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This paper analyzes the influence of kinetic and 
physical-mechanical parameters of systems on the 
characteristics of dynamic processes in moving one- 
dimensional nonlinear-elastic systems. Improved con-
venient calculation formulas have been derived that 
describe the laws of changing the amplitude-frequen-
cy characteristics of systems for both a non-resonant 
case and a resonant one. An important issue of study-
ing the influence of the speed of movement of elements 
of mechanisms on the oscillations of one-dimensional 
nonlinear-elastic systems has not been considered in 
detail until now in the scientific literature. This issue 
relates to the vibrations of shafts in gears, pipe strings 
when drilling oil and gas wells, the oscillations of tur-
bine blades and rotating turbine discs, the longitudinal 
vibrations of the beam as an element of structures. The 
main reason for this in the analytical study of dyna mic 
processes were the shortcomings of the mathematical 
apparatus for solving the corresponding nonlinear dif-
ferential equations that describe the laws of motion of 
those systems.

It was found that in the case of longitudinal oscil-
lations in the moving beam with an increase in the lon-
gitudinal speed of the medium to 10 m/s, the amplitude 
of the oscillation also increases by 13.5 %. However, 
when the longitudinal velocity of the beam is 5 m/s, the 
amplitude will increase by only 3 %. It is established 
that with the growth of the amplitude, the frequency of 
longitudinal oscillations decreases sharply, and if the 
system moves at a higher speed, for example, 20 m/s, 
it reduces the frequency of oscillation by about 13 %.

The results reported here make it possible to assess 
the effect of kinetic and physical-mechanical parame-
ters on the frequency and amplitude of oscillations. The 
research that involved the asymptotic method makes 
it possible to predict resonant phenomena and obtain 
engineering solutions to improve the efficiency of tech-
nological equipment
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1. Introduction

With the development of new technology, with increasing 
speeds, that is, during the transition to high-speed engineer-
ing, the role of fluctuations in the elements of mechanisms has 
become especially relevant. In particular, this concerns the 
processes of oscillation of the drilling part of the rig (column) 
when drilling oil and gas fields [1], fluctuations in the ring 
combustion chamber in cars [2], vibrations in the elements 
of power plants [3]. The stricter operational requirements for 
the safe and efficient operation of modern machines lead to 
the fact that increased attention in engineering calculations 
is paid to solving problems associated with longitudinal and 
torsional oscillations. Based on the theory of nonlinear oscil-
lations, important problems of machine building balancing 
machines, torsional oscillations of shafts and gears, oscilla-

tions of turbine blades and rotating turbine disks, longitudi-
nal oscillations of the beam as an element of structures, etc.  
were investigated. Important models relating to nonlinear 
oscillations are considered in the problems of helioseismo-
logy [4]. Of practical importance are these studies in models 
of nonlinear fluctuations of the railroad track [5]. Experimen-
tal research shows that even minor speeds of movement (in-
cluding angular ones) lead to changes in both quantitative 
and qualitative characteristics of dynamic processes [6]. 
Such differences are considered between the nonlinear-elas-
tic one-dimensional system and their analogs, which are not 
characterized by longitudinal (for longitudinal oscillations) 
or rotational (for torsional oscillations) movements [7].

Only after numerous experiments related to the problems 
of dynamic processes in mechanical systems, the difference 
between the mechanics of nonlinear oscillations and the me-
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chanics of linear oscillations, which is fully preserved even 
when considering weakly nonlinear oscillations, became 
apparent [8]. Mathematical models of such oscillations are 
described by differential equations, which differ from linear 
equations with constant coefficients only by the presence of 
sufficiently small terms [9]. Therefore, effective in the study 
of models of such systems are asymptotic methods of non-
linear mechanics [10].

All real physical systems are nonlinear. The peculiarity 
of nonlinear systems is the failure to fulfill the principle of 
superposition in them. This means that individual harmonic 
vibrations interact with each other. Significant difficulties 
are that it is not always possible to use the Poincare method 
to obtain results that would be suitable for studying move-
ment over a long enough period [11].

Therefore, deriving and using convenient calculation 
formulas that describe the laws of changing amplitude-fre-
quency characteristics (AFCs) and take into consideration 
kinematic and physical characteristics is a relevant task. 
Such studies are a determining factor in investigating the 
dynamics of moving environments. They are relevant both at 
the design stage and in the operation of mechanisms.

2. Literature review and problem statement

Actual oscillatory systems are characterized by various 
physical parameters, in particular, rigidity, mass, and charac-
teristics of damping. For such one-dimensional systems, dy-
namic processes are studied in detail (for practical purposes)  
if the body material matches the linear or similar law of elas-
ticity [12]. If, in addition, such systems move at constant or 
variable speeds along their geometric axis, then the study of 
the corresponding oscillations, even for the case of linearly 
elastic properties of the material, is associated with signifi-
cant mathematical difficulties.

There are several analytical methods for constructing 
and studying solutions to nonlinear differential equations 
describing the movements of mechanical systems [13]. Note 
that they reject the assumption of the error in these solutions.

Methods that have already become classical are most 
effectively applied to nonlinear systems with one degree of 
freedom and are generalized to systems with a finite num-
ber of degrees of freedom [14]. However, with an increase 
in the number of generalized coordinates of the system, the 
possibility of obtaining analytical solutions is significantly 
complicated. However, the use of computing equipment in 
some cases makes it possible to overcome such difficulties.

Many approximate methods have been devised to calculate 
the periodic movements of nonlinear systems. In particular, 
quite often there is a method of harmonious balance [15]. How-
ever, the possibility of applying this method to stationary sys-
tems is determined by the proximity of the periodic movement 
of the system to the harmonic one. This condition is usually 
satisfied only when the linear parts of the system are low-fre-
quency filters, that is, they filter out high harmonics well.

Variational methods are also used. In particular, the Os-
trohrad-Hamilton principle is used to solve the equations 
of longitudinal, torsional, and transverse vibrations of the 
rod [16]. By establishing the equivalence of solving boundary 
problems to solving problems about the extremum of the func-
tionality, this principle opens up the possibility for application 
to vibration calculations of some special methods of varia-
tional calculus. These include, first of all, the so-called direct 

methods of variational calculus, the use of which is effective 
only in approximate calculations of their natural frequencies 
and shapes of oscillations of rods of the variable cross-section 
with an uneven distribution of rigidity and mass.

The most widespread in engineering computing practice 
are the methods by Relay, Ritz, Galerkin [17]. The essence of 
these methods is the use in the calculation of transverse oscil-
lations of the heterogeneous rod of the Ostrohrad-Hamilton 
functionality. However, in this case, the influence of linear 
velocity (with longitudinal fluctuations of the beam) and an-
gular (with torsional oscillations of shafts, pipe strings when 
drilling oil and gas wells, etc.) was neglected.

These properties of nonlinear systems with concentrated 
masses and distributed parameters greatly simplify their 
research procedures. Underlying the study of such systems 
is the principle of single-frequency oscillations in non linear 
systems with many degrees of freedom and distributed 
parameters [18], the asymptotic methods for constructing 
solutions to some classes of differential equations with partial 
derivatives. However, the presence of dissipative and other 
nature of nonlinear forces, as well as external perturbing 
forces in real-world systems, leads to the rapid disappearance 
of higher harmonic oscillations. In addition, the dynamics of 
movement with a frequency close to the frequency of external 
perturbing force or basic harmonics are established.

Our review of literary sources [12–18] reveals that such an 
important issue as the influence of the speed of movement of 
elements of mechanisms on the oscillations of one-dimensional 
nonlinear elastic systems was not considered in detail. The main 
reason for this in the analytical study of dynamic processes was 
the lack of a mathematical apparatus for solving appropriate 
nonlinear differential equations that describe the laws of motion 
of those systems. It is necessary to study both a non-resonant 
case and a resonant one. This makes it possible to determine 
the influence of perturbing force with a frequency close to the 
frequency of oscillations of the system. In this regard, it becomes 
necessary to conduct research and do something in this area.

3. The aim and objectives of the study

The purpose of our study is to determine the influence 
of kinetic and physical-mechanical parameters of systems on 
the characteristics of dynamic processes of moving one-di-
mensional nonlinear-elastic systems. This makes it possible 
to predict resonant zones and establish the most effective 
modes of operation of the equipment, to establish less strin-
gent requirements for the system and its elements.

To accomplish the aim, the following tasks have been set:
– to suggest a procedure for constructing mathematical 

models that describe the dynamic processes of mechanical 
systems characterized by longitudinal (for longitudinal oscil-
lations) movement;  

– to offer a procedure for constructing mathematical 
models that describe the dynamic processes of mechanical 
systems characterized by rotational (for torsional oscilla-
tions) motion;

– to derive mathematical relations that determine the 
laws of changing the amplitude, frequency (period) of oscilla-
tion, as functions from parameters that characterize the phy-
sical-mechanical and kinematic properties of the medium;

– to conduct numerical modeling of the influence of kine-
matic and physical-mechanical quantities on the nature of 
changes in amplitude and frequency.
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4. The study materials and methods

Using an example of longitudinal oscillations of the mov-
ing beam, the influence exerted on the dynamics of the os-
cillatory process by the physical-mechanical, kinematic, and 
force factors is investigated. In particular, the speed of its lon-
gitudinal movement, nonlinearly elastic characteristics of the 
beam material, external periodic perturbations are analyzed.

In the study of single- and multifrequency modes of lon-
gitudinal oscillations of the beam, practical tasks are often 
encountered for the case of hinged ends [19]. In a linearly 
elastic statement, the Fourier method can be applied to 
them and reduce the initial problem to the study of ordinary 
differential equations or a system of ordinary differential 
equations. The current paper deals with more complex issues:

a) the beam moves along its undeformed axis at a con-
stant speed;

b) the material of the beam satisfies the elasticity close 
to the linear law;

c) external periodic disturbances act on the beam.
The one-dimensional system (beam) is investigated, 

which is described by the function of two variables u = u(x, t) 
coordinates x and time t. Such oscillations can be described 
by the differential equation [20]:

ρ ε
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where E is a module of elasticity of the first kind (Young 
modulus); X1 is the first natural shape of oscillations (am-
plitude function, which is unchanged over time); ε is some 
small positive parameter; ρ is the specific mass of the rod  
material, kg/m3.

The oscillation equation (1) for individual practical cases 
can be built by using kinematic hypotheses (flat cross-sec-
tions, straight normals, etc.). However, the disadvantage of 
such methods is the inability to derive a solution for resonant 
cases. These solutions can be obtained only taking into con-
sideration internal or external friction. Internal friction in the 
case of linear nonstationary or stationary oscillations can be 
taken into consideration using the Boca-Schlippe-Colar or 
Kelvin-Foigt hypotheses. In addition, for a stationary case, 
one can also use the method of complex elasticity mo dules (So-
rokin hypothesis). The Kelvin-Foigt hypothesis is employed 
for stationary or nonstationary oscillations, even though 
it is not experimentally confirmed for metallic materials.  
Sorokin’s linear hysteresis hypothesis corresponds to experi-
mental results but is used only in the case of fluctuations that 
have already been established. Its application on nonstatio-
nary oscillations is not mathematically correct because there 
are both stable and unstable partial solutions to the equation. 
When one discards unstable partial solutions based on phy-
sical reasons, the principle of superposition is violated.

The wave equation of the free longitudinal oscillations  
of the beam, which has a constant cross-section, can be writ-
ten as [21]:
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where s E= ρ  is the coefficient that determines the fre-
quency of the system, phase velocity (the rate of propagation 
of longitudinal waves in the rod); ρ is the specific mass of the 
rod material, kg/m3; E is the elasticity module; ε is the small 

positive parameter; t – time; f x
u
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2  is the func-

tion, infinitely differentiable in all its arguments, periodic 
relative to η with a period of 2π; d dt tη ν= ( ) is the positive 
function. When there is no perturbation (ε = 0), we obtain 
a purely harmonious oscillation u x t aX x t, cos ,( ) = ( ) +( )ω j  
where d dtj ω= . The shape of oscillations is determined by 
the function X(x), then du x t dt a X x t, sin .( ) = − ( ) +( )ω ω j   
In this case, a and j are some constants, the amplitude will 
be constant da dt = 0  with a uniform phase angle j. Thus,  
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=
2

2 0  equation (2) can be solved by 

standing waves (Fourier method) and running waves (d’Alem-
bert’s method).

To build an asymptotic solution to the perturbed system 
in which single-frequency oscillations occur, it is necessary to 
meet the following conditions:

1) in an undisturbed system, non-damping harmonic os-
cillations with a frequency ω1(τ) are possible, which depends 
only on two free constants;

2) the only solution to the equation of an undisturbed 
system is trivial; 

3) there are no internal resonances in the undisturbed 
system, that is, ω1(τ) ≠ ωk(τ) (k = 2, 3,...N);

4) initial conditions ensure the existence of a single-frequen-
cy oscillation mode, that is, u pX x

t i=
= ( )0

, ∂ ∂ = ( )=
u t qX x

x i0
, 

where p and q are real numbers, Хі(x) is a fundamental 
function of the undisturbed boundary problem, which is  
described by a wave equation and linear homogeneous 
boundary conditions (ε = 0). Under such assumptions, the 
solution to the equation of the disturbed system is to be de-
rived in the form [22]:

u x t a t X x

u a x u a x

, cos

, , , , , , ,

( ) = ( ) ( ) ( ) +

+ ( ) + ( )
ψ

ε η ψ ε η ψ1
2

2  (3)

where a(t) is the amplitude of single-frequency oscillations; 
u1(a,η,ψ,x), u2(a,η,ψ,x) are the 2π-periodic functions with 
variables ψ and η. 

Only those cases for which the length of the longitudi-
nal waves of oscillations is large compared to the size of the 
cross-sections of the beam are considered. In such cases, it is 
possible to neglect the influence of transverse movements on 
the nature of longitudinal movements.

5. Results of studying the longitudinal and torsional 
oscillations of the moving beam

5. 1. Differential equation of the longitudinal oscilla-
tions of the moving beam

Among the different types of natural fluctuations arising 
in the nonlinearly elastic rod, longitudinal fluctuations oc-
cupy a significant place. They are the easiest to investigate. 
We assume that the cross-section of the beam is flat and 
each point of such a cross-section executes only axial move-
ments (moving only along the axis). Longitudinal stretching 
and compression, which occur with such fluctuations in 
the beam, are accompanied by the occurrence of transverse 
deformations. Fig. 1 shows a load-free prismatic beam with 
a length of l, an infinitesimally small element of which is 
equal to dx and placed at a distance of x from the left end. 
Through u, the longitudinal movement of the cross-sectional 
point with the coordinate x is indicated.
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Fig.	1.	Diagram	of	forces	acting	on	a	beam	element		
moving	along	its	axis

The beam moves along its axis at a constant speed, so:
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When the beam fluctuates longitudinally, the sum of the 
longitudinal forces acting on an infinitesimal element of the 
beam (Fig. 1), in accordance with the d’Alembert’s principle, 
takes the following form:
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where S is the equivalent to internal stresses arising in 
cross-section with the coordinate x, which is directed along 
the axis; ρ is the density of material; F is the cross-sectional 
area of the beam; V is the speed of moving the beam along 

its undeformed axis; ε f u
u
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2  is the function that 

takes into consideration the nonlinear elastic properties of 
the beam material, as well as dissipative forces and resistance 
forces. Below it is accepted that they are small compared to 
nonlinearly elastic forces.

The internal force appearing in equation (6) is equal to 
the product of the material density by the volume of the small 
segment Fdx. Using Hooke’s law, the longitudinal force S can 
be expressed through longitudinal stress and through axial 
deformation in the form of:

S g EF x x= ( ) = + ( )σ ε δ σ ε ε1 , , , (7)

where E is the Young module; δ1 is a function that charac-
terizes the nonlinearity of the system. Substituting expres-
sions (4), (5) in equation (6), taking into consideration (7), 
we obtain after transformations:
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where α ρ= E . Equation (8) describes the longitudinal 
oscillations of the moving beam. It can be called a one-dimen-
sional wave to indicate that during longitudinal oscillations, 
the contour of movements spreads in the axial direction, that 
is, at the speed of sound propagation in the material.

It can be noted that equation (8) is similar to the equa-
tion of transverse oscillations of the string. The difference is 
only in the physical content of some coefficients while the 
principle remains the same. After all mathematical transfor-
mations, the solution to equation (8) is defined as follows:

– for a non-resonant case:
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where d dtψ ω=  and d dt tη ν= ( )  are the positive frequen-
cies of natural and perturbing oscillations, respectively.

5. 2. Differential equation of the torsional oscillations 
of the moving beam

Fig. 2 illustrates the torsional oscillations of a recti-
linear shaft, which rotates around its axis. Through θ, the 
angle of torsion (around the axis of the shaft) of an arbitrary 
cross-section is indicated.

2
 

 
pI d
t

∂ δγ
γ∂
MM +

 val M

2

Fig.	2.	Diagram	of	forces	acting	on	the	element		
of	the	shaft

With torsional oscillations, the equilibrium condition of 
elastic and inertial moments acting on a small element of the 
shaft, in accordance with the d’Alembert’s principle, is writ-
ten in the form of:
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where ωval dx dt=  is the angular speed of rotation of the 
shaft around its axis; G is the elasticity module of the second 
kind; Jp is the polar moment of inertia of the cross-section;  
M is a moment that is equivalent to the internal forces act-
ing in the cross-section; ∂ ∂2 2θ t  is the angular acceleration. 
According to the introduced designations, the moment of  

inertia of mass is equal to ρ ξ
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I d
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Substituting expression (12) in equation (11), after the 
transformations, we obtain:
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Equation (13) is a one-dimensional wave equation of 
torsional oscillations of the rotating shaft. Again, there is  
a certain similarity between equations (13) and (8).

Our equations coincide in form with similar equations 
and formula for longitudinal oscillations of the prismatic 
beam (8), if in the latter the values u, α, and Е are replaced 
by θ, λ, and G, respectively. Therefore, all the results for the 
problem of longitudinal oscillations of prismatic beams can 
be extended to the problems of torsional oscillations of shafts 
of the circular cross-section by simply replacing the desig-
nations. Therefore, the solution to equation (13) is defined 
similar to (9), (10) as follows:
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where θ1 is the frequency of the perturbing force that acts 
on the shaft. 

Equations (14), (15) are similar in structure to equa-
tions (9), (10). The only difference is to change some coeffi-
cients but the very nature of the dynamic process is similar 
to the longitudinal oscillations of the beam. This is due to 
similar laws that describe the vibrations of the shaft or beam, 
and the same nonlinear differential equations that characte-
rize this system.

5. 3. Laws of changing the amplitude and frequency 
of oscillation as functions of parameters that characterize  
the properties of the environment

With the help of the theory of nonlinear oscillations 
and the asymptotic method used in the current work, it is 
possible to establish the optimal characteristics of nonlinear-
ly-elastic systems. Employing mathematical models (9), (10), 
and (14), (15), it is possible to expand the operating condi-
tions of machines. Our results make it possible to utilize the 
equipment more efficiently in the event of fluctuations that 
almost always occur during operation.

Increased attention in engineering calculations is paid to 
solving problems associated with longitudinal and torsional 
oscillations. This is due to an increase in size and an increase 
in the speed of operation of modern machines. It is known 
that such important problems were investigated on the basis 
of the theory of nonlinear fluctuations. These include ba-
lancing machines, torsional vibrations of shafts and gears, 
the vibrations of turbine blades and rotating turbine discs, 
the longitudinal oscillations of the beam as an element of 
structures, etc. As a rule, with the help of this theory, it is 
possible to establish the optimal characteristics of nonlinear 
elastic systems. Such characteristics expand the operating 
conditions of machines, make it possible to use the equipment 
more efficiently in the event of fluctuations that almost al-
ways occur during the operation of the equipment.

An example of using the above defining ratios for de-
termining the AFC of a dynamic process is considered. The 
longitudinal vibrations of the movable prismatic beam on 
which the harmonic force acts are investigated, provided that 
the beam material matches the nonlinear technical law of  
elasticity. The differential equation of motion of such a sys-
tem is written in the form of:
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where [b] = m2/s2 is the coefficient having the dimensio-
nality of the velocity square; the value of H is defined as 
the maximum value of the perturbing force per unit of mass  
of the beam.

If we consider that the boundary conditions for equa-
tions (6), (13) correspond to the hinged ends, then a single- 
frequency oscillatory process under a mode close to the 
frequency of external disturbances can be described as the 
following dependence:

u x t a
l

x t, sin cos ,( ) +( )= π
ν j

moreover, the parameters a and j for a resonant case are de-
termined by a system of differential equations (10). 

The law of changing the frequency of longitudinal oscilla-
tions of the beam (in accordance with equation (9)) is found 
from the following system:
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A resonant case similar to the previously obtained system 
of equations (16) was obtained in a similar way:
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System (17) demonstrates that as the speed increases, 
the frequency of longitudinal oscillations of the beam falls on 
the parabola.

5. 4. Numerical modeling of the influence of kinemat-
ic and physical-mechanical quantities on the nature of 
changes in amplitude and frequency

For the study, the following parameters are adopted: l = 2 m, 
F = 0.12·0.085 m2, H = 500 Н, ρ = 7.900 kg/m3, E = 2.06·1011 N/m2,  
a = 0.02 m, m = 80.54 kg/m, I0 = 6.1·10–6 m4, and the frequency 
of the perturbing force ω π ρ1 8017= =l E rad s is the an-
gular frequency of the first mode of longitudinal vibrations 
of the rod with fixed ends.

Fig. 3 shows how longitudinal velocity reduces the fre-
quency of longitudinal oscillations. This decrease follows 
the parabolic law because in formula (16) there is a square of 
magnitude V, and, therefore, the effect of speed will be signi-
ficant at high speeds (already at a speed of 20 m/s – the fre-
quency of oscillations decreases by 7 %). Similarly, the initial 
amplitude affects such fluctuations. If the longitudinal velo-
city reaches 30 m/s, and the initial amplitude is 1 cm, then 
the oscillation rate of the dynamic system will be 4.5 kHz.  
This is 44 % less than with the natural oscillations of the 
beam, which does not move along its axis.

Fig. 4 shows a 3D plot of the dependence of the oscil-
lation frequency on the length and initial amplitude at 
a speed of 5 m/s.

Fig.	3.	Dependence	of	the	frequency	of	oscillation		
of	the	system	on	speed	and	amplitude

Fig.	4.	Dependence	of	the	frequency	of	longitudinal	
oscillations	on	the	length	of	the	beam	and	the	initial	

amplitude	at	a	speed	of	5	m/s

Fig. 4 shows how, as the amplitude increases, the fre-
quency of longitudinal oscillations decreases sharply. The 
length of the beam does not affect the oscillations so much 
if it is greater than 2 m; with a decrease in the length of the 
beam, the frequency also drops sharply and there may even  
be a breakdown of oscillations at a length of 0.5 m and an ini-
tial amplitude of 7 mm. If the system moves at a higher speed, 
for example, V = 20 m/s (Fig. 5), then such a failure will oc-
cur even earlier. After all, speed also reduces the frequency  
by about 13 %.

Fig.	5.	Dependence	of	the	frequency	of	longitudinal	
oscillations	on	the	length	of	the	beam	and	the	initial	

amplitude	at	a	speed	of	20	m/s

The system of equations (16) demonstrates that the con-
stant speed of the environment affects only the frequency of 
its transverse oscillations since the system is conservative.

As one can see from Fig. 6, the change in amplitude de-
pends on the longitudinal speed of the beam. Although its 
impact at low speed is not very significant. When the lon-
gitudinal speed increases to 10 m/s, the amplitude increases 
by 13.5 %. However, when the speed is equal to 5 m/s, the 
amplitude value will increase by only 3 %, that is, there will 
be no such tangible impact. Consequently, with a further 
increase in the speed of the beam, the amplitude increa-
ses sharply.
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Fig.	6.	Transient	processes	that	occur	during	longitudinal	
oscillations	of	the	beam	for	different	speeds

As one can see from Fig. 7, the increase in longitudinal 
velocity has almost no effect on changing the phase of the 
beam oscillations. The nature of change in j remains the 
same, the speed increase only slightly shifts the curve to the 
right, that is, the value of the j changes later by 0.2 s.

Fig.	7.	Dependence	of	the	phase	of	oscillations		
of	the	system	for	different	speeds	in	a	resonant	case	

(V = 10	m/s,	V = 5	m/s,	V = 0	m/s)

For such a system (17), one can build different graphic 
dependences.

6. Discussion of the influence of kinematic and physical-
mechanical quantities on the amplitude-frequency 

characteristics of oscillations

In contrast to [17] where models of oscillatory processes 
are analyzed without taking into consideration the influence 
of linear velocity (with longitudinal oscillations of the beam) 
and angular velocity (with torque oscillations of shafts), our 
mathematical dependences (16), (17) make it possible to 
determine the change in frequency and amplitude depending 
on the kinematic parameters. This is made possible using the 
asymptotic method. Built on the basis of this method, com-
putational algorithms make it possible to more accurately 

describe the dynamic process, in contrast to numerical ap-
proaches [14] where the derivation and analysis of solutions 
is much more complicated. Asymptotic approaches make it 
possible to establish an approximate solution with sufficient 
accuracy for engineering calculations, to determine various 
dynamic oscillation modes, in particular, resonant (17). This, 
in turn, makes it possible to avoid resonantly dangerous 
zones and set the optimal values of the parameters of the 
moving element, as well as reduce strict requirements for the 
system and its elements.

Our results illustrate the following properties of the con-
sidered oscillatory systems:

1. As follows from (16), the constant longitudinal velo-
city of the environment affects only the frequency of its 
transverse oscillations, since the system is conservative.

2. With increasing speed, the frequency of longitudinal 
oscillations of the beam falls according to the parabolic  
law because in formula (16) there is a square of the velo-
city value. Therefore, the impact of speed will be significant  
at high speeds (already at a speed of 20 m/s – the frequency 
of oscillations decreases by 7 %). This result follows from 
Fig. 3, which is a graphical representation of the solution  
to the equation system (16).

3. For the resonant case described by system (17), the 
change in amplitude depends on the longitudinal velocity. 
With an increase in the longitudinal speed of the environ-
ment to 10 m/s, the amplitude also increases by 13.5 %. How-
ever, when the longitudinal velocity of the beam is 5 m/s, the 
amplitude will increase by only 3 %, that is, there will be no 
such tangible effect. Consequently, with a further increase 
in the speed, the amplitude increases sharply. This is due to 
the form of the approximate solution obtained, as well as  
its graphic representation in Fig. 6.

4. The effect of longitudinal speed of movement on the 
change in amplitude and frequency of longitudinal oscil-
lations of the beam is not so noticeable. However, in engi-
neering and design calculations, even for such fluctuations, 
it is impossible to neglect such a kinematic quantity as the 
longitudinal speed of movement. The result is explained by 
the form of the right-hand part (16).

5. The approaches and results in our work can be exten-
ded for the case of mathematical models of torsional oscil-
lations represented by dependences (14), (15). Similarly, it 
is easy to construct approximate solutions with the desired 
accuracy and corresponding graphical dependences.

The proposed approach has limitations related to the 
possibility of its use in the study of tasks with a sufficiently 
low speed of movement. In addition, the problems under 
consideration imply the presence of «small» nonlinear terms 
in mathematical models (the right-hand part (6)). Subse-
quently, our results and proposed approaches can be used to 
analyze fluctuations in nonlinearly dissipative systems.

7. Conclusions

1. With the help of the asymptotic method, functional 
dependences have been derived that determine the influence 
of physical and kinematic parameters on longitudinal oscilla-
tions for a beam that moves along its axis. Unlike the earlier 
reported results in [17], the mathematical models discussed 
in the current paper make it possible to take into consider-
ation the influence of these parameters on a change in the 
amplitude and frequency of oscillation. The effectiveness 
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of the suggested procedure is, in particular, in more precise 
comparison with numerical methods [14] for predicting res-
onant modes of oscillatory process.

2. Mathematical models have been constructed that de-
scribe the dynamic processes of mechanical systems cha-
racterized by rotational motion oscillations for torsional 
oscillations. The peculiarity of our result is the ability to 
take into consideration the influence of angular velocity, 
shear module, material density, and diameter on the ampli-
tude-frequency characteristics of torsional oscillations. This 
makes it possible to more accurately establish the oscillation 
amplitude for nonlinear-elastic moving systems for resonant 
and non-resonant cases.

3. We have derived dependences, convenient for engi-
neering practice, which are more informative, compared to 
those reported earlier [17]. Such ratios make it possible to 
investigate the influence of the parameters of the moving 
environment on the nature of changes in the frequency and 
amplitude of oscillations and with the necessary accuracy to 

predict the dynamic phenomena in them. With appropriate 
use in engineering calculations of industrial equipment, our 
dependences can become the basis for the synthesis and op-
timization of the parameters of the screw and other similar 
structural elements.

4. Numerical simulation was carried out in the MAPLE 
15 programming environment, as a result of which it was 
found that at a speed of 20 m/s, the frequency of oscillations 
decreases by 7 %. The initial amplitude similarly affects such 
fluctuations. If the longitudinal velocity reaches 30 m/s, and 
the initial amplitude is 1 cm, then the frequency of oscilla-
tions of the system is 4.5 kHz. This is 44 % less than with its 
the natural oscillations of the beam, which does not move 
along its axis. When the longitudinal speed increases to 
10 m/s, the amplitude increases by 13.5 %. However, when 
the speed is equal to 5 m/s, the amplitude value will increase 
by only 3 %, that is, there will be no such tangible impact. 
Consequently, with a further increase in the speed of the 
beam, the amplitude increases sharply.
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