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1. Introduction

Recently, big data processing methods and machine learn-
ing algorithms have been widely used in all branches of science 
and industry. Oil company researchers are trying to find new 
solutions to improve the efficiency of oil production. Many 
fields have modern automated control systems from which 
a huge amount of data is received (various parameters of oil 
production). This amount of data cannot be analyzed and eval-
uated manually. Therefore, all over the world there is a ques-
tion of using modern methods to improve the efficiency of oil 
production, such as machine learning and big data processing 
methods. Such approaches can significantly increase the recov-
ery factor with minimal costs, optimize and reduce the cost 
of the technological process. From an economic point of view, 
most investments in oil fields are spent on obtaining as much 
information about the reservoir as possible. Therefore, the es-
timation of the expected oil production is an important aspect 
for planning the further development of oil fields. In this regard, 
the oil industry is in great demand for approaches related to the 

processing of big data, machine learning approaches, and the 
development of artificial intelligence algorithms.

Currently, the application of different methods of ma-
chine learning in the oil and gas industry is becoming rele-
vant. The data-driven approach makes it possible to build ex-
cellent oil prediction models to increase oil recovery. There 
is a lot of research related to increasing oil production using 
machine learning methods. In [1], the authors found out that 
the application of machine learning (ML) algorithms may 
turn out to be more productive in comparison with tradi-
tional calculations on a regular grid. The researchers of [2] 
described an approach to creating a proxy model based on 
machine learning methods, in particular, the random forest 
method was used. The authors reviewed two synthetic ex-
amples that used a reservoir simulation model to represent 
the true reservoir to generate production data for history 
matching and predict future reservoir performance.

The authors of [3] investigated the application of artifi-
cial intelligence methods to predict the performance evalu-
ation of a polymer flooding operation. The proposed model of 
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provided by a Russian oil company. The authors tested and 
analyzed the GradientBoosting and Random Forest models 
to estimate the expected final oil recovery factor. The authors 
of this study came to the conclusion that some groups of res-
ervoirs have a strong dependence, which is characterized by 
higher porosity, permeability, and a difference in the geologi-
cal age of the rock. Models of pre-production and post-produc-
tion phases are considered. The authors found that the accura-
cy of the pre-production phase model is relatively low for the 
entire dataset. And also, it was revealed that the oil recovery 
factor significantly depends on the field development scheme 
and its efficiency. Therefore, one of the weighty reasons for the 
poor prediction of the model is the lack of complete data on the 
distributed parameters in the reservoir.

The work [9] considers machine learning algorithms for 
estimating the oil production rate using reservoir engineer-
ing parameters. The dataset was collected from 93 fields 
on the Norwegian continental shelf with 30 parameters for 
each reservoir. The authors of this study trained the model 
using linear regression and support vector machines. Thus, 
the authors of this work assume that the methods they have 
considered can be used to estimate the recovery factor for 
fields at the stages of appraisal and production. Analysis of 
the results of this work on the prediction of the oil recovery 
factor shows that the application of linear regression in 
choosing the most influential input parameters compared to 
the support vector machine algorithm is inefficient.

The authors of [10] considered the applicability of var-
ious machine learning methods for predicting some rock 
properties. As these properties, the authors chose porosity, 
absolute permeability and mass concentration of salts. The 
dataset was formulated from over 100 laboratory experi-
ments. The authors found that the support vector machine 
algorithms and the two-layer neural network algorithms are 
the best algorithms for predicting porosity and permeability 
in their experiment. However, other algorithms considered 
by the authors predicted the data well only in some cases. In 
another paper [11], the authors reviewed the application of 
artificial intelligence algorithms to estimate the oil recov-
ery factor from water drive sand reservoirs. The artificial 
intelligence was trained from data from 130 sand reservoirs, 
and data from another 38 reservoirs were used for testing. In 
this study, the authors used 10 parameters to estimate the oil 
recovery factor using four artificial intelligence algorithms: 
ANN, radial basis neural networks, adaptive neuro-fuzzy 
inference system and SVM. It was found that the ANN 
model had a low deviation compared to other considered al-
gorithms, which were trained quite well, however, when pre-
dicting test data, the coefficient of determination decreased.

The authors of [12] examined various machine learning 
methods for predicting downhole pressure, oil production, and 
predicting water cut in production tasks. The dataset in this 
study was generated using the ECLIPSE reservoir simulator. 
The authors applied ten different machine learning methods 
and took into account the effects of multiphase flow and data 
noise. In their study, ridge regression and support vector 
machines performed best at all noise levels. However, when 
predicting oil production, the ridge regression was less able to 
cope with water cut fluctuations compared to the performance 
of support vector regression. In addition, there are several 
works related to the application of machine learning methods 
for processing data from permanent downhole gauges (PDG). 
The authors of [13] used a simple core and approaches to data 
analysis based on the convolutional core method for inter-

the authors was tested using MLP, RBF and ANFIS neural 
networks. The authors of this study chose the main param-
eters of polymer flooding as input parameters of the neural 
network. The only MLP output parameter was oil recovery 
factor via polymer flooding. Thus, the authors of this work 
found that such parameters of polymer flooding as API gravi-
ty, salinity, permeability, porosity and salt concentration have 
the greatest effect on the characteristics of polymer flooding.

The study [4] considered the use of artificial neural 
network (ANN) to predict oil recovery and CO2 storage 
capacity in the ROZs. The training dataset in this study was 
generated using geological factors and well operations. The 
dataset was collected from 351 numerical simulations jobs 
for the spatiotemporal database. The proposed data-driven 
model was applied to five ROZs fields in the Permian Basin 
as a real field application. The authors found that their ANN 
models provide excellent oil recovery predictions that are in 
excellent agreement with reports from [5].

The application of ML methods for predicting the oil 
recovery factor is a necessary part of field development 
planning. Therefore, research on the development of oil pro-
duction using various effective methods of machine learning 
in the oil and gas industry is relevant. 

2. Literature review and problem statement

The authors of the study [6] presented the application of 
machine learning in enhanced oil recovery (EOR) screening. 
A large database has been compiled from various surveys in-
cluding over 1,000 experiences from worldwide enhanced oil 
recovery projects. The authors reviewed a variety of machine 
learning methods and deep artificial neural networks to 
predict the appropriate category of candidate enhanced oil 
recovery methods, where RF Deep ANN models performed 
best with an average accuracy of 90 %. The authors of the 
paper concluded that ML provides a very good indication of 
the primary screening for EOR, but this should not be con-
sidered the only predictive method. The analysis of this work 
shows that the screening of enhanced oil recovery methods 
using machine learning methods has several problems: lack 
of sufficient data for generalized learning, unbalanced noisy 
data, and insufficient input characteristics. These parame-
ters can significantly affect the results.

The authors of [7] have defined the performance of oil 
wells using an artificial neural network. In this study, the 
authors applied ANN and Least Squares Support Vector 
Machines (LSSVM) to calculate shape-related skin factor 
or pseudoskin factor in horizontal wells. The authors found 
that the developed LSSVM approach gives the closest match 
to real data among the techniques of artificial neural net-
works. It is also suggested that the model proposed in this 
paper can reach petroleum engineers determine the optimal 
well location using the reverse engineering concept. The 
authors mentioned the efficiency of horizontal wells from the 
point of view of technical and economic perspectives, howev-
er, the authors found that the common studies conducted to 
accurately calculate this parameter have some inherent con-
straints and drew attention to numerical intelligent models. 

The study [8] presented a data-driven methodology for 
estimating the oil recovery factor using reservoir parameters 
and statistics. The authors reviewed two datasets: 56 param-
eters from the TORIS dataset that contains a description 
of 1,381 USA oil fields and 199 parameters from a dataset 
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preting data from permanent downhole gauges. These PDGs 
have noise due to the dynamics of the processes occurring in 
the well. The authors have dedicated this work to develop-
ing robust methods for processing big data from permanent 
downhole gauges. The authors divided the application of the 
algorithm into two stages: where the pressure data and flow 
rate from the PDG were used for training, and in the second 
stage, the algorithm predicts pressures depending on the flow 
rate.  In this work, the convolutional kernel-based method was 
trained until the algorithm converged. The authors showed 
that the convolutional core method perfectly removes noise, 
but it turned out that this algorithm works very slowly. In the 
subsequent paper [14] by the same authors, a method for ana-
lyzing PDG data in the presence of significant data noise, out-
liers, and gaps was considered. The convolution kernel method 
was tested with data where there were significant outliers and 
aberrant segments and unknown pressure. As a result, with an 
incomplete history of oil production, the method could iden-
tify a reservoir model with an effective flow rate and find the 
initial pressure. The authors of [15] also examined the appli-
cation of machine learning methods for interpreting pressure, 
flow rate, and temperature data from permanent downhole 
gauges. In this paper, three ML methods were applied: linear 
regression (LR), core method and ridge core regression. In 
addition, the authors showed that ML can simulate the gen-
erated data from the PDG, even when the physical model is 
complex. The authors found that when predicting reservoir 
pressure, the kernel method overfits due to high variance and 
predicts poorly compared to linear regression and kernel ridge 
regression due to a lack of interpretability property.

The authors of [16] built an ANN that predicts the pro-
ductivity of wells using their own history. However, the study 
results do not claim that ANN prediction is a substitute for 
empirical or numerical simulation for predicting well produc-
tion. The authors propose applying ANN prediction to provide 
confidence in data-driven prediction methods. Moreover, there 
is another work in which machine learning methods were built 
to predict Montney and Duvernay well production [17]. The 
authors found that of the several machine learning methods 
examined, random forest was the most accurate for their task. 
This method gave the authors higher prediction accuracy due 
to the absence of over-fitting problems.

Unlike other works, in this paper, regression algorithms 
were applied to a synthetic dataset that was manually generat-
ed with different values of the parameters (viscosity, porosity 
and permeability) of oil production in a mathematical model 
of Buckley-Leverett, which is used to calculate the hydro-
dynamics and determine the distribution of saturation in oil 
problems. Thus, various scenarios are considered for the influ-
ence of the characteristics used on the oil recovery 
factor to improve the efficiency of oil production. The 
development of an algorithm for predicting the oil 
recovery factor with high accuracy using regression 
algorithms on synthetic data is promising, because 
using a mathematical model, it is possible to interpret 
the simulation of various reservoirs with the tuning 
sets of oil parameters to estimate oil production in the 
initial stage of fields. 

3. The aim and objectives of the study

The aim of this study is to develop an algorithm 
for predicting the oil recovery factor with high ac-

curacy using regression algorithms for synthetic data. This 
will make it possible to predict and improve the efficiency of 
oil recovery factor with regression algorithms.

To achieve this aim, it is necessary to solve the following 
objectives:

– to generate synthetic data using an ensemble scenario 
method based on the numerical 2D Buckley-Leverett model;

– to implement predicting the oil recovery factor using 
machine learning methods such as multiple linear regression 
and polynomial regression;

– to evaluate the quality of machine learning algorithms 
in order to determine the best regression model.

4. Materials and methods

4. 1. The Buckley-Leverett model 
The Buckley-Leverett model is written as follows:
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where K0 – permeability tensor, s – water saturation, 
qi – source or sink, fi, μi – relative phase permeabilities and 
viscosities of liquids of the corresponding phases, which are 
dependences of the following form:

( ) = 3.5
1 ;f s s  ( ) ( )= − 3.5

2 1 .f s s 			   (4)

The developed numerical model was run many times at 
different values of viscosity, porosity, absolute permeability to 
calculate the oil recovery factor, creating various scenarios for 
further application of ML methods to the data. To observe the 
change in the value of the oil recovery factor, the time iteration 
parameter for each pair was also recorded in the output data.

4. 2. Workflow of building a machine learning model
In this work, the obtained synthetic data from a mathe-

matical model were divided into a training and test sample. 
Four parameters were taken as input parameters of the 
machine learning model, and the oil recovery factor was 
taken as the output parameter. Fig. 1 describes the process of 
building a machine learning model in this study.

 

 
  

Fig. 1. Workflow of building a machine learning model
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In this paper, we consider the task of supervised learning, 
which is one class of machine learning problems. Our task 
belongs to the class of regression problems in terms of ma-
chine learning methods. A synthetic data set was obtained 
from a mathematical model: absolute permeability k, poros-
ity p, viscosity μ, time iteration t and oil recovery factor η. 
In our case, the oil recovery factor is represented as the 
objective function y, and the other four data are presented 
as signs of x.

 
 
 =  µ 
  

( ) ,

i

i
i

i

i

k

p
x

t

 

= 1,..., ,i m 			     (5)

where x(i) is the sign of the ith training example.

= η( ) ( ),i iy  = 1,..., ,i m 			     (6)

where k(i), p(i), μ(i) and t(i) are absolute permeability, poros-
ity, viscosity, temporary iteration on ith data, and m is the 
number of training examples (training example m=403440). 
Thus, x is an (nx+1)×m matrix, and the objective function 
y is an m×1 vector. The regression model can be written as 
follows: 

( )= + ε( ) ( ) ( ),i i iy h x  = 1,..., ,i m 			   (7)

where model h describes a pattern between x and y, and εi is 
a model error and measures some discrepancies. Consider the 
subgenus about methods.

4. 3. Multiple linear regression 
In multiple linear regression, the hypothesis function h is 

described as follows:
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x x

T
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where nx is the number of features, in our case, nx=4 given 
from (5). θ is a (nx+1)×1 vector with model parameters (co-
efficients). The parameter θ0 corresponds to x0=1. (8) can be 
written as follows:
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To evaluate regression models, a quadratic loss function 
is often chosen. A coefficient of determination R2 was also 
used to evaluate the results, which provides a measure of 
how well the observed results are reproduced by the model, 
based on the proportion of the total variation in the results 
explained by the model. The mean square error (MSE) is 
often used as an estimate of the loss function between the 
target and the predicted function:
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Using linear regression, the model was trained with four 
input parameters and oil recovery factor. As a result, the 
trained model predicts the value of the oil recovery factor 
based on test data. Although multiple linear regression is 

very simple, the model has several good advantages. The 
linear regression model frees the engineer from the need 
for good physics knowledge in this study. This model is 
well-trained and highly interpreted, since all independent 
variables of multiple regression directly affect the target 
function. Consequently, the influence of input parameters is 
easily detected and visualized.

4. 4. Polynomial regression method
Polynomial regression is essentially a type of regression 

in which the ratio of the independent features of x and the 
dependent objective function y is modeled as a polynomial 
of n-th degree:

( )θ = θ + θ + θ + + θ2
0 1 2 ... ,n

nh x x x x
 

= 1,..., ,i n 	 (11)

where n is the degree of the polynomial that is used to transform 
the linear regression model. Polynomial regression may have a 
non-linear curve, but the model is still considered linear, since 
the model parameters associated with the attributes are linear.

Regression models are used to solve over-fitting prob-
lems in regression models. A regression model that uses L1 
regularization is called Lasso Regression, and a model that 
uses L2 is called Ridge Regression. The regularization of L2 
adds the coefficient of quadratic magnitude to the loss func-
tion and is presented in the following form:

= = =
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where λ is a setting parameter. A well-chosen value of param-
eter λ helps to avoid the problem of over-fitting. A regular-
ization of L1 adds the absolute value of magnitude to the loss 
function and is presented in the following form:

= = =
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In this paper, polynomial regression (PR) is used as a 
modification of multiple linear regression. The use of poly-
nomial regression makes it possible to increase the degree 
of the polynomial n, which in turn improves the multiple 
linear regression by adding non-linearity to the data. 
However, in many cases this is not a guarantee that as the 
degree of the polynomial increases, the model under consid-
eration will learn even better. Because there are problems 
with under-fitting and over-fitting. To select the optimal 
model, it is necessary to find a compromise between bias 
and dispersion. 

5. Results of the study of machine learning methods

5. 1. Dataset generation
The dataset is generated synthetically using an ensem-

ble of scenarios based on the Buckley-Leverett 2D model. 
As input parameters, various combinations of parameters 
of the oil production problem (porosity, viscosity of the oil 
phase and absolute rock permeability, time iteration) were 
taken (Table 1). And as the output parameter, the value of 
the oil recovery factor was chosen. Thus, in this work, the 
number of sample pairs is 41*41*6=10,086. Using the Buck-
ley-Leverett model, 6 synthetic data packets were generated 
for various permeability indices. Each data packet contains 
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the values of viscosity, porosity and oil recovery factor (if 
we take into account the data for each time layer, then the 
total amount of data is 403,440). Oil viscosity varies in the 
range 0.1–0.5, porosity in the range 0.1–0.3, and various 
permeability options.

Table 1

Input parameters

Parameters Number of variation

Porosity 41

Viscosity of oil phase 41

Permeability 6

Time iteration 40

The data was divided into a training and test set. For 
training, 8,069 sets (80 %) of the total data were used, and 
for the test the remaining 2,017 pairs (20 %). Python was 
chosen as the runtime environment for machine learning. 
As mentioned earlier, the total number of sample pairs is 
10,086 models. Each sample pair consists of 40 oil recovery 
factor values. 

5. 2. Results of the machine learning methods
The following are the results of predicting multiple 

linear regression and polynomial regression. As mentioned 
earlier, the total number of sample pairs is over 10,000. 
However, the results will be shown for some sample pairs. 
Fig. 2 shows the results of one test sample pair for the linear 
and quadratic polynomial regression method.

Using polynomial regression (PR) increases the com-
plexity of the model. For training with polynomial prop-
erties, it is important to choose the desired model, that 
is, the degree of the polynomial. Increasing and also 
modifying the degree of the model to cubic polynomial 
regression with the L1 regularization gives the following 
results (Fig. 3).

To improve the cubic model, an L1 type regularization 
with the optimal value of λ was applied. The following fig-
ure shows cubic polynomial regression for other test data 
pairs (Fig. 4).

 

 

 

a

b	
	

Fig. 2. Predictions of oil recovery factor on regression 
models: a – linear regression; b – quadratic polynomial 

regression

 

 

 

 
a b

Fig. 3. Predictions of oil recovery factor on regression models: a – cubic polynomial regression; 	
b – cubic polynomial regression with L1 regularization
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As can be seen from the tested results, as the degree 
of the polynomial increases, the model captures more 
data and predicts better than linear regression. The ad-
dition of L1 type regularization to the cubic polynomial 
regression is motivated by the fact that in most test data, 
the coefficient of determination decreases, this is due to 
over-fitting. However, in some cases where the oil recov-
ery factor is small, the model predicts very closely with 
the test results.

5. 3. Evaluation of the quality of machine learning 
algorithms

The mean square error (MSE) and the coefficient of 
determination R2 were used to evaluate machine learning 
regression methods. The following Table 2 shows the average 
MSE score for all 20 % of the test sets.

The following Table 3 shows the average R2 score for 
80 % of training sets and 20 % of test sets.

From Table 3, it is noticeable that cubic polynomial re-
gression is trained fairly well with the training set, but the 
determination coefficient R2 on test data decreases due to 
the high dispersion between the data sets at degree=3.

Table 2

MSE score for all test case pairs

Machine learning algorithms
Test sets 

(20 %) MSE

LR 0.0037

Polynomial Regression (PR) degree=2 0.0016

Polynomial Regression (PR) degree=3 0.0084

Polynomial Regression (PR) degree=3 with L1 0.0033

Table 3

Evaluation of R2 for all pairs of training and test set

Machine learning 
algorithms

Train sets (80 %) R2 Test sets (20 %) R2

LR 0.87 0.91

PR degree=2 0.95 0.96

PR degree=3 0.97 0.79

PR degree=3 with L1 0.96 0.92

6. Discussion of the regression algorithms results 

From Fig. 2, we can see that the predicted LR function does 
not capture all patterns in the data. Consequently, the multiple 
linear regression model has an example of under-fitting. More-
over, it is clear that the quadratic polynomial model trains data 
better than a linear model. This is evidenced by the MSE esti-
mates, where the error of the quadratic polynomial regression 
is reduced. In addition, it can be noted that the determination 
coefficient R2 has increased compared to the linear model.

It is noticeable that a cubic polynomial model predicts data 
worse than a quadratic model (Fig. 3). Moreover, the deter-
mination coefficient R2 decreased compared to the quadratic 
model. Even adding L1 regularization did not improve the 
cubic model that much. Thus, the quadratic model is the most 
optimal for this test pair. However, this pattern is true only for 
this pair. For the remaining pairs from the entire test sample, 
the results may be different. For example, this is illustrated in 
Fig. 4 where the cubic model trains much better and predicts 
very closely with the test data in both cases. This is because the 
polynomial cubic model in our case has over-fitting due to its 
high variance. By applying L1 regularization, the cubic poly-
nomial model predicts the function for all test data rather well 
than the simple cubic model. This can be seen from Table 3.

A feature of the considered methods is the use of regres-
sion algorithms for the generated data, which were obtained 
from the launches of the implementation of the Buckley-Le-
verett mathematical model using an ensemble of scenarios.

This paper discusses a data-driven approach that can 
perfectly predict the output parameter using big data, how-
ever, the slight disadvantage of this method is the difficulty 
of interpretation. Therefore, in the future, for the devel-
opment of this study, there is a motivation to consider the 
direction of scientific machine learning based on physical 
modeling, which takes into account physics. In the following 
works, it is planned to conduct research in the direction of 
physics-informed neural networks (PINN) for solving prob-
lems of fluid flow in a porous medium.

7. Conclusions

1. The dataset was generated synthetically using the 
scenario ensemble method from the Buckley-Leverett 

 

 

 

 
b 
 

Fig. 4. Predictions of oil recovery factor on regression models 
for other test data pairs: a – cubic polynomial regression; 	

b – cubic polynomial regression with L1 regularization

a
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mathematical model, where for different oil input parame-
ters (41 viscosity and porosity values, 6 permeability types, 
40 time iteration of mathematical model values) different 
output values of the oil recovery factor were obtained. More 
than 400,000 synthetic datasets were used to train regres-
sion methods.

2. Multiple linear regression was implemented to pre-
dict the oil recovery factor. The average R2 coefficient of 
determination LR for all test samples was 0.91, which is 
a good result. However, for some test data pairs, there are 
examples of under-fitting, which affects the prediction of the 
model. Therefore, different degrees of polynomial regression 
are implemented and tested to improve the linear model. 
Quadratic and cubic polynomial regression models with 
modified L1 type regularization were implemented, thereby 
improving the R2 score to 0.96 for all test pairs of the sample.

3. To evaluate the quality of the considered regression 
methods, the metrics mean squared error and the coeffi-
cient of determination R2 were used. It was found that for 
some test pairs where the recovery factor is small, the cubic 
model at 0.98 accurately predicts with respect to the test 
data. However, for our synthetic data, quadratic polynomial 
regression is the best model for predicting the oil recovery 
factor for all test pairs. In future works, it is planned to add 
noise in the form of practical data from real oil fields.
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