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Optimization is now considered a branch of computational science. 
This ethos seeks to answer the question «what is best?» by looking at 
problems where the quality of any answer can be expressed numerically. 
One of the most well-known methods for solving nonlinear, unrestric
ted optimization problems is the conjugate gradient (CG) method. The 
Hestenes and Stiefel (HS-CG) formula is one of the century’s oldest 
and most effective formulas. When using an exact line search, the HS 
method achieves global convergence; however, this is not guaranteed 
when using an inexact line search (ILS). Furthermore, the HS method 
does not always satisfy the descent property. The goal of this work is to 
create a new (modified) formula by reformulating the classic parame-
ter HS-CG and adding a new term to the classic HS-CG formula. It is 
critical that the proposed method generates sufficient descent proper-
ty (SDP) search direction with Wolfe-Powell line (sWPLS) search at 
every iteration, and that global convergence property (GCP) for gene
ral non-convex functions can be guaranteed. Using the inexact sWPLS, 
the modified HS-CG (mHS-CG) method has SDP property regardless 
of line search type and guarantees GCP. When using an sWPLS, the 
modified formula has the advantage of keeping the modified scalar non- 
negative sWPLS. This paper is significant in that it quantifies how much 
better the new modification of the HS performance is when compared 
to standard HS methods. As a result, numerical experiments between 
the mHSCG method using the sWPL search and the standard HS opti-
mization problem show that the CG method with the mHSCG conjugate 
parameter is more robust and effective than the CG method without  
the mHSCG parameter
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1. Introduction

The CG method is one of the most popular methods for solv-
ing nonlinear unconstrained optimization problems. This me
thod class has a wide range of applications, particularly in the de-
sign, construction, and maintenance of any engineering system.  
Engineers must make numerous technological and managerial 
decisions at various stages. The ultimate goal of all such de-
cisions is to either minimize the amount of effort required or 
maximize the desired benefit. Because the effort required or the  
benefit desired in any practical situation can be expressed as 
a function of a decision variable, optimization can be defined 
as the process of determining the conditions under which the 
maximum or minimum value of a function can be found. The 
HSCG formula is widely regarded as one of the most effective 
methods devised during the twentieth century. If the descent 
condition is not met, the HS parameter may fail to satisfy the 
CGP of the CG method with the sWPLS. This method class 
has a wide range of applications, most notably in engineering.

2. Literature review and problem statement

In 1952, HS proposed a CG algorithm for solving symmet-
ric positive definite systems of equations [1], while in 1964, 
FR [2] presented a nonlinear conjugate gradient method for 
solving unconstrained optimization problems based on the 
linear conjugate gradient method. Many researchers have ex-

pressed an interest in developing the HS formula to improve 
algorithm performance while ensuring that the proposed 
method meets the SDP and CGP. As a result, [3] developed  
a new formula to ensure that the conjugation condition is met. 
To demonstrate that the proposed formula is very efficient 
with any line search, [4] proposed a modified three-term  
HS-CG formula to show that the proposed formula is ex-
tremely efficient with any line search. Based on Armijo-type 
line search, [5] developed a new formula for HS [6] proposed 
another formula, different parameters have different iterative 
effects [7] suggested a new modification to HS. To improve 
the functionality of this algorithm, the researchers proposed 
the development of the HS formula [8], [9] proposed a hybrid 
of the HS formula and the PRP formula to improve the direc-
tion’s performance.

Because of their low memory requirements and strong lo-
cal and global convergence properties, CG methods are wide-
ly used. Our goal is to minimize a function of n-variables func-
tion by solving the optimization problem min : ,f x x n( ) ∈{ }  
where f n: →  is a smooth and non-linear function. The 
CG method is iterative, the iterative scheme is defined by:

x x sj j j+ = +1 ,  s dj j j= µ ,  j = …0 1 2, , , .	 (1)

The step length μj>0 yields by some line search, and the 
direction dj is generated by:

d g0 0= − ,  d g sj j j j+ += − +1 1 β ,  j = …0 1 2, , , ,	 (2)



Mathematics and Cybernetics – applied aspects 

15

where the gradient is defined by g f xj j= ∇ ( ), the scalar 
β j ∈ is determined by various CG methods.

The stopping criterion for the CG line search is often adop
ted on some version of the Wolfe equations [10]. The global 
convergence of the mHS method is proven under the sWPLS:

f x d f x g dj j j j j j
T

j+( ) ≤ ( ) +µ σ µ1 , 	 (3)

g x d d g dj j j

T

j j
T

j+( ) ≤ −µ σ2 ,	 (4)

where 0<σ1<0.5 and σ1<σ2<1 [11] proved that the CG me- 
thod is globally convergent when they generalized, the abso-
lute value in (4) is replaced by:

σ µ σ4 3g d g x d d g dj
T

j j j j

T

j j
T

j≤ +( ) ≤ − , 	 (5)

where σ4 0≥ ,  0<σ1<σ4<1, 0<σ3<1 and σ σ3 4 1+ ≤ .  The spe-
cial case, σ3 = σ4 = σ2 corresponding to sWPLS [12]. These 
conditions guaranteed that:

s y s g g s g s gj
T

j j
T

j j j
T

j j
T

j= −( ) = −+ +1 1 ,

where yj = gj+1–gj and sj = xj+1–xj. By using the special case  
of (5) for the above equation [13], we get:

0 1 12 2< − −( ) ≤ ≤ − +( )σ σs g s y s gj
T

j j
T

j j
T

j . 	 (6)

Furthermore, we have:

g d gj
T

j j≤ −τ 2,  τ > ∀ ≥0 0, .j 	 (7)

It is critical to use the inexact line search (ILS) to ensure 
the global convergence of the nonlinear CG method [13].

3. The aim and objectives of the study

The aim of this study is to propose a method to generate 
an SD direction with sWPLS at each iteration, which plays 
an important role to guranatee the GCP for general non- 
convex functions. 

To achieve this aim, the following objectives are ac
complished:

– to make sure that the proposed mHS formula is not 
negative;

– to ensure that the direction obtained by mHS is sa
tisfying (7).

4. Materials and methods

In this paper, all codes are written in FORTRAN 77 
double precision and compiled Visual (Fortran 6.6) (de-
fault compiler settings). Table 1 lists the names of the test 
functions that we used. We conduct numerical experiments 
on some nonlinear unconstrained test functions. These func-
tions are discussed in CUTE [14], and their details are pro-
vided in the Appendix, see Andrei [15].

HS proposed a CG algorithm for solving symmetric posi-
tive definite equation systems [1], which are defined as follows:

β j
HS j

T
j

j
T

j

g y

y d
= +1 .

We present an alternative to the mHSCG method. The 
generated directions are always descending, which is one of 
the method’s appealing features. We proposed the following 
new mHS:

β j
mHS

j
T

j
j j

T
j

j

j
T

j

g y
g g s

s

y s
=

−+
+ +

1
1

2
1||

||
.

||

||
	 (8)

It is worth noting that if we use an exact line search in (8),  
we will get β βj

mHS
j
HS= .

s g s gj
T

j j j+ +≤ ⋅1 1,

then

β βj
mHS j

T
j j

j
T

j

j
T

j

j
T

j
j
HSg y g

y s

g y

y s
≤ ≤ =+ + +1 1

3
1 .

From (1), we have s d d sj j j j j j= ⇒ =µ µ . Powell’s [16] 
restart criteria, as stated by:

g g gj
T

j j+ +≥1 1
20 2. || || . 	 (9)

From (7):

g s g g s gj
T

j j j j
T

j j j≤ − ⇒ − ≥µ τ µ τ|| |||| || .2 2 	 (10)

Since g y g g gj
T

j j j
T

j+ + += −1 1
2

1|| || , we used one side of (9), i.e.

g g g g y g g gj
T

j j j
T

j j j j+ + + + + +≥ ⇒ = − =1 1
2

1 1
2

1
2

1
20 2 0 2 0 8. . . . 	 (11)

Using (5), (10) and (11) in (8), we get:

β
µ σ τ

j
mHS

j
j

j
j j

j
T

j

g
g

s
g

y s
≥

+
≥

+
+0 8

0
1

2 1
2

2
2. ||

||

||
||

.

||
||

||
||

This proves that the proposed formula in (8) is non-nega-
tive, hence we obtain 0 ≤ ≤β βj

mHS
j
HS . The following algorithm 

describes the main steps that we used with sWPLS.
Algorithm (mHS):
1. Choose an initial point x n

0 ∈ , ε > 0 and g f x0 0= −∇ ( ), 
set d gj j= − , when j = 0.

2. If g j ≤ ε, g j ≤ ε, stop; otherwise, go to 3.
3. Determine a step size μj by using SWPLS in (3) & (4).
4. Let xj+1 = xj+sj. If g j+ ≤1 ε, then stop.
5. Calculate the direction d g sj j j

mHS
j+ += − +1 1 β .

6. If the restart criteria (9) are achieved, set d gj j+ += −1 1; 
go to 2. Otherwise, continue.

7. Set j = j+1 and go to 3.
Now we have the following theorem, which shows that 

the mHS method, when combined with the sWPLS, can 
guarantee SDP satisfaction.

Consider the following theorem (1) to clarify the direction 
dj obtained by mHS and the importance of satisfying (7) in the 
analysis of GCP [17]. We make the following basic assump-
tions about the objective function for our subsequent analysis.

Assumption (A):
1) f(x) is restricted to the level defined by Λ = {x∈Rn,  

f(x) ≤ f(x0)}, where x0 is the starting point. There is, for  
example, η>0 that implies ||xj||≤η ∀x∈Λ [18].
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2) f(x) is continuously differentiable in a specific neigh-
borhood N of Λ, and its gradient is Lipschitz continuous,  
that is, there exists a constant L>0, s. t.

|| || ,∇ ( ) − ∇ ( ) ≤ −f x f y x y  ∀ ∈x y, . 	 (12)

Now, using assumption (A), there exists a positive con-
stant (ω&ρ), such that [19]:

0 1< ≤+|| ,||g j ω  and 0 < ≤ ∀ ∈|| , .||g xj ρ Λ

Theorem (1). Impose that Assumptions (A) are true.  
If the methods (1) & (2) with β j

mHS satisfy (8), and the 
step size μj satisfy sWPLS (3), (4), then there exists a con-
stant Λ>0, s. t.

g d gj
T

j j+ + +≤ −1 1 1
2λ || ,||  λ > 0,  ∀ ≥j 0,

with

λ
ω ωη

τ σ
= −

−( )
−( )













1
1 2

1 2
2

.
.

a b
	 (13)

Proof. Firstly, for j = 0, the proof is trivial, namely d g g d gT
0 0 0 0 0

2= ⇒ = − . 
d g g d gT

0 0 0 0 0
2= ⇒ = − .

Multiplying both sides of (2) by g j
T
+1 :

g d g g

g y
g

s
g s

y sj
T

j j
T

j

j
T

j
j

j
j
T

j

j
T+ + + +

+
+

+

= − +
−

1 1 1 1

1
1

2

1

||

||

||

||

jj
j
T

jg s+1 . 	 (14)

By using another side of (9), we have g g gj
T

j j+ +≤ −1 1

2
0 2. , so:

g y g g gj
T

j j j j+ + + +≤ + =1 1
2

1
2

1
20 2 1 2|| . || . |||| || || . 	 (15)

Now, put (6), (7) & (15) in (14), we will get:

g d g

g
g

s
g

j
T

j j

j
j

j
j

+ + +

+
+

+

≤

+
−

+1 1 1
2

1
2 1

2

11 2

||

. ||
||

||
||

||

||
||

||
|| ⋅⋅

⋅
−( )





















≤

≤ − −

+

||

||
|| ||

||

||
|| ||

s

a g
g s

j

j
j jτ σ1

1
1

2
2 1

..
|| |||| || ,

2

1 2
2 1

2
1

2−( )
−( )












⋅ ≤ −+ +

ω ωη
τ σ

λ
a b

g gj j

with λ
ω ωη

τ σ
= −

−( )
−( )













1
1 2

1 2
2

.
.

a b

In this section, we want to demonstrate the GCP of mHS 
under certain assumptions (A). The following lemmas are 
required, which are commonly used to prove GCP and are 
provided by Zoutendijk [10].

Theorem (2). Assume Assumption (A) is correct. Assume 
any iteration method (1) and (2), and μj obtained by the 
sWPLS (3), (4). If

j jd≥ +
∑ = ∞

1 1
2

1
||

,
||

	 (16)

Then

lim inf || .||
j jg
→∞ + =1 0 	 (17)

Theorem (3). Consider that assumption (A) is estab-
lished. Suppose that the algorithm mHS, and μj is obtained 
by the sWPLS and dj+1 is the descent direction. Then 

lim inf || .||
j jg
→∞ + =1 0

Proof. We have dj+1 ≠ 0 because the descending proper-
ty holds. As a result, lemma (1) is sufficient to show that  
||dj+1|| is bounded above. Derived from (2), (8), and taking the 
norm of both sides of the above equation, we get:

||

||

||||

||

|| .d
g

g y
g

s
s g

y s
sj

j

j
T

j
j

j
j
T

j

j
T

j
j

+
+

+
+

+=
− +

−
1

1

1
1

2

1

We are aware of this:

g s g s g s g s y s g s y sj
T

j j
T

j j
T

j j
T

j j
T

j j
T

j j
T

j+ += − + = + ≤1 1 .

Now from (6), (9), (12), and (15):

τ σa g y s sj j
T

j j1 2
2

2
−( ) ≤ ≤|| || . 	 (18)

We employ the above-mentioned relationships:

d g
g g s

a g
s

g s

j j

j j j

j
j

j j

+ +
+ +

+

≤ − +
− ⋅

−( ) ≤

≤ +
+

1 1

1
2

1

2
2

1

1 2

1

1
1 2

.

.





τ σ

ττ σ

ω η
τ σ

η

a b
s g

a b

j j1

1
1 2

1

2
2 1

2
2

−( )














≤

≤ +
+

−( )












≤

+

. 
DD ⋅ =ω j.

The last inequality implies:

j j jd≥ ≥
∑ ∑≥ = ∞

1
2 2

1

1 1
1

||
.

|| j

The right-hand side of this is infinite, which contradicts 
the result of Theorem (1). Hence the conclusion (17) holds.

Lemma (1). Assume that Assumption (A) is correct. Let 
{xj} and {dj} be generated by the mHS algorithm, and μj be 
obtained by the sWPLS (3) & (4), and

j
j jv v

≥
+∑ − ≤ ∞

1
1 ,  where v

d

dj
j

j

= .

Proof. To begin, note that dj ≠ 0, because otherwise (7) would 
imply g0 = 0. As a result, vj is well defined. Let us now define:

w
g

dj
j

j
+

+

+

=
−

1
1

1

, α βj j
mHS j

j

d

d+
+

= ≥1
1

0

and

u
w

dj
j

j
+

+

=
+

1
1

1
.
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As a result, we have:

v
d

d

g s

d
w wj

j

j

j j
mHS

j

j
j j j j+

+

+

+

+
+ += =

− +
= +1

1

1

1

1
1 1

β
α µ . 	 (19)

We now have vj+1 = vj = 1,

u v v v vj j j j j j j j j+ + + + += − = −1
2

1 1
2

1 1
2α µ α µ .

Since α j+ ≥1 0,  the triangle inequality and (19) provide 
us with:

v v v v

v v v v

j j j j j j

j j j j j j j j

+ + +

+ + + +

− ≤ +( ) −( ) ≤

≤ − + − =
1 1 1

1 1 1 1

1

2

α µ

α µ α µ vv j+1. 	 (20)

As a result of the definition of w(j+1), it follows that:

w d gj j j+ + +⋅ = ≤1 1 1 ω. 	 (21)

As a result of (20) and (21), we have

v v v dj j j j+ + +− ≤ ( ) ≤1
2

1

2 2
1

22 4ω .

Now, we can solve the above inequality by adding the sum 
of both sides and squaring it:

j
j j

j j

v v
d≥

+
≥ +

∑ ∑− = < +∞
1

1
2

1

2

1
2

4ω
.

When the mHS algorithm generates a smaller step-size, 
the next search direction will automatically approach dj = –gj. 
Furthermore, small step-size is not continuously genetized. 
This is primarily due to the following property: β j

mHS .  Be-
cause the step-size is small enough, mHS tends to zero. 
Property (*) was introduced for the first time by Gillebert 
and Nocedal [17].

Property (*). Assuming ω ω≤ ≤+|| ,||g j 1  we say that the 
algorithm has property (*), if for all j, there exist constants 
b>1 and η>0 s.t.

β j b≤ 	 (22)

and we have:

s
bj j≤ ⇒ ≤η β .

1
2

	 (23)

Lemma (2). Consider the case where assumption (A) 
holds and algorithm (mHS) generates the sequences {gj}  
and {dj}. The new formula β j

mHS then has the property (*).
Proof. By (8), sWPLS (4)&(7):

β
τ σj

mHS
j
T

j
j

j
j
T

j

j
T

j

j j j

g y
g

s
s g

y s

g y g

a
=

−
≤

+
−(

+
+

+
+ +

1
1

2

1
1 1

2

21 )) g j
2 .

Since y g g g gj j j j j= − ≤ ++ +1 1 :

β
τ σ

ω ωρ
τ σ ρj

mHS j j j

j

g g g

a g a
b≤

+
−( ) ≤

+
−( ) =+ +2

1
2

1
1

2
1

2
2

2

2
2 . 	 (24)

We have, s x x x xj j j j j= − ≤ + ≤+ +1 1 2η.

Furthermore, from (6), (7), (12) and the above inequa
lity, we get:

β j
mHS

j
T

j
j

j
j
T

j

j
T

j

j j

g y
g

s
s g

y s

g s

=
−

≤

≤
⋅

+
+

+

+

1
1

2

1

1

||

||

||

||

||

| || || ||

||

|| ||

||

2
1

2

2
2

2

2
21

4
1

− ⋅

−( ) ≤
−

−( )






+g s

a g a
j j

jτ σ
ωη ω

τ σ ρ
 





|| || .s j 	 (25)

Now, if we allow (24) and (25), with

b
a

=
+ ∂

−( )
2

1

2

2
2

ω ρ
τ σ ρ

,  and η
τ σ ρ

ωη
=

−( )
−∂( )

a

b

1

2
2

2

2
.

As a result, (22) and (23) are correct. Thus, the algorithm 
has the property (*).

5. Results of the study

5. 1. Non-negative formula
It has been demonstrated that the new formula remains 

non-negative, which is critical in ensuring the method’s re-
gression, and it turns out that 0 ≤ ≤β βj

mHS
j
HS .

5. 2. Global convergence
The proposed method has demonstrated that it achieves 

the GCP by utilizing the sWPLS, with the help of which 
the method achieves SDP, and this resulted in the method 
achieving its desired goal, as demonstrated in theory 3.

The comparison of the proposed mHS (modified Heste
nes & Stiefel) and HS (classical Hestenes & Stiefel) al-
gorithms by using (40) well-known test functions is done  
in Table 1. Our comparisons are based on the number of ite
rations (Ni); the number of restarts (Nr), the number of test 
functions and gradient evaluations (Nfg); finally, the total 
time (in seconds) required to complete the evaluation process.  
These algorithms implement the sWPLS with σ1 = 0.01 and 
σ2 = 0.1, and the initial step size μj is computed from:

µ
µ

=
=

⋅ ≥







 −

−

1 1

21
1

, ,

, .

if

if

j

d

d
jj

j

j

	 (26)

Each function is tested 10 times to gradually increase the 
number of variables: n = 1000, 2000, …, 10000. The stopping 
criterion used in this algorithm is g j+

−≤1
610 , denoting the 

Euclidean norm. The unconstrained optimization functions 
with the given initial points.

Table 2 shows that the percentage performance of the 
mHS method is slightly better than that of the classical HS 
methods. We see that the mHS method gave (Ni 30.4 %),  
(Nr 7.7 %), (Nfg 30.6 %) and finally (Time 8.5 %) compared 
with the classical HS method. This behavior could be ex-
plained by making a small change to the HS method so that 
the generated direction always satisfies the sufficient descent 
condition, whereas search directions generated by classical 
HS methods do not guarantee to satisfy the descent property 
for some problems.
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Table 1
Сomparison between mHS and classical HS algorithms

No.
β j

mHS β j
HS

Ni Nr Nfg Time Ni Nr Nfg Time

1 702 391 1.093 2.90 688 384 1.088 2.88

2 1.088 2.141 11.930 6.17 8.119 2.225 12.719 6.75

3 19.436 16.638 473.948 1144.17 20.010 16.958 481.803 1334.03

4 4.504 1.459 7.471 15.81 4.756 1.465 7.795 16.26

5 20.010 17.615 539.243 835.24 20.010 17.609 539.371 837.28

6 4.590 1.389 7.499 15.54 4.550 1.361 7.481 15.77

7 19.436 16.638 473.948 1154.95 20.010 17.257 507.993 1207.28

9 172 114 314 0.15 170 118 308 0.15

10 7.530 2.141 11.930 6.15 8.815 2.406 13.829 7.30

11 90 50 108 0.06 99 59 198 0.08

12 96 74 310 0.12 94 73 306 0.09

13 598 351 1.009 2.12 596 348 998 2.15

14 196 99 416 0.15 200 100 428 0.16

15 259 138 587 0.21 262 141 598 0.24

16 179 119 349 0.16 179 119 349 0.16

17 179 119 349 0.14 179 119 349 0.15

18 40 40 90 0.34 40 40 90 0.36

19 102 57 222 0.08 105 58 228 0.09

20 151 88 289 0.14 140 80 270 0.13

21 681 682 1.078 1.14 678 671 1064 1.13

22 118 68 218 0.09 207 109 339 0.17

23 769 238 1.456 0.52 791 211 1.483 0.54

24 357 195 822 0.29 350 190 814 0.28

25 248 207 3.312 0.76 269 230 4.156 1.33

26 357 231 634 1.42 363 239 638 1.49

27 117 62 243 0.11 113 61 234 0.08

28 40 40 90 0.14 40 40 90 0.14

29 612 533 13.673 53.12 946 878 25.218 98.84

30 88 66 594 1.23 122 88 698 11.71

31 310 164 643 0.27 308 168 639 0.25

32 593 227 956 0.55 634 255 1002 0.67

33 13.704 13.295 427.553 899.47 15.946 15.520 502.857 1009.53

34 7.530 2.141 11.930 6.19 8.119 2.225 12.719 6.73

35 4.525 1.448 7.534 15.78 4.660 1.433 7.701 15.86

36 103 53 236 0.08 106 56 242 0.09

37 246 143 501 0.18 250 145 508 0.19

38 40 40 90 0.12 40 40 90 0.12

39 7.830 7.647 227.874 75.58 8.885 8.649 260.459 76.37

40 926 866 24.247 94.75 2.528 2.464 78.851 314.03

Appendix: 1 – ARWHEAD (CUTE); 2 – A Quadratic QF2; 3 – Broyden Tridiagonal; 4 – DENSCHNB (CUTE); 5 – Diagonal1; 
6 – Diagonal2; 7 – Diagonal3; 9 – DQDRTIC; 10 – DIXMAANA (CUTE); 11 – DIXON3DQ (CUTE); 12 – DIXMAANF (CUTE); 
13 – DIXMAANG (CUTE); 14 – DIXMAANH (CUTE); 15 – DIXMAANI (CUTE); 16 – (CUTE); 17 – DIXMAANJ (CUTE);  
18 – Diagonal5; 19 – EDENSCH (CUTE); 20 – Extended Beal U63 (Matrix Rom); 21 – Extended Block Diagonal BD1; 22 – Ex-
tended Himmelblau; 23 – Extended Powell; 24 – Extended Rosebrock; 25 – Extended Penalty U52 (Matrix Rom); 26 – Extended 
Trigonometric; 27 – Extended Tridiagonal-1; 28 – Extended Tridiagonal-2; 29 – Extended Three Exponential Terms; 30 – Exten
ded PSC1; 31 – Extended White & Holst; 32 – Generalized tridiagonal-2; 33 – LIARWHD (CUTE); 34 – Perturbed Quadratic;  
35 – Partial Perturbed Quadratic; 36 – Partial perturbed Quadratic PPQ2; 37 – NONDIA (Shanoo-78 CUTE); 38 – Raydan2;  
39 – TRIDIA (CUTE); 40 – VARDIM (CUTE)
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Fig. 1–4 show the method’s efficiency in terms of the 
number of iterations evaluated, the number of restarts, 
the number of functions and derivatives evaluated, and 

finally the time required for the two methods, in compari-
son to the proposed βi

mHS  and classical βi
HS ,  as demonstra- 

ted below.

 

Table 2
Performance of the proposed methods shown in percentage

Measures βi
HS βi

mHS

Ni 100 % 69.6 %

Nr 100 % 92.3 %

Nfg 100 % 69.4 %

Time 100 % 91.5 %

Fig. 1. The difference between the number of evaluation iterations for βi
mHS  and βi

HS

Fig. 2. The difference between the number of restart evaluations for βi
mHS  and βi

HS

Fig. 3. The difference between the number of functions and the gradient evaluation for βi
mHS  and βi

HS
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6. Discussion of experimental results

The numerical results demonstrated that the proposed 
mHS method is more effective and faster than the original 
HS formula. The proposed mHS method was faster than 
the HS method, as evidenced by the percentages in Table 2.  
The proposed algorithm is sensitive to changing any of 
the parameter values (σ1 and σ2) or the line search (3) 
and (4), any change that leads to either improving the 
method, increasing its efficiency, and obtaining the best 
results, or failing the method and obtaining poor and ineffi- 
cient results.

Using universal test functions, which are always used to 
validate the proposed methods, the numerical results demon-
strated that the proposed mHS method is more effective and 
faster than the original HS formula. Its goal is to evaluate 
the efficacy of the proposed method in the context of other 
lines of research, as well as the extent to which it influences 
numerical results. These methods are extremely sensitive 
to changing the σ1 = 0.01 and σ2 = 0.1 values in sWPLS, and 
any change in these values will result in either better results 
and completion of the tasks, or worse results and failure to 
complete the tasks. 

7. Conclusions

1. It was mathematically proven that the proposed for-
mula is non-negative, resulting in the method’s efficiency.

2. The algorithm meets the condition of sufficient re-
gression, which is critical for obtaining comprehensive con-
vergence, as demonstrated by theorem (1), and this was 
demonstrated through the proof of theorem (3). The numer-
ical results represent using cumulative by comparing the CG 
method with the proposed CG parameter with the CG pa-
rameter HS. Fig. 1–4 depict the performance profile for the 
number of iterations evaluated, the number of restarts, the 
number of functions and derivatives evaluated, and the CPU 
time. As a result, according to these figures, the CG method 
with the proposed parameter is always on top of the curve in 
the performance profile when compared to the other.

Acknowledgments

The author would like to express gratitude to the Univer-
sity of Mosul’s College of Computer Sciences and Mathema
tics for their encouragement and support.
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