ ⊕         

= 

∑ ∑
3 3

0 0,

,

,

i j i k k j
k k k i

i j i j

c a a

a SBOX c

= 3,2,1,0;i  = 3,2,1,0.j 		  (2)

At the end of each round, the values obtained after the 
Stage-3 transformation are summed modulo 2 with the 
round key values.

5. 1. 2. Round key schedule algorithm
This section discusses an algorithm CFKey for deploying 

round keys based on a master key K(k0,k1,k2,…,k15) with a 
length of 16 bytes. We assume that the master key K is the 
round key K0. The total number of round keys is the same as 
the number of rounds R1 of the encryption algorithm. The 
values of the round key K0(k0,k1,k2,…,k15) are stored in a 4×4 
matrix A in the following form:

Fig. 1. General scheme of the encryption algorithm
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 	 (3)

The CFKey key schedule algorithm consists of the 
StageKey-1, StageKey-2, and StageKey-3 transformations. The 
presented round key schedule algorithm is schematically shown 
in Fig. 3.

Note that the CFKey algorithm is functionally very 
similar to the CF algorithm: the StageKey-1 and StageKey-3 
transformations are completely identical to the Stage-1 and 

Stage-3 transformations, respectively. The difference lies in 
StageKey-2. This transformation consists of only one opera-
tion, which is a cyclic shift. It also performs a one-bit cyclic 
left shift. There is no XOR operation in StageKey-2.

The CFKey algorithm is repeated R2=8 times, and then 
the resulting 16-byte result is added with the round key Ki–1 
modulo 2 (ХOR) and finally the next round key Ki, where 
i=1,…,R1 is formed.

5. 2. Development of the hash algorithm based on the 
encryption algorithm

5. 2. 1. General information on the hash algorithm
The HBC-256 (Hash-based on Block Cipher) data hash al-

gorithm is based on the proposed Compression Function (CF) 
block cipher. The compression function takes two inputs – a 
128-bit message block mj and a 128-bit round encryption key – 
and outputs an intermediate 128-bit hash code. The design uses 
a well-established approach to building a hash function – the 
Merkle-Damgard construct with the most common wide-pipe 
modification capable of withstanding a length extension attack. 
To create the final n-bit hash digest, the message block size and 
the size of the intermediate hash code should have the same 
length of w bits, where n<w. To meet the requirements of wide-
pipe modification, in one hashing cycle we simultaneously exe-
cute CF 3 times for different mj, j=0, 1, 2. This is why the length 
of the intermediate hash code w is equal to 128*3 bits [34].

The general scheme of hashing the message K(M0,M1,M2,…, 
Mt-1) is shown in Fig. 4, where Mr(m0,m1,…,mk–1), r=0,1,…, 
t–1 (for k=3). The proposed algorithm suggests taking the mes-
sage М itself as the master key, and the previous intermediate 
hash code −1

j
ih  for the encrypted text. Based on the blocks of the 

message Mr, the required number R1 of round keys is generated.

Fig. 3. Scheme for generating round keys
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To enhance collision resistance, we use the Davies-Mey-
er scheme, where the CF output is summed (XOR op-
eration) with the result of the previous hashing iterati- 
on  −1.j

ih  The pj value is the result of the ith iteration of the 
Davies-Meyer hash function. This scheme is used in hash 
algorithms based on block ciphers and acts as a one-way 
compression function.

5. 2. 2. Hash algorithm execution order
First, the block M0 consisting of the first 384 bits of the 

message М is taken and divided into three 128-bit parts 
m0, m1, m2. Based on each mj, separate round keys j

irk  are 
generated using the CFKey round key schedule algorithm, 
where i=1,2,…,R1 and j=0,1,2. At the very beginning, the 
initialization vector or hash code takes on the value 0, 
i.e. = 128

0 0 .jh  To obtain 1 ,jh  for all three parts, the CF 
encryption algorithm is simultaneously executed, taking 
as input the round key 0

jrk  and 0 .jh  Further, according 
to the Davies-Meyer scheme, we obtain pj as the result of 
summing 1

jh  and 0
jh  modulo 2. After that, using the PerF 

(Permutation Function) procedure, the values of all three 
pj are permuted, which are then divided into three parts, 
each 128 bits long. The PerF byte permutation procedure is 
carried out as per the formula: 

+ +

+ +

= 
= 
= 

3

3 1 16

3 2 32

,

,

,

i i

i i

i i

h p

h p

h p

 = 0,...,15,i  			   (4)

where 0 1 2|| || .p p p p=  The 16-byte intermediate hash di-
gests hj( j=0, 1, 2) are determined by 0 1 2

1 1 1|| || .h h h h=
Formula (4) can be represented in Table 2.

Table 2

Byte permutation (х are byte positions, starting from 0)

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PerF(x) 0 16 32 1 17 33 2 18 34 3 19 35 4 20 36 5

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PerF(x) 21 37 6 22 38 7 23 39 8 24 40 9 25 41 10 26

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

PerF(x) 42 11 27 43 12 28 44 13 29 45 14 30 46 15 31 47

In subsequent iterations, the resulting 3 parts are accept-
ed as 0 .jh  Then again, the CF encryption algorithm is exe-
cuted with the updated values 0

jh  and the following round 
key. This procedure for each Mr (m0, m1, m2) is repeated R1 
times, r=0, 1, …, t–1. When calculating the intermediate 
hash digest of the block Mr+1 (m0, m1, m2), the values of the 
initialization vector 0

jh  will take the values of the interme-
diate hash digest of the block Mr (m0, m1, m2).

After processing the last block Mt-1, from the obtained 
hash digest of length 384 bits using the ComF (Compression 
Function), we determine the final hash digest h of length 
256 bits:

( )=
1 1 1

0 1 2, , .R R Rh ComF h h h 				     (5)

The order of padding. The HBC-256 algorithm iterative-
ly processes 384-bit blocks of the input message M. If the 
length of М is a multiple of 384, then at the end of М, one 
more 384-bit block is added, consisting of zero bits, except 
for the first and last bits, which are equal to one. If the length 

of М is not a multiple of 384, then М is padded with so many 
bits that it is a multiple of 384. Suppose that the length of the 
input message M is not a multiple of 384 and is equal to l bits. 
We add a bit “1” at the end of M, after that, we add s zero bits, 
where (l–2)≡smod384 and add the last bit “1”.

The order of division into parts. For hashing, the pad-
ded message М is divided into t blocks of 384 bits each as 
follows: M=M ‖Pad(M)=M0‖M1‖M2‖…‖Mt-1. Pad is abbrevi-
ated from “padding”.

The hashing process is iteratively performed according 
to the scheme in Fig. 1 with the input message Mr with a 
length of 384 bit, r=0, 1, …, t–1. 

Obtaining a hash digest. The final hash digest is deter-
mined through the ComF procedures. In our case, the values 
of the first and second block are taken as the final hash di-
gest, the length of which is 256 bits: 0 1

1 1 .||h h h=

5. 3. Proposed hash algorithm security study
Table 3 presents data on the complexity of attacks for 

every three problems when probability p=0.5.

Table 3

Data on the complexity of finding preimages and collisions

Specifications
Problems

Finding a 
preimage

Finding the sec-
ond preimage

Finding a 
collision

Value of k at 
p=0.5 and N=2256 k=0.69*2256 k=0.69*2256+1 k=0.83*2128

Method applied Brute force Brute force
Birthday 
paradox

Here, k is the minimum number of different (different 
from each other) hashed data required for the attack, N is 
the number of possible hash digests relative to the length of 
the hash digest.

5. 3. 1. Assessment of the “avalanche effect” of the 
hash algorithm

The analysis of the propagation of the avalanche effect 
and the implementation of the avalanche effect after the 1st, 
2nd, and 4th rounds were carried out according to the CF 
encryption algorithm scheme. The results after the 4th round 
are presented in Table 3. As an example, a 128-bit message 
M0 in the form 0xcc156c4ce024d5113d680d7cce6d8b2 was 
selected for the analysis. For 1≤i≤128, 128 plaintexts Mi were 
generated with the difference of one bit from M0 as follows: 

( )129 0 1 .iM M i− = ⊕ <<
After applying CF to these 129 messages Mi (i=0, 1, …, 

128), the corresponding 128-bit ciphertexts Ci were obtained. 
Then the probabilities ki (i=1, 2, …, 128) between the cipher-
text C0 and the remaining 128 ciphertexts were calculated. 
Table 4 gives the calculated probability ki.

Next, we consider the avalanche effect of the HBC-256 
hashing algorithm. The value M0=0384 is taken as an ex-
ample of a 384-bit original message M0. To analyze the av-
alanche effect of the HBC-256 algorithm, 384-bit messages 
were generated as follows: 

( )385 0: 1 ,i iM M iM − = ⊕ <<  = 1,2, ,384.i 		  (6)

Table 5 shows the dynamics of statistical indicators of 
the avalanche parameter εα depending on the number of 
hashing rounds. 
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Table 5

Statistical indicators of the avalanche parameter εα of the 
hash algorithm

Statistical indi-
cators εα

Round 
1

Round 
2

Round 
4

Round 
8

Round 
12

Largest value 0.7240 0.1870 0.1770 0.1720 0.1720

Least value 0.5940 0 0 0 0

Arithmetic mean 0.6645 0.0399 0.0407 0.0405 0.0398

Geometric mean 0.0007 0.0009 0.0009 0.0009 0.0009

Variance 0.6560 0.0310 0.0160 0.0150 0.0260

Mode 0.6670 0.0310 0.0360 0.0360 0.0310

Fig. 5 shows the probabilities ki of change after the 4th 
round, showing an almost uniform distribution. 

Fig. 5 above vertically represents the probability of a 
change in the avalanche effect from a change in the bits, 
which is represented horizontally. 

5. 3. 2. Statistical analysis of the algorithm
To assess the randomness, we checked the hash digests 

using the software package “Automated system for the selec-
tion of statistical tests by D. Knuth and graphic tests”, which 
implements a set of statistical tests [35]. For this, 60 files 
of different formats were selected, each of which contained 
from 20 to 1,000 KB of information. Data on files for analy-
sis are presented in Table 6.

After processing each file with the HBC-256 algorithm, 
a corresponding 256-bit hash digest was obtained. Graphical 
and evaluation statistical tests were applied to the new 60 files 
with hash digest sequences. In graphical tests, the statistical 
properties of hash patterns are displayed as graphical depen-
dencies, and in evaluation tests, the statistical properties are 
determined by numerical characteristics. As a result, according 
to the relevant data, a conclusion is made about the success of 
the passed test. Fig. 6, 7 show data on the number of files that 
successfully passed the graphics and evaluation tests.

Table 4

Analysis of the avalanche effect of the CF algorithm after the 4th round

i ki i ki i ki i ki i ki i ki i ki i ki

1 0.48 17 0.44 33 0.52 49 0.52 65 0.44 81 0.42 97 0.54 113 0.45

2 0.56 18 0.49 34 0.50 50 0.57 66 0.48 82 0.51 98 0.52 114 0.43

3 0.52 19 0.55 35 0.59 51 0.55 67 0.48 83 0.48 99 0.46 115 0.58

4 0.53 20 0.54 36 0.50 52 0.53 68 0.47 84 0.52 100 0.38 116 0.48

5 0.53 21 0.48 37 0.50 53 0.51 69 0.47 85 0.52 101 0.49 117 0.53

6 0.52 22 0.46 38 0.52 54 0.52 70 0.49 86 0.53 102 0.46 118 0.45

7 0.41 23 0.42 39 0.49 55 0.52 71 0.50 87 0.48 103 0.49 119 0.50

8 0.43 24 0.45 40 0.46 56 0.56 72 0.61 88 0.51 104 0.51 120 0.46

9 0.54 25 0.50 41 0.48 57 0.55 73 0.51 89 0.59 105 0.45 121 0.48

10 0.45 26 0.55 42 0.52 58 0.41 74 0.54 90 0.45 106 0.46 122 0.39

11 0.51 27 0.55 43 0.48 59 0.51 75 0.51 91 0.38 107 0.47 123 0.52

12 0.43 28 0.42 44 0.45 60 0.58 76 0.45 92 0.53 108 0.55 124 0.51

13 0.49 29 0.52 45 0.53 61 0.52 77 0.54 93 0.45 109 0.53 125 0.45

14 0.55 30 0.46 46 0.50 62 0.50 78 0.52 94 0.51 110 0.58 126 0.55

15 0.50 31 0.45 47 0.55 63 0.65 79 0.51 95 0.52 111 0.46 127 0.52

16 0.52 32 0.53 48 0.47 64 0.52 80 0.52 96 0.48 112 0.51 128 0.47

Fig. 5. Probabilities of bit change
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The number of files that have passed 
graphical and evaluation tests are presented 
in Fig. 6, 7.

5. 3. 3. Near-collision resistance
To check the degree of resistance to -near 

collision, it is enough for us to conduct ex-
perimental studies using a large number of 
hash patterns. 25 thousand messages were 
randomly generated and their hash digests 
were calculated. The number of all possi-
ble combinations from the resulting set of 
all hash digests of 2 hash digests is equal 
to =2

25000 312,487,500.C  Using the software, 
Hamming distances were calculated for all 
pairs of hash digests, the values of which are 
in the range [0, 256], as well as the minimum 
and maximum Hamming distances, which are 
81 and 175, respectively. By setting 20,=  we 
determined the number of pairs of messages 
with reasonably good Hamming distances:

( ), 148108 309,283,762,�i jM Md ≤ =≤

, 1, ,25,000,i j =   e.g.,98.97( ).5%i j≠

Using this formula, we can determine the 
number of all cases in the given example from 
108 to 148.

5. 4. Software and hardware-software 
implementation of the developed hashing 
algorithm

5. 4. 1. Software implementation of the 
HBC-256 algorithm

The software implementation of the HBC-
256 hashing algorithm is made in the form of 
a data hashing program ISL_HASH 1.0. The 

Fig. 6. Results of graphic tests

60 60 60 60 58 60
55

60

0

20

40

60

N
U

M
BE

R
 O

F 
FI

L
E

S

GRAPHIC TESTS
Histogram of the distrib. of elements Distribution on the plane
Checking the series Checking for monotony
Byte autocorrelation function Bit autocorrelation function
Graphic spectral test Linear complexity profile

Fig. 7. Results of evaluation tests
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Table 6

Plaintext files used in testing the hashing algorithm

File number File type Description

1,2,3 *.docx Microsoft Word document

4,5,6 *.xls Microsoft Excel document

7,8,9 *.pptx Microsoft PowerPoint document

10,11,12 *.pdf Cross platform open format

13,14,15 *.rar Archived RAR document

16,17,18 *.zip Archived ZIP document

19,20,21 *.jpg Graphic document in raster format

22,23,24 *.png Graphic document in raster format

25,26,27 *.gif Graphic document in raster format

28,29,30 *.txt Text file

31,32,33 *.lex Adobe Linguistic Library Data file

34,35,36 *. djvu Graphic and text format document

37,38,39 *.html Web document

40,41,42 *.xml Web document

43,44,45 *.wmz Vector image media file

46,47,48 *.mp3 Sound information document

49,50,51 *.mp4 Sound/video information document

52,53,54 *.cat System file for merging files

55,56,57 *.dll Dynamic Link Library file

58,59,60 *.log Event log file
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program is designed to obtain a hash image of data of arbi-
trary length. The input data is the content of any file stored 
on an external storage medium or text entered through the 
on-screen form. The output is displayed on the screen and 
can be saved as a “*.hash” file. The program is implemented 
in C++. No pre-installation is required to run the program. 
The result of the hash image is displayed as hexadecimal 
numbers.

Fig. 8 shows the working window of the ISL_HASH 
1.0 data hashing program, where the “2015-856.pdf” file is 
hashed using the HBC-256 algorithm.

The following are the main technical characteristics of 
the ISL_HASH 1.0 data hashing program:

– Program type: 32-bit GUI application.
– Product version: 1.0.
– Executable file name: ISL_HASH.EXE.
– Executable file size: 13.5 MB.

5. 4. 2. 1. Hardware-software platform and implemen-
tation technology choice 

The development board MYIR Z-turn was chosen for 
implementation. This board is equipped with a single-chip 
system (hereinafter SoC) Xilinx Zynq XC7Z020, a high-
speed USB OTG interface chip, 1GB RAM, and a 16MB 
NAND Flash memory chip.

The SoC includes:
– Artix-7 field-programmable gate array (hereinafter 

FPGA);
– microprocessor with Cortex A9 core.
The program code of hashing algorithm HBC-256 for 

the Cortex processor was written in the C programming 
language using assembler inserts.

The FPGA design was made using the VHDL technolog-
ical markup language.

5. 4. 2. 2. Working principle of the Product
The Cortex processor is designed to implement the func-

tions of interacting with a PC, supporting the USB interface, 
and controlling the FPGA, on which the hardware-software 
implementation of the HBC-256 algorithm is performed.

Power supply and data exchange with the PC are car-
ried out via the USB interface. Upon initiation, a connec-
tion to the PC is established in the Mass Storage Device 
(MSD) mode. As a drive for storing data, fast RAM is used, 
in which a 512 MB area is allocated for this purpose. The 
Cortex processor continually scans this area of memory 

against the FAT file system for new files. After detecting a 
new file copied by means of the operating system, the pro-
cessor sends data blocks to the FPGA via the internal AXI 
bus using Direct Memory Access (DMA) technology. The 
FPGA, having received the next data block, performs the 
transformation in accordance with the description of the 
HBC-256 algorithm. At the end of the transfer of blocks, 
the central processor reads the result of the hash algorithm 
from the FPGA and creates a new file in the area allocated 
for storing data with a name corresponding to the name of 
the source file, but with the additional extension “hash”. 

Also, additional debugging information 
is written to this file – the size of the 
source file, the number of blocks, the time 
of the hashing operation, and the speed of 
the transformation.

5. 4. 2. 3. Debug board resource sta-
tistics

The Cortex processor operates at 
667 MHz, the FPGA at 150 MHz. The 
final consumption of the board is about 
0.3W. FPGA resources involve 2,370 log-
ical cells, 32 clock cycles for transforming 
one 384-bit block (Table 7).

In Table 7 we can see the hashing speed 
of 5 files of different sizes.

Table 7

Examples of performance research results

Item File size, bytes Execution speed, Mb/s

1 384,000 179.832

2 1,024,000 179.885

3 64,000,000 179.917

4 128,000,000 179.916

5 246,000,000 179.918

6. Discussion of the hash algorithm

6. 1. Discussion of the developed symmetric block 
encryption algorithm

The peculiarity of using block ciphers in hashing algo-
rithms is that the security of a hashing algorithm directly 
depends on the cryptographic strength of the cipher used in 
it. That is, when using strong block encryption algorithms, 
the security of the hashing algorithm is guaranteed. But one 
of the disadvantages of this approach is the reduction in the 
speed of the algorithm. This is because, during the hashing 
process, the round keys are updated each time iteratively, 
depending on the amount of data, i.e. round encryption keys 
are continuously generated. The developed CF encryption 
algorithm uses byte data processing, which improves its 
performance. Alternate execution in one round of linear 
and non-linear transformations, which are the operation of 
adding matrix elements modulo two and the replacement 
table (S-box), provides the diffusion property of the cipher. 
The proposed algorithm is characterized by the following 
features:

1. The number of rounds of the used block cipher is 
reduced, without prejudice to its cryptographic strength, 
in order to increase the performance of the developed hash-
ing algorithm. The non-linearity of the transformations at 

Fig. 8. ISL_HASH 1.0 data hashing program window
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Stage-1 and Stage-3 is ensured by the fact that the S-box is 
executed twice in one round.

2. The structure of the algorithm provides for the simul-
taneous execution of several CF compression functions of 
128-bit length, which, using parallel computing also speeds 
up the hashing process. In this paper, we consider the case 
when k=3, i.e. three 128-bit blocks of hashable data are pro-
cessed simultaneously. With the increase in the technical 
characteristics of the processor, the number of simultaneous-
ly processed blocks can be increased.

3. Instead of traditional 8-bit S-boxes, four 4-bit S-boxes 
are used. Such an original approach gives the algorithm an-
other advantage, which lies in the fact that, depending on the 
arrangement of the matrix elements, the same values of the 
input data take on different values at the output.

6. 2. Discussion of the developed hash algorithm
Typically, the design of a hash function uses the Wide 

Pipe construction to deal with multiple collisions. The 
essence of this construction is to increase the size of the 
internal state, which makes the search for multiple collisions 
resource-intensive. However, this scheme requires addition-
al memory. This shortcoming in the proposed algorithm is 
eliminated by the fact that in one hashing cycle, the CF al-
gorithm is executed k=3 times for different mj, j=0, 1, 2. The 
general scheme of the developed hash algorithm HBC-256 is 
illustrated in Fig. 4. Therefore, the length of the intermedi-
ate hash image w is 128*3 bits. By adjusting the parameter 
k, performance can be improved. The flexibility in optimi-
zation, the possibility of parallel computing in hardware 
implementation and the achievement of an optimal balance 
of resources/performance should also be noted. 

6. 3. Discussion of HBC-256 hash algorithm security 
study

When evaluating the security of any hash function, three 
problems are examined [36]:

1. Preimage search, i.e. the search for the message M 
itself with a known hash digest h(M).

2. The search for a second preimage, i.e. search for a 
message M2 with known M1, with M1≠M2 and h(M1)=H(M2).

3. Collision search, i.e. search for any two messages M1 
and M2 such that M1≠M2 and h(M1)=H(M2).

The listed problems in relation to the HBC-256 algo-
rithm are specified by the following parameters. The length 
of the HBC-256 hash digest is n=256 bits, so the number 
of all possible hash digests is N=2256. For each of the three 
problems, we define k as the minimum number of implemen-
tations with a probability p=0.5. Table 3 presents data on 
the complexity of attacks for each task.

First, we are discussing the analysis of the avalanche effect 
of the CF encryption algorithm. As is known, the range of 
variation of the avalanche parameter lies in the range from 0 
to 1, inclusive. The closer the value of the avalanche parameter 
is to zero, the more the avalanche effect appears in the encryp-
tion algorithm. The experiment (Table 4) showed that 98.5 % 
of the ki values (probabilities) of the considered rounds lie in 
the interval (0.41; 0.59). The average of all changes is equal 
to 49.93 %. Therefore, changing a bit in the input yields about 
50 % changes in the output. The analysis showed that the av-
erage values of the avalanche parameter εα for rounds 1, 2, and 
4 are 0.074, 0.071, and 0.073, respectively. The algorithm’s av-
alanche effect is high even after the first round of encryption. 
For the purity of the experiment, the avalanche criterion was 

used for the analysis after the 8th, 16th, and 24th rounds of en-
cryption and confirmed the necessary degree of propagation 
of the avalanche effect of the CF algorithm.

Next, we are considering the analysis of the avalanche 
effect of the HBC-256 hashing algorithm. We examined the 
hashing results after the 1st, 2nd, 4th, 8th, and 12th rounds. Af-
ter the first round, the avalanche parameter average of 0.66 
was found to be the worst. However, due to the high spread 
of the avalanche effect of the CF algorithm, starting from the 
2nd round of hashing, an acceptable level of bit diffusion is 
observed. In Table 5, it could be seen that the hash function 
after the 1st round does not provide the required degree of 
the avalanche effect. Its values obtained, depending on the 
location of the changed bit, are in the interval (0.594, 0.724), 
which is far from 0. But after the 2nd and subsequent rounds, 
the statistical indicators take almost the same values, i.e. the 
range of their deviation from each other is very narrow. 

The statistical indicators of the avalanche parameter εα 
of the HBC-256 algorithm given in Table 5 give positive 
results in evaluating the effectiveness of the algorithm. 
From Fig. 5, we can conclude that a change in one bit of the 
input data leads to a 50 % change in the 328-bit hash code. 
The χ2 (Chi-square) value of the ki probabilities is 189.49. 
Further, with a confidence value α=0.05 and a degree of 
freedom df=383, the permissible level of agreement with 
the null hypothesis H0 is α= =χ =2

0.05, 383 429.63.df  In our case, 

α= =χ = > χ =2 2
0.05, 383189.49 429.63,df  therefore the obtained re-

sults ki are positive and, accordingly, the hash algorithm 
HBC-256 meets the requirements of the avalanche criterion.

Next, we consider the results of graphical and evaluation 
statistical tests in Fig. 6, 7. During the study, depending on 
the type of file, different results were obtained for different 
tests. From the evaluation of the results, it can be argued 
that the resulting hash digests are statistically secure. Thus, 
the HBC-256 hashing algorithm under consideration has 
good statistical properties.

Here we are discussing the results of the analysis for 
near-collision resistance. As a result, we were able to es-
tablish that the number of pairs of hash digests that have a 
Hamming distance between 108 and 148 is almost 99 % of 
all possible pairs. This means that hash digests are protect-
ed from attack by near collisions. For a near collision, the 
Hamming distance between two messages should be small, 
namely up to 16 bits [37]. According to the results of the 
analysis, the HBC-256 algorithm is resistant to the attack 
associated with near collisions.

6. 4. Discussion of software and hardware-software 
implementation of the developed hashing algorithm

6. 4. 1. Software implementation
To conduct a comparative analysis of the results of the 

developed HBC-256 hashing algorithm, we considered the 
following two hashing algorithms based on block ciphers:

1) The GOST-R 34.11-2012 Streebog cryptographic al-
gorithm for calculating the hash function, which in 2013 was 
adopted as a state standard in the Russian Federation. For 
the analysis, a variant of the algorithm with a hash image 
size of 256 bits was chosen.

2) The MGR cryptographic algorithm for calculating 
the hash function proposed by Indian scientists Khushboo 
Bussi, Dhananjoy Dey, and others [38]. According to the 
authors, this hash function is a modification of the Streetbog 
algorithm, where an AES-like block cipher is used as a com-
pression function. 
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A comparative analysis of the Streebog, MGR, and HBC-
256 algorithms was carried out in terms of their efficiency. 
When testing, all-time measurements were performed on a 
PC with an Intel(R) Core i7-8700 processor with a frequen-
cy of 2.90 GHz and 4 GB RAM.

Table 8 

Efficiency results of hash-functions

File size GOST-R MGR HBC-256 (software implementation)

1 MB 3.34 sec. 1.2 sec. 0.58 sec.

5 MB 16.52 sec. 5.84 sec. 2.98 sec.

10 MB 33.01 sec. 11.50 sec. 5.6 sec.

20 MB 66.13 sec. 22.95 sec. 11.94 sec.

From Table 8, it can be seen that the software implemen-
tation of the HBC-256 algorithm showed the best results in 
terms of performance compared to the Streebog and MGR 
algorithms.

6. 4. 2. Hardware-software implementation (Product)
From Tables 7, 8 we can see that our hardware-software 

implementation of the HBC-256 algorithm showed very 
good results of performance compared to our software im-
plementation.

The hardware-software implementation performed can 
compete with analogs performing hash transformation un-
der existing algorithms. The Product in terms of execution 
speed and the number of FPGA resources is commensurate 
with or surpasses the existing analogs. At the same time, 
since a commercially available, not a tailor-made, debug 
board was chosen as the hardware platform, it is possible to 
improve some parameters of the Product, namely:

– dimensional overall features;
– replacing the SoC with a less functional one (less than 

10 % of FPGA resources are used, one Cortex processor core 
is disabled), which will reduce power consumption;

– optimization and parallelization of hardware imple-
mentation to achieve an optimal balance of FPGA resourc-
es/performance;

– increase the amount of RAM to be able to process 
larger files.

6. 5. Limitations and further theoretical and practical 
studies of the hash algorithm 

In practical use, the developed hashing algorithm does 
not require significant restrictions. The results of the study, 
obtained during the assessment of reliability and speed, 
showed that the developed hash function fully complies 
with the main requirements. It was noted that, taking into 
account modern technological capabilities, the length of the 
hash digest can be increased. With regard to the amount 
of hashed information, the parameter k indicated in Fig. 4 
should be taken into account. The amount of information to 
be hashed should be more than 16(k–1) bytes. In our case, 
for k=3, the amount of hashed information must be at least 
32 bytes. Otherwise, the round keys of the last part are not 
used. Research work in this direction will be continued.

A theoretical study of the four 4-bit S-boxes presented 
in the paper is required. We have considered the first four 
S-boxes with good cryptographic properties indicated in [33]. 
Future studies will analyze the influence of the selected four 
S-boxes on each other since the question of the independence 
of the choice of S-boxes remains open. Since the S-box is the 

only cryptographic primitive that provides non-linearity in 
the algorithm, it should not have any weaknesses.

In the future, in research work, the security of the de-
veloped hashing algorithm should be analyzed at a deeper 
level. It is supposed to carry out a number of cryptographic 
attacks, as well as differential and linear cryptanalysis. The 
results of these studies will be used to improve the proposed 
hashing algorithm.

7. Conclusions 

1. As is commonly known, hash functions are built ac-
cording to an iterative scheme with a number of transforma-
tions performed at each step. The transformations include 
a compressing function, the role of which can be performed 
by a block cipher. To implement such a scheme, the authors 
developed a new CF algorithm. Theoretical and experimen-
tal tests have shown that the algorithm fully complies with 
the basic cryptographic requirements. It is assumed that the 
study of the cryptographic strength of the CF encryption 
algorithm will be continued in subsequent works. 

2. In this paper, we propose a security-oriented hash 
algorithm HBC-256 based on the CF block cipher. The com-
pression function is based on a Merkle-Damgard construct 
using a wide-pipe modification that is not susceptible to 
length expansion attacks. In order to turn the block cipher 
CF into a one-way compression function, the Davies-Meyer 
scheme is applied. The scheme of the algorithm is built in 
such a way as to increase performance through parallel com-
puting by manipulating the parameter k, the number of parts 
from 3 to 8, depending on the amount of hashed data. The 
next stage of work will be a further study of the reliability of 
the proposed HBC-256 algorithm using other cryptanalysis 
methods and collision search attacks. 

3. The hash digest was tested for randomness using the 
NIST and statistical test suite. From the results obtained, 
it was found that the binary sequence generated by the 
proposed algorithm is close to random. The results were 
examined for the presence of an avalanche effect in the CF 
encryption algorithm and the HBC-256 hash algorithm 
itself. Based on the tests and studies carried out, it has been 
found that the CF encryption algorithm, and therefore the 
hashing algorithm itself, is efficient to provide a good ava-
lanche effect. The paper presents the statistical indicators 
of the avalanche parameter εα, which shows acceptable 
results. The resistance of HBC-256 to near collisions has 
been practically tested. Thus, the HBC-256 algorithm is 
resistant to attacks related to near collisions. The reliabil-
ity of the algorithm against various attacks is currently 
being studied.

4. The structure of the algorithm makes it possible to 
increase its performance in hardware-software implementa-
tion. In addition, the algorithm can be efficiently implement-
ed in hardware. 
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