
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/8 ( 116 ) 2022

6

1. Introduction

The issue of electricity shortage and the low share of 
alternative sources of electricity in the energy system of the 
Republic of Kazakhstan require transformations of the elec-
tricity market. The electric power market of the Republic of 
Kazakhstan is a mechanism for the decentralized purchase 
and sale of electrical energy, which operates based on bilat-
eral contracts between market participants [1]. The system 
operator of the unified energy network JSC Kazakhstan 
Electricity Grid Operating Company(KEGOC) currently 
provides system services in the form of technical dispatch-
ing, transportation, and balancing of electricity production 
and consumption. Such a mechanism for the functioning of 
the electric power market does not stimulate market par-
ticipants to plan and thereby save their energy resources. 
According to the Concept for the Development of the Fuel 
and Energy Complex of the Republic of Kazakhstan, in the 
second half of 2022, it is planned to introduce a balancing 
electricity market (BEM) [2]. The purpose of BEM is to en-
courage participants to plan their consumption qualitatively 

and to encourage manufacturers to follow the commands of 
the System Operator [3].

The task of the current study is related to changes in leg-
islation in the field of electric power and the launch of BEM 
in 2022, which works as follows: enterprises submit an appli-
cation to the System Operator of the Unified Energy System 
JSC KEGOC for a day ahead. Applications are a planned 
daily profile of the electrical load of the enterprise, which is 
compared with the actual one for the next day. Suppose that at 
a certain hour a company planned to consume 100 MW while 
the actual load reached 101 MW. A surplus to other consum-
ers at a lower price, and, conversely, in the event of a shortage, 
the company would buy 1 MW at a higher price. It can be 
concluded that both excess and shortage are not profitable for 
the enterprise; there is a need for analysis and forecasting [4].

For a forecasting problem, intelligent methods of ana-
lyzing temporal data, such as neural networks, are widely 
used [5]. To plan a daily profile for the day ahead, BEM 
consumers can use commercial solutions based on neural 
networks but ready-made software has a template set of 
forecasting model settings. Limited control capabilities 
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This paper proposes a step-by-step technique for 
combining basic models that forecast electricity con-
sumption in an artificial neural network by the meth-
od of preliminary selection and further hybridization. 
The reported experiments were conducted using data on 
hourly electricity consumption at the metallurgical plant 
AO ArcelorMittal Temirtau in the period from January 1, 
2019, to November 30, 2021. The current research is relat-
ed to the planned introduction of a balancing electricity 
market. 96 combinations of basic models were compiled, 
differing in the type of neural network, the set of initial 
data, the order of lag, the learning algorithm, and the 
number of neurons in the hidden layer. It has been deter-
mined that the NARX-type network is the most optimal 
architecture to forecast electricity consumption. Based on 
experimental studies, the number of hidden neurons need-
ed to form a planned daily profile should equal 3 or 4; it 
is recommended to use the conjugate gradient method as 
a learning algorithm. When selecting models from three 
groups, it was revealed that the conjugate gradient meth-
od produces better results compared to the Levenberg-
Marquardt algorithm. It is determined that the values of 
the selected RMSE error indicator take values of 23.17, 
22.54, and 22.56, respectively, for the first, second, and 
third data groups. The adaptive hybridization method 
has been shown to reduce the RMSE error rate to 21.73. 
However, the weights of the best models with values of 
0.327 for the first group of data, and 0.336 for the second 
and third ones, show that the individual use of a separate 
combination of models is also applicable. The devised 
forecasting electricity consumption model can be inte-
grated into an automated electricity metering system
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of the neural network do not make it possible to take into 
consideration the specificity of a particular production, its 
electrical load profile, shift schedule, and other factors. In 
this regard, a relevantarea of research under the conditions 
of the planned launch of BEM is to build an adaptive model 
for short-term forecasting of electricity consumption.

2. Literature review and problem statement 

Paper [6] reports a combined model with variable weight 
optimization for the short-term prediction of electrical load. 
This model makes it possible to combine the advantages of 
statistical and intellectual methods of data analysis. The Au-
toregressive Integrated Moving Average (ARIMA) method 
was used as a statistical technique. The advantages of the 
ARIMA model include a clear mathematical justification 
and a formalized step-by-step construction methodology [7]. 
However, when external factors change, it is necessary to 
re-identify the parameters of the ARIMA model, which 
makes its use unsuitable for the tasks of daily forecasting 
of electricity consumption due to resource and time costs. 
This circumstance can be excluded by using only intelligent 
methods of data analysis, as described in work [8]. It is pro-
posed to use various types of neural networks: stable with 
back error propagation, Powell-Beal-conjugate gradient, 
cascade, with gradient descent, linear, and multi-level ones. 
However, this method is most applicable for medium- and 
long-term forecasting of electricity consumption with the 
calculation of the average absolute error. The experience of 
using neural networks using one for the problem of short-
term forecasting is described in work [9]. The cited study 
used the NARX (Nonlinear Autoregressive with External 
Input) network to predict network traffic. The prediction 
model is built on a neural network with 52 neurons in the 
hidden layer and 1 neuron in the output layer using the 
Levenberg-Marquardt learning algorithm. However, the 
model used has a rigid structure that may not be suitable for 
short-term forecasting of other processes. In addition, other 
features of the NTS application are not studied, such as the 
algorithm of learning by the smoothed gradient method, the 
possibility of changing the architecture of the neural net-
work, and the justification of the selected settings.

Paper [10] proposes a hybrid methodology for forecast-
ing electricity prices for the energy market. The essence of 
hybridization is as follows. In the first stage, all data are 
divided into clusters, differing in the selected time lag order. 
In the second stage, the initial data are divided into the initial 
training (80 %) and the final testing (20 %) samples. The 
final test sample is used to verify the adequacy of the finished 
model. The initial training sample is divided into intermedi-
ate training (80 %) and intermediate testing (20 %) samples. 
Thus, with the help of such a division of the initial sample, a 
two-stage selection of data is carried out for training the final 
model, which increases its predictive properties. This hybrid-
ization technique is not possible to implement since informa-
tion on electricity consumption and hourly prices for electri-
cal load, which were not approved before the introduction of 
BEM in the Republic of Kazakhstan, are used as initial data.

Work [11] describes a procedure for determining the 
optimal predictive model by selecting the dominant models 
and combining them to obtain a final model, taking into 
consideration the weight of each forecast. The main results 
of the application of the methodology are a decrease in the 

average absolute error and volatility of the forecast. The only 
obstacle to the use of a giventechnique is the criterion for 
selecting dominant models: to forecast forBEM, it is better 
to use the standard error of the forecast.

Paper [12] reports a technique for predicting the produc-
tion by an alternative power supply source. As initial data, 
weather data such as the average hourly temperature, relative 
humidity, and the level of solar radiation are used. However, 
such accuracy matters when studying the influence of weather 
phenomena on the generation of electricity by a solar panel 
and would be an unnecessary factor for building a model for 
predicting the electricity consumption by a full-cycle metal-
lurgical complex that works non-stop all year round.

Work [13] demonstrates the effectiveness of the hybrid 
prediction method, which combines the combination of 
different types of neural networks and the mechanism for 
dividing the initial data into subsamples.

Having studied the adaptive forecasting methods that are 
close in essence,as well as the features of their implementation, 
we can conclude that the degree of influence of each input 
variable on the forecast value has not been sufficiently investi-
gated. In addition, it should be noted that the accuracy of the 
forecast is affected by the architecture of an artificial neural 
network (ANN), which should be selected taking into consid-
eration the specificity of the subject of study. In this regard, it 
became necessary to study the schemes of hybrid models with 
a different set of initial data and ways to combine them.

3. The aim and objectives of the study

The purpose of this study is to construct an adaptive hy-
brid model for forecasting electricity consumption based on 
basic models on ANNs, to the input of which various initial 
data are supplied.

To accomplish the aim, the following tasks have been set:
– to select neural network settings for building basic 

predictive models; 
– to determine the way to combine basic models on neu-

ral networks; 
– to evaluate the predictive capabilities of the hybrid 

model.

4. The study materials and methods

To conduct experimental studies, data on the hour-
ly electricity consumption at the metallurgical plant of 
JSC ArcelorMittal Temirtau from January 1, 2019, to No-
vember 30, 2021, were taken on the basis of the regional 
electric load profile (RLP) of the Karaganda oblast, which 
includes 25560 values of the electric load of the enterprise. 
RLP is the share of consumption byan enterprise calculated 
according to the approved norms in the context of the load 
of the entire region.Data on the electrical load are given 
in MW. It should be noted that, along with RLP, the compa-
ny operates an automated system for commercial electricity 
metering. However, for mutual settlements with the Sys-
tem Operator under the production-consumption balancing 
agreement, it is the RLP that is used. Data from RLP for the 
construction of basic forecasting models are taken on Green-
wich Time, which entails a shift in the load profile by 5 hours 
back from the local time of Nur-Sultan.Also, in addition to 
the hourly electrical load (L), the day of the week (W), the 
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indicators of the day off or working day (E), and the indi-
cators of the studied hour (H) are used as initial data. It is 
expected that the combined model based on selection and 
hybridization of the initial data could improve the predictive 
capabilities compared to the baseline models with separate 
initial data.

Our experiments were conducted in the Neural Net 
Time Series (NTS) application, which is part of the MAT-
LAB 2018a software package (9.4.0.813654). This applica-
tion can be initiatedusing the ntstool command.

5. Results of studying an adaptive hybrid model for 
forecasting electricity consumption on an artificial neural 

network 

5. 1. Selection of neural network settings for building 
basic predictive models

The choice of input data for network training and their 
processing is the most difficult stage in building a model on 
ANN. The initial data for forecasting are selected taking into 
consideration the type and objectives of forecasting. Analy-
sis of the electrical load profile of the object under study 
significantly helps in solving the problem of correlation of 
the predicted parameter and the hypothetical predictor [14].

For this study, the annual, monthly, weekly, and daily 
load profiles of the metallurgical plant were analyzed [15]. 
It was found that historical data on energy consumption, 
weather data, and the number of days of downtime and 
repairs for previous years can be used for long-term forecast-
ing.For short-term forecasting, historical data on energy 
consumption for previous days, as well as data on seasonal-
ity and cyclicality, should be taken into consideration. Our 
study considers the problem of forecasting in order to form 
a planned daily profile of the electrical load for a day ahead 
for the effective operation of the enterprise on BEM, that is, 
short-term forecasting is necessary [16].

The training data collection phase is followed by the data 
preparation and normalization phase. Normalization refers 
to the process of equalizing the original data for the interval 
from 0 to 1. Unprepared data affectANN, which leads to 
incorrect learning [17].

The NTS application proposes to build NAR (Nonlinear 
Autoregressive), NARX, and nonlinear input-output models. 
A NAR network is a closed-type model that makes it possible 
to predict the future values of a variable from a certain num-
ber of previous values of the same variable fed to the network 
input. The number of previous values of variables that affect 
its current value determines the backlog order. The NARX 
network has a semi-closed architecture for building models 
taking into consideration the influence of the previous val-
ues of the variable and external parameters on the variable 
under study. A nonlinear input-output network builds an 
open-type model, to the input of which external parameters 
are supplied. Only NAR and NARX networks are applicable 
for the tasks of our study since the nonlinear input-output 
network does not take into consideration the impact of ret-
rospective data on electricity consumption.

After selecting the network structure, NTS requests 
the loading of input and target variables, which are divided 
into the training (70 %), checking (15 %), and test (15 %) 
samples.

The next step is to refine the network architecture. The 
maximum number of hidden neutrons is recommended to be 

determined by the sum of neurons in the input and output 
layer. Thus, the number of hidden neurons is proposed to 
alternate from 1 to 4, which includes data on electricity 
consumption, an indicator of the hour, week, and weekend 
or working day. At the same stage, it is proposed to choose 
the order of lagging behind. For the problem of forecasting 
on BEM, it is optimal to consider the effect of electrical load 
for the previous day, two days ago, and three days ago [18].

The last step is to choose a learning algorithm. In the 
present study, experiments were conducted using the Lev-
enberg-Marquardt algorithm and the conjugate gradient 
method [19]. 

Based on a large number of basic models, there is a need 
to select working models and find a further way to combine 
them [20].

5. 2. Determine how to combine basic models on neu-
ral networks

According to [11], simple basic models can be combined 
by the selective or hybrid method. The selective method 
involves the continuous selection of the model with the 
best indicator for the selected criterion and switches to the 
appropriate model. The hybrid model averages the forecast 
taking into consideration the weight of each individual fore-
cast, thereby making it possibleto smoothly switch from one 
model to another. It has been empirically revealed that it is 
optimal to use three models when building a hybrid fore-
casting model among many combinations of basic models. 
Thus, it is proposed to combine the methods of selection and 
hybridization as follows.

In the first stage, three models should be selected accord-
ing to a pre-selected criterion for the accuracy of forecasts 
among the 96 models presented. The NTS application cal-
culates the Mean Squared Error (MSE) but the Root Mean 
Squared Error (RMSE) should be selected as the main cri-
terion for selecting the best models. The latter criterion (1) 
demonstrates the impact of the error of each hour for BEM 
tasks where the consumer must pay a fine for each discrep-
ancy in the plan with the fact.

( )2

1

,
n

i i

i

X Y
RMSE

n=

−
= ∑ 	 (1)

where i is the current hour of study, 
n is the total number of study hours, 
Xi is the actual electrical load, MW, 
Yi is the predicted electrical load, MW.
In the second step, one needs to average the selected 

three predictions, taking into consideration the impact of a 
more accurate forecast of each base model on the final fore-
cast of the final model. The weights ω1, ω2, and ω3of the pre-

dictions Y1, Y2, and Y3are respectively defined as follows (2):
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where RMSE1, RMSE2, and RMSE3 are the RMSE values of 
the Y1, Y2, and Y3 predictions, respectively. 

Thus, the final forecast Y of the adaptive hybrid model 
should be determined from (3):

1 1 2 2 3 3.Y Y Y Y= ω ⋅ + ω ⋅ + ω ⋅ 	 (3)

In addition, the NTS application, in addition to the MSE 
indicator, calculates the regression coefficient R, which de-
termines the degree of correlation between the target and 
output data under test; it can take values from 0 to 1.

5. 3. Evaluating the predictive capabilities of a hybrid 
model

After collecting and processing the initial data, 96 basic 
models with different parameters were investigated, differ-
ing in the type and architecture of the neural network, the 
learning algorithm, the lag order, the number of neurons in 
the hidden layer, and the set of initial data. The results of 
testing models with a lag of 24, 48, and 96 hours are given in 
Tables 1‒3, respectively.

Table 1

Results of experiments with the lag indicatorn=24

ANN 
type

Number of 
hidden neurons

Learning algorithm
Initial 
data

MSE R

NAR 4 Levenberg-Marquardt L 643 84

NAR 4 Conjugate gradient L 649 83

NAR 3 Levenberg-Marquardt L 642 84

NAR 3 Conjugate gradient L 674 82

NAR 2 Levenberg-Marquardt L 633 86

NAR 2 Conjugate gradient L 838 81

NAR 1 Levenberg-Marquardt L 647 86

NAR 1 Conjugate gradient L 776 80

NARX 4 Levenberg-Marquardt H 542 86

NARX 4 Conjugate gradient H 608 84

NARX 3 Levenberg-Marquardt H 560 87

NARX 3 Conjugate gradient H 698 85

NARX 2 Levenberg-Marquardt H 673 84

NARX 2 Conjugate gradient H 809 80

NARX 1 Levenberg-Marquardt H 592 85

NARX 1 Conjugate gradient H 719 81

NARX 4 Levenberg-Marquardt E 547 86

NARX 4 Conjugate gradient E 609 86

NARX 3 Levenberg-Marquardt E 656 85

NARX 3 Conjugate gradient E 583 86

NARX 2 Levenberg-Marquardt E 612 86

NARX 2 Conjugate gradient E 716 83

NARX 1 Levenberg-Marquardt E 636 84

NARX 1 Conjugate gradient E 613 85

NARX 4 Levenberg-Marquardt W 605 84

NARX 4 Conjugate gradient W 537 86

NARX 3 Levenberg-Marquardt W 672 83

NARX 3 Conjugate gradient W 688 82

NARX 2 Levenberg-Marquardt W 547 85

NARX 2 Conjugate gradient W 539 87

NARX 1 Levenberg-Marquardt W 639 85

NARX 1 Conjugate gradient W 619 84

Fig. 1 shows the architecture and test results of such 
ANN with a lag order of 96 hours, with 3 hidden neurons, an 
indicator of the day of the week at the input, and a learning 
algorithm by the conjugate gradient method.

Table 2

Results of experiments with the lag indicatorn=48

ANN 
type

Number of 
hidden neurons

Learning algorithm
Initial 
data

MSE R

NAR 4 Levenberg-Marquardt L 575 86

NAR 4 Conjugate gradient L 660 82

NAR 3 Levenberg-Marquardt L 602 85

NAR 3 Conjugate gradient L 651 86

NAR 2 Levenberg-Marquardt L 599 87

NAR 2 Conjugate gradient L 765 82

NAR 1 Levenberg-Marquardt L 651 84

NAR 1 Conjugate gradient L 802 80

NARX 4 Levenberg-Marquardt H 539 86

NARX 4 Conjugate gradient H 548 87

NARX 3 Levenberg-Marquardt H 538 86

NARX 3 Conjugate gradient H 614 86

NARX 2 Levenberg-Marquardt H 625 85

NARX 2 Conjugate gradient H 628 83

NARX 1 Levenberg-Marquardt H 654 84

NARX 1 Conjugate gradient H 580 86

NARX 4 Levenberg-Marquardt E 561 85

NARX 4 Conjugate gradient E 522 87

NARX 3 Levenberg-Marquardt E 670 84

NARX 3 Conjugate gradient E 542 85

NARX 2 Levenberg-Marquardt E 601 85

NARX 2 Conjugate gradient E 581 84

NARX 1 Levenberg-Marquardt E 673 84

NARX 1 Conjugate gradient E 646 83

NARX 4 Levenberg-Marquardt W 622 86

NARX 4 Conjugate gradient W 510 86

NARX 3 Levenberg-Marquardt W 636 86

NARX 3 Conjugate gradient W 508 87

NARX 2 Levenberg-Marquardt W 611 86

NARX 2 Conjugate gradient W 627 85

NARX 1 Levenberg-Marquardt W 536 87

NARX 1 Conjugate gradient W 679 83

Of the three groups of data fromTables 1–3, the 
following ANN models were selected for the following 
parameters:

‒ the NARX network with 4 hidden neurons, a conju-
gate gradient learning algorithm, 24-hour lag order, and 
data on the day of the week at the input: MSE1=537 and 
R=86;

‒ the NARX network with 3 hidden neurons, a conju-
gate gradient learning algorithm, a lag order of 48 hours, 
and data on the day of the week at the input: MSE2=508 
and R=87;

‒ the NARX network with 1 hidden neuron, a conjugate 
gradient learning algorithm, a lag order of 96 hours, and 
input day of the week data: MSE3=509 and R=87.

However to combine the models,one must recalculate the 
MSE to RMSE: 
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1 1 23.17,RMSE MSE= =

1 1 22.54,RMSE MSE= =

1 1 22.56.RMSE MSE= =

Table 3

Results of experiments with the lag indicatorn=96

ANN 
type

Number of 
hidden neurons

Learning algorithm
Initial 
data

MSE R

NAR 4 Levenberg-Marquardt L 582 87

NAR 4 Conjugate gradient L 645 83

NAR 3 Levenberg-Marquardt L 571 86

NAR 3 Conjugate gradient L 625 84

NAR 2 Levenberg-Marquardt L 633 85

NAR 2 Conjugate gradient L 638 84

NAR 1 Levenberg-Marquardt L 652 84

NAR 1 Conjugate gradient L 759 83

NARX 4 Levenberg-Marquardt H 642 84

NARX 4 Conjugate gradient H 646 84

NARX 3 Levenberg-Marquardt H 517 86

NARX 3 Conjugate gradient H 566 86

NARX 2 Levenberg-Marquardt H 572 84

NARX 2 Conjugate gradient H 623 85

NARX 1 Levenberg-Marquardt H 582 86

NARX 1 Conjugate gradient H 568 86

NARX 4 Levenberg-Marquardt E 583 86

NARX 4 Conjugate gradient E 655 85

NARX 3 Levenberg-Marquardt E 546 85

NARX 3 Conjugate gradient E 549 85

NARX 2 Levenberg-Marquardt E 654 86

NARX 2 Conjugate gradient E 571 86

NARX 1 Levenberg-Marquardt E 600 86

NARX 1 Conjugate gradient E 694 83

NARX 4 Levenberg-Marquardt W 648 86

NARX 4 Conjugate gradient W 593 83

NARX 3 Levenberg-Marquardt W 621 84

NARX 3 Conjugate gradient W 604 84

NARX 2 Levenberg-Marquardt W 672 83

NARX 2 Conjugate gradient W 621 85

NARX 1 Levenberg-Marquardt W 509 87

NARX 1 Conjugate gradient W 646 85

Then the weight of each forecast can be calculated as 
follows:

1

22.54 22.56
0.327,

22.54 22.56 23.17 22.56 23.17 22.54
⋅

ω = =
⋅ + ⋅ + ⋅

2

23.17 22.56
0.336,

22.54 22.56 23.17 22.56 23.17 22.54
⋅

ω = =
⋅ + ⋅ + ⋅

3

23.17 22.54
0.336,

22.54 22.56 23.17 22.56 23.17 22.54
⋅

ω = =
⋅ + ⋅ + ⋅

.

When calculating the final forecast using (3), we 
obtained Ywith RMSE=21.73. Thus, the hybrid model 
produces better results compared to the base models 
chosen according to the selected criterion, which makes 

it possible to reduce the price of electricity for a specific 
operating hour.

Fig. 1. The results of testing the basic model on an artificial 
neural network with a lag order of 96 hours, 3 hidden 

neurons, a day of the week indicator at the input, and a 
learning algorithm by the conjugate gradient method: 	

a – a plot for comparing the target and output values of the 
electrical load; b – the final window of ANN modeling results

a

b
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6. Discussion of results of studying the adaptive hybrid 
model

Based on the capabilities of the NTS application, various 
configurations of the neural network were compiled. In the 
first stage, the models were divided into three groups: in Ta-
ble 1 ‒ with a backlog of 24 hours, in Table 2 ‒ 48 hours, and 
in Table 3 ‒ 96 hours. This separation was made for the conve-
nience of working with a large set of setting parameters. The 
backlog order determines the degree of influence of the load for 
the previous days on electricity consumption for the current 
day.Next, the type of neural network is defined. Thus, in each 
of the three groups of models with the NAR-type network, the 
highest MSE value was observed, equal to 838, 802, and 752 
in the first, second, and third groups, respectively. This is ex-
plained by the fact that this type of network does not take into 
consideration the influence of other factors on the amount of 
electricity consumption. In the next step, the three large groups 
were divided into subgroups depending on the parameter taken 
into consideration as an external factor. It was found that the 
best results in all three groups were shown by a subgroup of 
NARX models with such a parameter of the cyclic component 
as the day of the week. In work [9], the model on the NARX 
network also demonstrated high predictive capabilities, where 
the value of the regression coefficient was 0.97134.

After compiling various sets of network configurations and 
obtaining simulation results, a technique was determined to 
discard the non-productive and combine the remaining select-
ed models. The decrease in the value of the root mean square 
error (1) of the final weighted average forecast (3) is explained 
by a smooth switch between the best selected baseline models 
according to a pre-selected forecast accuracy criterion, taking 
into consideration the weight of each forecast (2). The value (1), 
in relation to the average value of the absolute error of the 
forecast described in [8], makes it possible to take into consid-
eration the maximum magnitude of the error without averaging 
it. Such an approach to the choice of the forecast accuracy crite-
rion is most appropriate for forecasting tasks on BEM.

The proposed method of combining basic models makes 
it possible to change the structure of the model, responding 
to the slightest changes in external factors. The current 
study was conducted for BEM on the day ahead and cannot 
be used for the task of dynamic forecasting of electricity 
consumption. The complexity of applying our method is in 
a large number of basic models at the initial stage. This cir-
cumstance can be overcome by revising the tuning parame-
ters of the basic models to reduce their number, which would 
reduce the time for data processing. Unlike [6], the adaptive 
hybrid model has a more flexible structure where additional 
parameters can be integrated. For example, with the direct 
introduction of BEM and the further approval of prices for 

services, prices for balancing electricity can also be entered 
into the initial data.

7. Conclusions

1. To build 96 basic models, networks such as NAR or 
NARX with the number of neurons in the hidden layer from 
1 to 4, trained by the Levenberg-Marquardt algorithm or the 
conjugate gradient method, were used. As input data, data on 
electricity consumption, day of the week, information about 
the day-off or working day, and the hour indicator with a lag 
of 24, 48, and 96 hours were applied. The NARX-type model 
makes it possible to consider the influence of third-party 
factors. In our experiments, the weekly cyclic component 
had the greatest impact in all three groups of base models. 
Among the learning algorithms, the best results were shown 
by the conjugate gradient method, namely in the first and 
second data groups. Additional advantages of the conjugate 
gradient method are speed and memory savings, although it 
requires the calculation of first-order derivatives.In practice, 
it was proved that the number of neurons of the hidden layer 
should tend to the sum of the neurons of the input and output 
layer: in the first group of data ‒ 4 neurons, in the second ‒ 
3 neurons and, as an exception, in the third ‒ 1 neuron.

2. To build the final model, selection and hybridization 
methods were used. At the selection stage, 3 basic models 
were selected, chosen according to the criterion of the 
smallest root mean square error. The resulting model can be 
attributed to the category of adaptive or self-adjusting. The 
RMSE values for the selected model predictions take close 
values, which is reflected in the weight of each prediction.
The weights of the best predictions of the three different 
groups of data demonstrate that the selected combinations 
work equally effectively and produce an approximately sim-
ilar result. This means that each model can be applied sep-
arately but it is the hybrid model that will make it possible 
to make a smooth switch, monitor changes, and take them 
into consideration when forming a planned daily load profile.

3. The weighted average final forecast makes it possible 
to reduce the RMSE value from 23.17 to 21.73 and, thereby, 
reduce the company’s penalty payments for exceeding the 
planned daily electrical load profile.
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