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1. Introduction

In the field of modern motor control, induction motor 
vector control technology has been widely used due to 
its excellent control performance [1]. However, because 
the use of the speed sensor destroys the advantages of the 
induction motor’s simple structure, reliability, low cost 
and convenient maintenance, it also limits its application 
range and reduces the robustness of the system. Therefore, 
speed sensorless control has not only become an important 
research direction of modern AC drive control technology, 
but also a key technology for studying high-performance 
general-purpose inverters [2].

Sensorless vector control has gotten a lot of press re-
cently. The removal of the speed sensor decreases the drive’s 
hardware complexity, size, and cost while also increasing 
its reliability. A high-performance four-quadrant drive that 
can generate controlled torque over the whole speed range is 
required. While the problem has been overcome for medium 
and high speeds, reliable operation and good performance at 
low speeds have yet to be accomplished [3].

With the rapid development of high-performance digital 
signal processors, various speed estimation methods emerge 
endlessly, such as direct calculation method, state equation 
synthesis method, model reference adaptive method [4], 
sliding mode observer method [5], adaptive full-order ob-
server method [6], high-frequency signal injection method 
[7] and extended Kalman filter (EKF) method [8–11], etc.
The speed sensorless technology has high requirements for

measurement parameters. The main problems are poor 
dynamic characteristics, limited adjustment capabilities, 
susceptibility to external environmental interference, and 
jitter in the speed estimation scheme. Furthermore, it can 
decrease the cost and size of the electric drive system by 
eliminating sensors and subsequently improving system 
reliability. 

2. Literature review and problem statement

In recent years, many researchers have used a lot of 
research works on the application of EKF in induction 
motor speed sensorless vector control systems. In [7], 
an EKF-based parameter estimator is used to estimate 
the rotor inductance and mutual inductance. The results 
show that combining the estimation method proposed in 
this paper with other kinds of induction motor control 
methods provides better control results. In [9], the EKF 
method was used to estimate the speed and flux linkage 
in the direct torque control of induction motors. The 
experimental results indicate that the EKF approach has 
a broader velocity range and better output estimation. 
In [11], a third-order EKF algorithm was studied that 
only estimates the flux linkage and speed. It not only ob-
tains the same estimation performance as the traditional 
EKF method, but also significantly reduces the amount of 
calculation. Research shows that the measurement data 
includes noise in the control mechanism of the induction 
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where Isα – stator current in α stationary reference frame, 
A; Isβ – stator current in β stationary reference frame, A; Is, 
Ir – stator and rotor currents, A; φrα , φrβ – rotor alpha-beta 
fluxes, Wb; Vsα – stator voltage in α stationary reference 
frame, V; Vsβ – stator voltage in β stationary reference 
frame, V; Rs, Rr – resistance of stator and rotor windings, 
Ω; Ls, Lr – stator and rotor self-inductance, H; G, u – input 
matrix, known input; w – system noise vector; v – mea-
surement noise vector; H – output matrix; Lm – mutual 
inductance, H; ωr – rotor angular speed, rad/s; tr – rotor 
time constant, s. 
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From the above equations, Δt represents the length of the 
sampling interval. 

motor nonlinear dynamic system, and the statistical 
characteristics of the measurement noise change with the 
actual working environment, so the fixed noise prior mod-
el in EKF does not represent the true noise of the actual 
system operation. In addition, the extended Kalman ob-
server is not affected by voltage DC offset, can effectively 
suppress noise, and has good low-speed performance. It 
is sensitive to changes in motor parameters, especially 
changes in resistance, and has been widely used in motor 
control [12]. 

To improve the performance of a sensorless vector con-
troller, model reference adaptive control (MRAC) is proposed 
in [13]. State variables such as rotor flux and back EMF are 
estimated in a reference model using MRAC methods.

Due to the complex structure of induction motors and 
the unsatisfactory direct control effects, many control strat-
egies have emerged [14]. In [15], adaptive control is the most 
used vector control and direct torque control ideas have 
improved the control performance of the motor [16]. At the 
same time, vector control requires vector transformation 
according to the magnetic pole position to achieve magnetic 
field orientation [17]. Therefore, the accuracy of the mag-
netic pole position directly affects the performance of the 
system [18]. However, the traditional direct torque control 
has an integral link, and the initial value of the integral, the 
position error and the change of the stator resistance will 
affect the accuracy of the flux linkage calculation. In addi-
tion, direct torque control also has the problems of DC bias 
in current measurement and inconstant inverter switching 
frequency [19]. In [20], an effective observer is shown to 
be used to estimate fluxes at external loads. It has a solid 
foundation for overcoming the constraint imposed by the 
coupling of the control and parameter estimation processes. 

At present, the control technology of an asynchronous 
motor has been relatively mature. Traditional direct torque 
and vector control have enhanced the motor’s control perfor-
mance. However, in conventional control strategies, the in-
stallation of sensors, measurement accuracy and errors will 
reduce the reliability of the control system. The sensorless 
measurement technology proposed to solve the above prob-
lems has become a research hotspot in recent years. Among 
them, the Kalman-based estimation method has attracted 
much attention for its good dynamics and robustness.

3. The aim and objectives of the study

The aim of the presented study is to use a new scheme 
based on EKF to estimate the current, flux and speed of an 
induction motor. 

To achieve this aim, the following objectives were set:
– to perform a simulation study to support and evaluate 

the proposed methodology;
– to study the experimental evaluation for the effect of 

the load change on the currents, fluxes and speed estimation.

4. Materials and methods 

In order to use the state estimation for a three-phase in-
duction motor, the discrete model must be obtained. The con-
version is done by Euler transformations. The discrete model of 
the induction motor is shown in the following equation [1, 15].
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4. 1. Linear Kalman filter method
In practical problems, people often only get a series of 

actual measurement values with errors. In order to get the 
ideal result, it is necessary to eliminate the interference 
of the error, separate the estimated value of the required 
physical parameter, and minimize the error of the estimated 
value. This is the basic idea of filtering. Mathematically 
speaking, filtering is a statistical estimation method. The 
best estimate of the required physical parameters can be 
obtained by processing a series of actual measurement data 
with errors. The traditional Kalman filter assumes that the 
estimated process or the relationship between the observed 
variable and the process is linear, and uses a linear stochas-
tic difference equation to describe the state variable of the 
discrete-time process.

The Kalman filter induction motor speed estimation meth-
od is the application of the linear Kalman filter method in non-
linearity. The main idea is to regard the motor motion equation 
as a state equation, and the motor load torque as the extended 
state of the system. According to the voltage and current values 
measured on the stator side (including measurement errors), 
the Kalman filter estimates the motor rotor flux, speed and 
other information. When the system is close to linear but not 
absolutely linear, the Kalman filter can effectively solve the 
nonlinear problem through a series of approximate calculations 
and give a better state estimation. At present, the Kalman filter 
has been widely used in motor parameter estimation, and has 
achieved good results [2–8]. EKF is a random observer based 
on the principle of minimum square error and with feedback 
correction link applied to nonlinear systems. EKF has attract-
ed widespread attention from scholars from all over the world, 
and has been applied to the speed estimation of sensorless 
vector control. This method provides an iterative non-linear 
estimation algorithm, which avoids the differential operation, 
can estimate the system state online, and realize the real-time 
control of the system. EKF is suitable for high-performance 
servo drive systems. It can operate at a wide variety of speeds 
and even complete the calculation of speed at very low speeds. 
It can also estimate related states and certain parameters, 
which is not available in other speed estimation algorithms. The 
statistical nature of its algorithm enables EKF to overcome the 
shortcomings of the uncertainty and non-linearity of the asyn-
chronous motor model, and the estimation performance is supe-
rior, so it has become the focus of research on speed estimation.

4. 2. Proposed model
In a traditional EKF filter, the choice of noise covariance 

matrix R is determined empirically, and it is a constant ma-
trix during the entire iteration. However, when the motor is 
running, the largest variable and the strongest randomness 
is the measurement noise statistics characteristics, and diffi-
cult to accurately obtain.

According to the optimal filtering theory, monitoring 
residuals can determine whether the filter is working in an 
optimal state. The residual is actually the difference between 
the real measured value and the estimated value in the filter 
model. The residual sequence of EKF is

1
ˆ .k k k k kr Y H X −= −  	 (2)

Define the actual variance cr of the residuals as

1
,

o

k
T

r i i
i i

c r r
M =

= ∑ 	 (3)

where cr is the average of the variance of the latest M residual 
vectors; i0=kM+1; M is selected by experience according to 
the specific situation, and it mainly plays a smoothing role.

When the Kalman filter is the optimal filter, the residual 
sequence is 0-mean Gaussian white noise sequence, and the 
theoretical value of the residual variance is defined

( ), 1 1 , 1 1.T T
r k k k k k k k kp H F P F Q H R− − − −= + +  	 (4)

If the measured noise model is accurate enough, the actu-
al value of the residual error should be approximately equal 
to the theoretical value, that is

cr≈pr.	 (5)

The EKF equations are:
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In general, it is possible for the estimates to diverge due to 
the linear approximation of the EKF in which eq.(13) can be 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( 1)
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−
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 × − + + + + + 

where σ –  coefficient of dispersion; Q – process noise co-
variance matrix; R – measurement covariance matrix; P – 
state covariance matrix; K – Kalman gain; X – state matrix;  
Y – measurement of state; Δt – sampling time; F – system 
matrix; δkj – Kronecker delta; Xa, Xb – active group of states, 
passive group of states; Paa, Pbb – state covariance matrix of Xa, 
state covariance matrix of Xb.

In order to apply the extended Kalman filter on an induc-
tion motor, we have to define the state transition equations 
of the induction motor as follows [19].

Y(k)=h(x(k),k)+V(k),		  (13)

X(k+1)=f(x(k),U(k),k)+W(k),			   (14)
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where k, U(k), Y(k) are the state vector, the stator voltage 
space vector and the output vector.

X(k)=〖[Isα(k)Isβ(k)φrα(k)φrβ(k)ωr(k)]〗T,		  (15)

U(k)=〖[Vsα(k)Vsβ(k)]〗T,		  (16)

Y(k)=〖[Isα(k)Isβ(k)]〗T,		  (17)

where W(k) and V(k) represent the measurement weight and 
voltage vectors, respectively. 

F=├∂/∂Xf(X(k),U(k))┤|_(X(k)),	 (18)

G=├∂/∂Uf(X(k),U(k))┤|_(X(k),U(k)),	 (19)

where F is the Jacobian matrix of the plant due to states and 
G is the Jacobian matrix of the plant due to inputs.

5. Results of research for fluxes, currents and speed 
estimation of an induction motor based on EKF 

The proposed algorithm has been verified through many 
experimental and simulation results using MATLAB software.

5. 1. Estimation results of the flux, current and speed 
of an induction motor

In order to apply the proposed method for estimating 
the flux, current and speed of an induction motor, the val-
ues shown in Table 1 have been relied upon. The proposed 
scheme was tested on a three-phase induction motor with 
the parameter values shown in Table 1.

The first simulation results present the estimated and 
actual speed of the rotor of an induction motor at full load 
as shown in Fig. 1.

Fig. 1 shows that there is a significant similarity between 
the actual speed and the estimated speed and the error per-
centage (Er) does not exceed 0.03 % in the steady state as 
shown in Fig. 2. Where

Actual�value Estimated�value
*100�%.

Actual�value
Er

−
=

Table 1

Parameters of induction motor

Parameter Value

Prated 1.12 kW

VN 380 V

IN 2.7 A

FN 50 Hz

Tl 7.5 N⋅m
J 0.02 kg⋅m2

nN 1415 r/min

Rs 5.275 Ω
Rr 5.075 Ω
Lm 0.425 H

Ls 0.425 H

Lr 0.485 H

σLs 0.05 H

P (pole pair) 2

Δt (sec) 50*10-6

As it can be observed from Fig. 3, 4, the values of esti-
mated and actual rotor flux at full load are very similar and 
the error percentage is less than 0.1 % in the steady state.

Fig. 5, 6 depict the stator alpha and beta currents at full 
load, respectively. It can be seen that the estimated and 
actual values are identical and the error percentages in both 
cases are around 0.1 % in the steady state.

The electromechanical torque and load torque are pre-
sented in Fig. 7. The electromagnetic torque is capable of 
generating a full load torque of 7.5 N⋅m in the steady state.

Estimates of the five states of the induction motor 
were also studied when changing the motor load. Fig. 8 
shows the change in the motor load, where at first the 
load torque at a rated value of 7.5 N⋅m is applied, then 
the load was gradually reduced to 50 % (3.75 N⋅m), then 
to 25 % (1.875 N⋅m), then to the no-load case and finally 
back to the full load condition.

Fig. 9 shows that the electromagnetic torque represented 
by a dashed line is able to supply the motor with the required 
torque at different loads and the transit period is very little 
approx 0.1 seconds at each load change.

 
  Fig. 1. Estimated and actual rotor speed
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Fig. 2. Error percentage of the estimated speed of the induction motor at full load
 

 
 

  Fig. 3. Estimated and actual rotor flux beta
 

 
 

  Fig. 4. Estimated and actual rotor flux alpha
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There is an identity between the actual rotor speed and the 
estimated speed as shown in Fig. 10 at different loads with a 
very small error percentage that does not exceed 0.07 % caused 
by the system noise and measurement. The speeds reached 
1485 rpm in the no-load case (the period 8–10 sec) of the induc�-
tion motor because of the rotation losses and friction. The rotor 
speed is inversely proportional to the load on the induction 

motor while the motor speed is 1410 rpm at full load, 1468 rpm 
and 1450 rpm at 25 % and 50 % of full load, respectively.

Fig. 11 presents the actual current beta and the esti-
mated current beta at variable loads of the induction mo-
tor. It can be seen that the estimated and actual values are 
identical and the error percentage does not exceed 0.01 % 
in the steady state.

 

 
  

Fig. 5. Estimated and actual rotor current alpha
 

 
  

Fig. 6. Estimated and actual rotor current beta

 

 
  

Fig. 7. Electromechanical and load torque of induction motor
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Fig. 12 depicts the actual and estimated flux beta at 
variable loads of the induction motor. It can be seen that the 

estimated and actual values are identical and the error per-
centage does not exceed 0.1 % in the steady state.

 

 
  

Fig. 8. Change in the load torques applied to the induction motor
 

 
  

Fig. 9. Electromagnetic torque and variable load torque applied to the motor 

 
  

Fig. 10. Actual and estimated rotor speed at variable motor loads
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Fig. 10–12 show the significance of the proposed 
method for estimating the states of the induction motor, 
especially at light loads and no-load conditions. It is 
very obvious that EKF successfully estimates the speed, 
current and flux of the induction motor in each period of 
load change.

5. 2. Experimental results
The EKF method has been experimentally eval-

uated for a squirrel cage induction motor. The motor 
rating is 380 V, 4 pole, 50 Hz, 1410 rpm, and 1.1 kW 
as shown in Table 1. The experimental study was 
carried out at full load conditions. In the beginning, 
the three-phase voltages and three-phase currents 
were converted to alpha-beta components by Clark’s 
transformations. The process started with using 
alpha-beta data that were entered into the EKF, 
which in turn works to estimate the five states of the 
induction motor.

Fig. 13 presents the experimental results of the es-
timated rotor speed of an induction motor at full load. 
The rated speed is 1410 rpm, and the estimated error 
percentage is 0.5 % in the steady state. However, they 
vary a bit from the actual speed, and this could be the re-

sult of motor parameters that are not optimum and temperature 
changes. 

Fig. 14, 15 present the experimental estimated alpha and 
beta currents components, respectively, at full load. It is also 
depicted that the peak value of the current is 3.5 A. 

 

 
  

Fig. 11. Actual current beta and estimated current beta at variable loads of the induction motor
 

 
  

Fig. 12. Actual flux beta and estimated flux beta at variable motor loads 

 

 
  

Fig. 13. Estimated and actual rotor speed experimentally
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Furthermore, Fig. 16, 17 present the experimental 
estimated alpha and beta flux components, respectively, 

at full load. It is also depicted that the peak value of the 
current is 0.92 W.

 

 
  

Fig. 14. Estimated flux beta components experimentally
 

 
  Fig. 15. Estimated current alpha components experimentally

 

 
  

Fig. 16. Estimated flux alpha components experimentally
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Fig. 18 shows the estimated torque under full load ex-
perimentally. 

It can be seen from Fig. 18 that the estimated values have 
fluctuations due to the change of the motor temperatures 
and other varying factors where the error percentage of the 
estimation value is 6 % in the steady state.

6. Discussion of the estimation and experimental results

To implement the proposed method for the state esti-
mation of an induction motor, experimental and simulation 
studies are presented based on EKF by using Matlab/Sim-
ulink. The results demonstrate that the proposed method is 
highly promising, and the estimated values are essentially 

accurate. Furthermore, the simulation results show that the 
EKF is an effective method. Except in the transient area, 

where the inaccuracy is fairly minor, as illustrated 
in Fig. 2, the anticipated speed is nearly identical 
to the actual one. The greatest percentage of this 
error is 0.15 % in the steady state due to the IM 
model and system noise as illustrated in Fig. 11.

In the variable speed zone of operation, state 
estimation significantly increases the performance 
of the rotor flux-based model reference adaptive 
system. To estimate the rotor speed, the technique 
employs a Kalman filter as a rotor flux observer ad-
aptation mechanism. Only the stator voltages and 
currents must be measured for state estimation. 

The results show an acceptable superposition 
between speed values, however, it is clear from 
Fig. 10 that the proposed method has better esti-
mation and more precise accuracy between speed 
values than the results in [14]. All these remarks 
can be confirmed from the estimation errors shown 
in Fig. 2. Furthermore, one of the limitations of the 
proposed method is that in the sensorless vector 
control mode, this estimator may not be able to 
give flux information for motor initiation. 

7. Conclusions

1. The proposed structure has been presented 
to improve the performance of the EKF. Indeed, to 
estimate the rotor flux and speed of an induction 
motor, the rotor flux observer and speed observer 
were described. For input signals, the EKF observ-
er simply needs the stator voltages and currents of 
an induction motor. Following the rotor flux and 
speed from the induction motor model, the KF 
observer is successfully employed to estimate the 
rotor flux and speed of the induction motor. The 
simulation results show that the EKF observer 
can accurately predict rotor flux and speed. The 
current estimation Er value was 0.001, whereas 
the flux estimation Er value was less than 0.1 % 
and the Er value was less than 0.07 % for speed 
estimation.

2. The results show that the traditional observer meth-
ods show sensitivity and errors in different speed tests, 
while the EKF has kept its good accuracy and response. 
Furthermore, the validation study for the proposed method 
showed the effectiveness of the EKF and good accuracy for 
all estimated values.
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Fig. 17. Estimated flux beta components experimentally

 

 
  

Fig. 18. Estimated motor torque experimentally
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