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1. Introduction

Deep learning has recently gotten a lot of attention as a 
viable answer to a lot of challenges in artificial intelligence. 
When compared to other machine learning algorithms in 
the applications of object identification and recognition, 
convolutional neural networks (CNNs) outperform other 
deep learning architectures. When working on image pro-
cessing operations on noisy images like fog removal or low 
light enhancement see the upper and lower portion of Fig. 1, 
respectively, it is essential to apply image processing algo-
rithms like filtering or image enhancement.

Speech recognition, pattern analysis, and image identifi-
cation, all benefit from deep neural networks. These kinds of 
deep neural networks have also been employed in medicine, 
where they have shown to be effective at predicting and clas-
sifying patient diagnoses. The U-Net model, for example, has 
shown good performance in image segmentations, a critical 
technique in medical imaging [1] and X-ray mammogra-
phy [2]. Deep neural networks, on the other hand, are subject 
to adversarial models. Adversarial models are samples made 
by accumulating an amount of noise to an existing data sam-
ple so that they appear to be regular data to humans, but the 
classification model erroneously classifies them.

A potential problem in using this technique is that they 
must be manually engineered and designed to process an 
image. The deep learning network, on the other hand, learns 

how to process the image using data. For example, enhanc-
ing the low-light image, using classical image processing, 
will first input image then apply haze removal algorithm and 
finally invert the image again as demonstrated in Fig. 2.

It is possible to replace these three operations into a sin-
gle neural network so that its output resembles the output 
of the technique, which is called image processing operator 
approximation as shown in Fig. 3.

Previous research has shown that deep learning-based 
approaches for low-dose fluorodeoxyglucose (FDG) positron 
emission tomography can reduce noise (PET) [3]. Approxi-
mation of more generic and sophisticated procedures is pos-
sible with deep learning solutions. The work [4] firstly intro-
duced a multi-scale Context Aggregation Network (CAN) 
that can imitate multi-scale tone-mapping, pencil drawing, 
and photographic style transfer, for instance. For improved 
accuracy in analyzing high-frequency features, Multi-scale 
CAN train on full-resolution pictures [5]. After the network 
has been trained, it can skip the traditional processing step 
and process images directly.

In summary, when working on image processing opera-
tions on noisy images, it is essential to apply image process-
ing algorithms like fog filtering or image light enhancement. 
Studies addressed these issues recently but more accurate 
findings are required for the purposes of maximizing the 
performance of computer vision tasks like fog removal or low 
light enhancement.
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2. Literature review and problem statement

A number of classical and deep network methods have 
been devised to achieve image operator approximations, as 
stated in the study [6], which suggested several traditional 
strategies for efficiency improvement of a given algorithm, 
but they can’t be applied to other functions. The research 
tweaked the back-propagation technique to locate hid-
den layer targets and learn network weights efficiently 
while retaining performance. Another traditional method 
to approximate wide-range functions is to apply the ap-
proximator on a low-resolution replica of images, but due to 
high-frequency loss of contents, the precision of the approx-
imation is limited. This issue is discussed by [7], in which 

a particular convolutional kernel 
is used as filtering measured pro-
jections of computed tomography 
(CT) as an analytic reconstruction 
of images. For various reconstruc-
tion kernel selections, there is a 
tradeoff between noise and spatial 
resolution. In a clinical scenario, 
this frequently necessitates pro-
ducing numerous pictures rebuilt 
with various kernels for a single 
CT exam, adding to the computa-
tional, reading burdens, network-
ing, and archiving. Although this 
method has the potential to im-
prove image quality, streamline, 
and reduce radiation exposure of 
the CT imaging clinical workflow 
it cannot process large resolution 
images. The paper [8] investigated 
the use of artificial neural networks 
and machine learning to de-noising 
a dynamic PET image by training 
a Deep de-noising Auto-Encoder 
(DAE) by using noise-free and 
noisy spatiotemporal image patch-
es. However, the results provided a 
considerable decrease in the voxel/
level noise but it required a com-
plex algorithm for training data. 
The paper [9]proposed a paradigm 
to present deep learning on mobile 
strategy, where the network was 
trained in a decentralized method 
amongst thousands of edge clients. 
This algorithm prevents the priva-
cy leakage of the confined model 
factors, which is perturbed by the 
Laplace-noise but cannot prove the 
practicality and effectiveness of 
their method. The study [10] used 
deep networks with faster algo-
rithms to enhance the image qual-
ity of oncology FDG PET scans 
obtained in shorter times but the 
problem was with the limitation of 
the Full duration dataset, which is 
also addressed by [11]. This issue 
was addressed by the paper [12] 

when it processed satellite images of satellite sensors with 
low-resolution. The study improved the performance of the 
network of filtering the noise but with several thousands of 
layers in the network. 

From other applications, the research in [13] discussed 
the utility of motion artifact decreasing by the CNN in 
Multi-Arterial Phase MRI of the liver using 192 patients of a 
dataset. The paper presented an image filter for artifacts re-
duction by a deep learning network. Although the study has 
improved the quality of images and reduced the motion ar-
tifacts, this filter partially removes some anatomical details.

According to the above-aforementioned literature, ac-
curate image processing operations on noisy images like 
fog removal or low light enhancement is promising as it is 

Fig.	1.	Noisy	image	filtering:	a – fog	removal;	b – low-light	enhancement	image	processing

a

b

Fig.	2.	The	basic	steps	of	enhancing	the	low-light	image	using	classical	image	processing

Fig.	3.	Image	processing	approximator
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beneficial in a wide range of computer vision purposes such 
as robot navigation, and document analysis. Therefore, it is 
necessary to develop a Multi-scale CAN on Bilateral Filter-
ing Approximation (BFA) for noisy CCTV images to obtain 
clear images.

3. The aim and objectives of the study

The main aim of the study is to show the effect of us-
ing Multi-scale CAN on Bilateral Filtering Approximation 
(BFA) of noisy CCTV images. This is achieved by conduct-
ing the following objectives:

– to create bilateral filtering approximation for a noisy 
input image;

– to perform CAN operator on the bilateral filtering 
noisy image;

– to evaluate the developed CAN approximation visually 
and quantitatively by comparing the produced de-noised im-
age against a reference image using three image evaluation 
metrics (the Structural Similarity Index (SSIM), Natural-
ness Image Quality Evaluator (NIQE), and the Peak Signal-
To-Noise Ratio (PSNR)).

4. Methods and Materials

This paper demonstrates how to use a multi-scale CAN 
to simulate the filtering process on CCTV images. The 
operator approximation method seeks different methods for 
processing CCTV images with the purpose that the result 
matches that of a traditional image pipeline or processing 
operations. The approximation of the CAN operator is 
frequently used to decrease the time amount consumed to 
process images. MATLAB-based Deep network platform 
is used to perform the developed image processing approx-
imate for fog-removal operation on CCTV road images as 
depicted in Fig. 4.

This research aims into training multi-scale deep learn-
ing CAN approximate image filtering by a bilateral opera-
tion that minimizes picture noise whilst maintaining image 
boundary sharpness. The considered application of CCTV 
images processing shows the entire inference and training 
operations, which includes setting the training settings, cre-
ating a trained data store, training the model, and using this 
model to analyze tested images.

To start with, let’s set the foggy input images and corre-
sponding the defogged label images to a different database. 
Let’s use Data-store to manage our dataset, which is an 
object or collection of data that is huge to be processed in 
system memory, it allows to read, manage, and process data 
located in multiple files as a single entity. One of the most 
popular architectures used for image processing approxi-
mation is the Multi-scale Context Aggregation Network 
(CAN). This architecture includes the input layer, the mid-
dle layers, and the final layer as shown in Fig. 5.

The CAN architecture provides inherent deep network 
layers such asthe input layer, back normalization layer, con-
volution Layer, and Leaky ReLu layer to construct multi-
scale. It is also possible to add custom layers like adaptor 
normalization (µ) and adaptive normalization (Lambda) to 
the network.

After processing the input image via multi-scale con-
text aggregation, the multi-scale CAN network is em-
ployed for minimizing the l2 losses between the traditional 
yield of the image processing operations and the network 
responses. Rather than limiting the search to a narrow 
neighborhood surrounding the pixel, multi-scale CAN 
seeks information concerning every pixel throughout the 
whole image. The control algorithm of the CAN network 
is shown in Fig. 6.

The multi-scale CAN architecture has a huge receptive 
field to aid the network in learning global image attributes. 
Since the CAN operator be supposed to not modify the 
image’s dimension, the first layer and last layer are the 
same sizes. Exponentially increasing scale factors wid-

en successive intermediate levels, 
hence the “multi-scale” nature of 
the CAN. The dilation allows the 
architecture to search for spatial-
ly divided features at a different 
spatial frequency without lowering 
the resolution of input images. The 
network employs adaptive normal-
ization after each convolution layer 
to stabilize the influence of identity 
mapping and batch normalization 
on the approximation operator.

Fig.	4.	The	developed	image	processing	approximate	for	fog-removal	operation	on	
CCTV	road	images

Fig.	5.	Multi-scale	Context	Aggregation	Network	(CAN)	architecture
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4. 1. Dataset
This dataset contains photographs and weather data ob-

tained from the Polish General Directorate of National Roads 
and Motorways’ network of measurement stations. These gad-
gets, which are installed along the country’s main roadways, 
are outfitted with a CCTV camera and a collection of weather 
sensors. The generated dataset contains around 3 300 000 re-
cords gathered between November 2018 and March 2019 [14].

4. 2. Methodology steps
1. Preparing data for training, which includes training 

the network with a small subset of the downloaded dataset. 
Let’s read in pristine images and write out bilaterally filtered 
images to construct a training data set. The filtered images 
are saved into a specified directory.

2. To train the network, let’s create a Random Patch 
Extraction Data-store. The desired network responses and 
network inputs are stored in two image datastores, and this 
datastore selects random related patches from them. The 
network inputs in this study are the immaculate photos in 
pristine images. The processed images after bilateral filter-
ing are the desired network responses.

3. An adaptive batch normalization layer is implemented 
using two custom scale layers. One scale layer controls the 
batch-normalization branch’s strengths, while the other mod-
ifies the identity branch’s strengths. Image patches are used 
by the first layer. The patch size is determined by the network 
receptive field or the spatial image region that influences the 
network’s top-most layer’s response. The network receptive 
field should ideally be the same size as the image so that it can 
perceive all of the image’s high-level elements. The approxi-
mation picture patch size for a bilateral filter is set at 256 by 
256 pixels. After the image input layer, a 2-D convolution layer 
with 32 3-by-3 filters is applied. Zero-pad the inputs to each 

convolution layer so that feature maps after each convo-
lution are the same size as the input. Let’s set the weights 
to the identity matrix as a starting point.

4. An adaptive normalization scale-layer and a batch 
normalization layer follow each convolution layer, ad-
justing the batch-normalization branch strengths. The 
adaptive normalization scale-layer, which modifies the 
strength of the identity division, is then created.

5. Specify the network’s middle levels using the 
same pattern. The factor of dilation of successive con-
volutional layers rises in exponential profile with the 
network depth.

6. In the convolution layer (from second to last), 
a dilation factor is employed. The final convolution layer 
reconstructs the image using onlyonefilterof 1×1×32×3 size 
as an alternative to leaky ReLU layers. A regression layer 
is the last layer in the network. The mean-squared error for 
the network prediction and the bilaterally filtering image 
is computed by the regression layer. Concatenate all of the 
layers after that.

7. Making skip connections, which serve as the adaptive 
normalization equation’s identity branch. Connect the addi-
tional layers to the skip connections.

8. Plot the layer graph.
9. The Adam optimizer is used to train the network, and 

the trainingOptions (Deep Learning Toolbox) function is 
used to specify the hyperparameter parameters. Let’s employ 
the defaulting values of 0.8 for ‘Momentum’ and 0.0002 for 
the weight decay of the network, and train for 181 epochs on 
a fixed learning-rate of 0.0002.

10. Using Multi-scale CAN for Bilateral Filtering Ap-
proximation, which includes the following steps:

– using a reference image to produce a sample input noisy 
image;

– using the imbilatfilt function, do traditional bilateral 
filtering on noisy images;

– using the CAN, execute an approximator operation of 
bilateral filtering on noisy images;

– visually comparing the de-noised images produced by 
operator approximation to traditional bilateral filtering;

– measuring the similarity of the produced de-noised 
image quantitatively with respect to the pristine reference 
image to assess image quality.

The test data set, which consists of the test images, 
includes 21 clean photos that have been delivered to an 
image-Data-store (MATLAB-based Deep Learning func-
tions). Arbitrary tested images are shown in Fig. 7.

Fig.	6.	The	control	algorithm	of	the	CAN	network

Input Imbilatfilt Output 

Multi-scale context 
aggregation 

Loss Function (l2) 

Conventional method

Deep learning method

Fig.	7.	Arbitrary	tested	images
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The training of the network includes specifying the 
training options and then using a train network function. 
After training, we tested the network with foggy images and 
pass them through the trained network. The visualization of 
the output image was performed using activation from the 
final regression layer.

5. Results of the developed CAN network

5. 1. Using common bilateral filtering on a created 
noisy image

A noisy image is produced to compare the outcomes of 
operator approximation versus traditional bilateral filter-
ing. For bilateral filtering, one image has been chosen to 
serve as a reference image and converted to (uint8) data 
type. As seen in Fig. 8, a reference image is displayed. The 
original clean and noisy images are shown as a and b re-
spectively. 

The noisy image has been generated by adding Gaussian 
white-noise with zero mean and variance of 0.00002 to the 
reference image. The network requires an RGB test image 
that is at least 256 by 256 pixels in size.

The common bilateral filtering is a standard method 
to mitigate the noise and preserve edge sharpness, which 
requires specifying the smoothing degree to equal the pixel 
values variance. The de-noised image obtained from the 
common bilateral filtering is shown in Fig. 9.

5. 2. Performing CAN approximation operation on the 
bilateral filtering noisy image

After normalizing the input image, the developed CAN 
network output is the target de-noised image that is applied 
on the bilateral filtered noisy image as shown in Fig. 10.

The result of the developed multi-scale deep learning CAN 
approximation operation, in Fig. 10, visualizes better quality, 
which is obtained from the regression layer (final layer).

5. 3. Visually and quantitatively evaluated for the de-
veloped CAN approximation

Let’s compare a cropped small region as a region of 
interest (ROI) for the developed CAN de-noised images 
obtained from CAN operator approximation with the com-
mon bilateral filtering image of the same reference image 
using the format (x-coordinate y-coordinate width height). 
The results of cropping the ROI images as a montage are 
shown in Fig. 11.

The developed deep learning CAN approximation of the 
lateral filtering method eliminates more noise than the com-
mon bilateral filtering method. Both methods maintain edge 
sharpness for images.

In order to quantitatively compare the images created 
using the conventional bilateral filtering and the developed 
deep learning CAN approximation, image quality metrics 
were computed. Four key factors to evaluate the produced 
image with respect to the reference image were used as de-
scribed in Table 1.

Fig.	8.	Producing	noisy	image:	a	–	reference	original	image;	
b	–	noisy	image

a

b

Fig.	9.	The	de-noised	image	is	processed	by	the	common	
bilateral	filtering

Fig.	10.	The	developed	network	output	de-noisy	image	
using	CAN
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Table 1 outcome indicates that the CAN operator ap-
proximation creates better metric rates. To see the appli-
cation of the developed deep learning CAN approximation 
operator on real CCTV Foggy input image, the processed 
de-noisy image is shown in Fig. 12.

As expected, the result of the developed multi-scale deep 
learning CAN approximation operation, in this Fig. 12, vi-
sualizes significant improvement on the input foggy image.

6. Discussion of the results of developed CAN Network

In this paper, the use of a multi-scale context aggregation 
network (CAN) for performing the filter imaging process is 
investigated. In particular, a developed image processing ap-
proximate is used for fog-removal operation on CCTV road 
images on a training dataset. The insights of the architecture 
development by applying the CAN learning approach are 
outlined below.

The noisy image has been generated by adding Gauss-
ian white-noise to the reference with at least 256 by 
256 pixels in size image. Bilateral filtering was used to 
mitigate the noise and preserve edge sharpness, which 
requires specifying the smoothing degree to equal the 
pixel values variance as shown in Fig. 9. The produced 
image of the developed multi-scale deep learning CAN 
approximation operation is the target de-noised image 
that applied on the bilateral filtered noisy image as shown 
in Fig. 10, which shows significant improvements in image 
clearness by eliminating more noise than the common bi-
lateral filtering method. However, both methods maintain 
edge sharpness for images. The effectiveness of the CAN 
network was evaluated with four key factors as listed 
in Table 1.

The success of the training increased as the evalua-
tion of the objective function progressed. The objective 
function contains the operating cost over the training 
period equaling one episode of training. The multi-scale 
CAN architecture turns out to be an applicable approach 
for selecting promising. The evaluation parameters were 

obtained when the training was close 
to 100 iterations which are sufficient to 
train the developed network successful-
ly. The developed CAN approximation 
learning approach shows potential as a 
promising approach for complex noisy 
images.

The limitation of this study is that it 
requires input noisy images with resolu-
tion no less than 256×256×3 that may not 
meet some CCTV datasets. However, this 
disadvantage can be eliminated in the fu-
ture by combining this network with an-
other flexible deep learning architecture.

7. Conclusions

1. A bilateral filtering approximation 
is created from a noisy input image by add-
ing Gaussian white-noise to a reference 
CCTV image.

2. The performance of the developed 
CAN approximation operator on the bi-
lateral filtering noisy image is proven 
when improving both the noisy reference 
image and a CCTV foggy image.

3. The three image evaluation met-
rics (SSIM, NIQE, and PSNR) evalu-
ate the developed CAN approximation 
visually and quantitatively. The ratio 
of the SSIM, NIQE, and PSNR values 
of the CAN operator to the Bilateral 

Fig.	11.	The	cropped	ROI	images	as	a	montage	from:		
a		–reference	image; b	–	noisy	image; c	–	bilateral	filtering	

operation; d	–	developed	CAN	approximation

a b

c d

Fig.	12.	The	applications	of	the	deep	learning	CAN	approximation	method:		
a	–	foggy	input	image;	b – defogged	output	image

a b

Table	1

Comparison	among	the	noisy	image,	bilateral	filtering	image,	and	CAN	
approximation	image

Factor Description Noisy Bilateral CAN

SSIM (Structural 
similarity index)

SSIM evaluates the visual 
impact of 3 image character-

istics: contrast, structure, and 
luminance in opposition to 

reference images. The nearer 
SSIM value to 1 is the superior 

of tested image to agree with 
that reference images

0.76253 0.91578 0.92673

NIQE (Naturalness 
Image Quality Eval-

uator)

Perceptual image quality is 
evaluated with Lesser NIQE 

rates pointing to better percep-
tual quality

12.1865 7.22606 6.18105

PSNR (peak signal-
to-noise ratio)

Larger PSNR values generally 
indicate better image quality

20.3254 26.421 26.786
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filtering were (0.92673/0.76253, 6.18105/12.1865, and 
26.786/20.3254) respectively, which indicate the improve-
ment when comparing the created de-noised image over the 
reference image.

Acknowledgments

I am grateful to all of those with whom I have had the 
pleasure to work during this and other related projects.

References

1. Kwon, H. (2021). MedicalGuard: U-Net Model Robust against Adversarially Perturbed Images. Security and Communication 

Networks. doi: https://doi.org/10.1155/2021/5595026

2. Zhu, G., Fu, J., Dong, J. (2020). Low Dose Mammography via Deep Learning. Journal of Physics: Conference Series. doi: https://

doi.org/10.1088/1742-6596/1626/1/012110

3. Liu, H., Wu, J., Lu, W., Onofrey, J. A., Liu, Y.-H., Liu, C. (2020). Noise reduction with cross-tracer and cross-protocol deep transfer 

learning for low-dose PET. Physics in Medicine & Biology, 65 (18). doi: https://doi.org/10.1088/1361-6560/abae08

4. Chen, Q., Xu, J., Koltun, V. (2017). Fast Image Processing with Fully-Convolutional Networks. 2017 IEEE International 

Conference on Computer Vision (ICCV). doi: https://doi.org/10.1109/ICCV.2017.273

5. Sharma, S., Tang, B., Ball, J. E., Carruth, D. W., Dabbiru, L. (2020). Recursive multi-scale image deraining with sub-pixel convolution 

based feature fusion and context aggregation. IEEE Access. doi: https://doi.org/10.1109/ACCESS.2020.3024542

6. Kim, J., Kim, J., Jang G.-J., Lee, M. (2017). Fast learning method for convolutional neural networks using extreme learning machine 

and its application to lane detection. Neural Networks, 87. doi: https://doi.org/10.1016/j.neunet.2016.12.002

7. Missert, A. D., Yu, L., Leng, S., Fletcher, J. G., McCollough, C. H. (2020). Synthesizing images from multiple kernels using a deep 

convolutional neural network. Med Phys, 47 (2). doi: https://doi.org/10.1002/mp.13918

8. Klyuzhin, I. S., Cheng, J.-C., Bevington, C., Sossi, V. (2020). Use of a Tracer-Specific Deep Artificial Neural Net to Denoise Dynamic 

PET Images. IEEE Transactions on Medical Imaging, 39 (2). doi: https://doi.org/10.1109/TMI.2019.2927199

9. Zhang, J., Zhao, Y., Wang, J., Chen, B. (2020). FedMEC: Improving Efficiency of Differentially Private Federated Learning via 

Mobile Edge Computing. Mobile Networks and Applications, 25, 2421–2433. doi: https://doi.org/10.1007/s11036-020-01586-4

10. Mehranian, A., Wollenweber, S. D., Walker, M. D., Bradley, K. M., Fielding, P. A., Su, K.-H. et. al. (2022). Image enhancement of 

whole-body oncology [18F]-FDG PET scans using deep neural networks to reduce noise. European Journal of Nuclear Medicine 

and Molecular Imaging, 49, 539–549. doi: https://doi.org/10.1007/s00259-021-05478-x

11. Lim, H., Chun, I. Y., Dewaraja, Y. K., Fessler, J. A. (2020). Improved Low-Count Quantitative PET Reconstruction With an Iterative 

Neural Network. IEEE Transactions on Medical Imaging, 39 (11,) 3512–3522. doi: https://doi.org/10.1109/TMI.2020.2998480

12. Deeba, F., Zhou, Y., Dharejo, F. A., Du, Y., Wang, X., Kun, S. (2021). Multi-scale Single Image Super-Resolution with Remote-

Sensing Application Using Transferred Wide Residual Network. Wireless Personal Communications, 120, 323–342. doi: https://

doi.org/10.1007/s11277-021-08460-w

13. Kromrey, M.-L., Tamada, D., Johno, H., Funayama, S., Nagata, N., Ichikawa, S. et. al. (2020). Reduction of respiratory motion 

artifacts in gadoxetate-enhanced MR with a deep learning–based filter using convolutional neural network. European Radiology, 

30, 5923–5932. doi: https://doi.org/10.1007/s00330-020-07006-1

14. Grabowski, D., Czyżewski, A. (2020). System for monitoring road slippery based on CCTV cameras and convolutional neural 

networks. Journal of Intelligent Information Systems, 55, 521–534. doi: https://doi.org/10.1007/S10844-020-00618-5


