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In the paper, we apply the vanishing 
viscosity method for an approximate solu-
tion to the Riemann problem. This approach 
gives the effects of the accuracy of the solu-
tion and the speed of convergence by dis-
crediting time and spatial variables.

The obtained method ensures the 
smoothness of the solution without taking 
into account the capillary pressure. The 
results confirm the negligible influence 
of cross-link conditions compared to the 
classical Darcy approach.

The proposed solutions of the new 
approach are intended to improve the  
methods and schemes of discretization both 
in space and in time. This is achieved by 
minimizing viscosity, and discretization in 
space and time. These factors are of para-
mount importance for studying phenome-
na with variable saturation in the transient 
mode and analyzing water/oil flows and 
migrations in real time, since discretiza-
tion in space and time affects the accuracy 
and convergence of calculations. Our result 
in the form of obtaining viscous solutions 
of the filtration process is interesting from 
a theoretical point of view. From a practi-
cal point of view, numerical modeling allows 
early prediction of performance. Thus, the 
applied aspect of using the obtained scien-
tific result is the possibility of improving the 
process by taking into account the influence 
of phases of fluid flows
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1. Introduction

Modeling of multiphase flows in porous media is of great 
importance in many applications, such as groundwater stor-
age, transportation in a protective shell, and, in particular, 
improving oil recovery in the oil industry. Modeling the dy-
namics of non-aqueous immiscible fluid, and/or water into an 
aquifer medium, immiscible fluid migration in the unsatura-
ted soil/porous medium to the saturated zone is challenging.

Improvement of modeling and schemes of two-phase 
flow is achieved by minimizing viscosity, and discreteness in 
space and time. These factors are of paramount importance 
for studying phenomena with variable saturation in the tran-
sient mode and analyzing water/oil flows and migrations in 
real time, since discretization in space and time affects the 
accuracy and convergence of calculations. With the increase 
in computing speed and performance of modern multicore 
computers, the progress of GPUs has accelerated computing, 
and new powerful programming tools (mostly open source) 
have emerged that can improve big data modeling and ma-

nagement tools. This is an excellent and unique moment and 
an opportunity to simulate in detail the fate of pollutants 
for a flow with variable saturation and a flow jump, as in the 
Riemann problem.

Based on the above, the topic of studying the dynamics 
of immiscible liquids is very relevant from the point of view 
of the applied aspect.

2. Literature review and problem statement

The paper [1] describes the mechanism of displacement 
and the advantages of water over gas as a displacing agent 
and certain conclusions are drawn relative to the changing 
character of the displacement as depletion and on the effects 
of the properties of the fluids and of producing conditions 
on the ultimate oil recovery. The mathematical equations 
needed are derived by applying Darcy’s law to the flowing 
phases, and by material balance considerations. In both the 
Buckley and Leverett method and the method discussed 



Mathematics and Cybernetics – applied aspects 

41

in [2], a linear sand section is assumed. Thus, the exploitation 
contemplates oil displacement as an immiscible phase and the 
method described in this paper can be applied equally well to 
the evaluation of oil recovery by linear water flooding or wa-
ter drive, in [3] an alternative method via the characteristic 
technique to solve the Buckley and Leverett equation is used.

Solutions are derived from the horizontal, steady flow of 
two viscous incompressible fluids in the work [4]. One-di-
mensional unidirectional displacement of a nonwetting fluid 
is shown to occur increasingly like a shock front as pore size 
distribution widens; and the radial displacement of a nonwet-
ting phase normally resident at low concentration is shown 
to be an inefficient process.

The classical mathematical model of multiphase flows 
was proposed in [5], where Darcy’s law was generalized for 
single-phase flow.

To read scientific studies on the relationships between 
phases in multiphase flow modeling, refer to [6] for analysis 
and links to these papers. In particular, in the paper, the wa-
terfront position is clearly shown to be significantly different 
from one model to the other. The authors proposed a method 
that allows taking into account the relationship between 
phases using any classical software capable of solving the clas-
sical Darcy system. Obviously, several other aspects need to be 
investigated such as the injection rate, the effect of gravity, etc. 

Fluid flow through a porous medium is common in many 
areas of technology and science. At the same time, the prob-
lem of single-phase flow has been well studied both from an 
engineering and mathematical point of view [7]. The classical 
Darcy’s law, widely used for practical purposes, can be ob-
tained by modeling a sluggishly current incompressible flow. 
In practice, a porous medium is considered a periodic array of 
cells filled with Newtonian fluid. The problem is formulated 
at the cell scale (microscale) and then scaled by homogeni-
zation in the entire area, providing the classical Darcy’s law.

According to Darcy’s equation, a porous solid has a resis-
tance to the liquid in the pores, which is directly proportional 
to the speed of the liquid relative to the solid, usually called 
the drag coefficient.

Oil production in most cases occurs when it is displaced in 
the pore space of the productive reservoir by water or gas. This 
process is used in natural operating modes and in artificial 
methods of maintaining reservoir pressure by flooding or gas 
injection.  The theory of isothermal filtration serves as the ba-
sis for calculating such processes. In [8], the history of the de-
velopment of the modern theory of shock waves is considered.  
Several attempts at an early theory quickly collapsed for 
a lack of foundations in mathematics and thermodynamics.

Simulation can be without taking into account non-
linear effects [9], assuming that the flow of two immiscible 
fluids is separated by a smooth boundary layer. The aim of 
the work [10] was to analyze the flow of a mixture of two 
immiscible liquids whose viscosity depends on pressure, 
generalizing the classical Buckley-Leverett model, a typical 
example being crude oils. As a result, they obtain a system of 
equations for saturation and pressure, which is reduced to the 
classical Buckley-Leverett equation when both viscosities 
are independent of pressure. Below in the paper, we modify 
the model with a transition to the Riemann problem. The 
work [11] presents a high-resolution numerical model that 
simulates three-phase immiscible fluid flow in both unsatu-
rated and saturated zone in a porous aquifer. Some models 
consider the exchange of momentum between the phases of 
flows of two immiscible fluids in a porous medium. Creeping 

flow models are sometimes used that include an explicit 
relationship between both phases by adding cross-terms to 
the generalized Darcy’s law. The results [12] indicate that 
the effects of momentum exchange on two-phase flow may 
increase with the permeability of the porous medium when 
the influence of the fluid-fluid interfaces becomes similar to 
that of the solid-fluid interfaces.

Several fundamental laws of physics take the form of  
a conservation equation.

The lack of regularity is a major source of complexity 
since most of the standard differential calculus tools are not 
applicable. Special methods are needed, in particular, the 
main building block is the so-called Riemann problem, in 
which the initial data are piecewise constant with one jump 
at the origin.

Definitions of the standard Riemann semigroup and visco-
sity solutions for a nonlinear hyperbolic system of conserva-
tion laws are given in [13]. These definitions were motivated 
by a natural hypothesis. Namely, viscosity solutions (charac-
terized in terms of local integral estimates) must exactly coin-
cide with the limits of approximations of vanishing viscosity. 
In the paper, we adopt a similar definition of viscosity solu-
tions and prove that the above conjecture is indeed true. Our 
results apply to the more general case of (possibly nonconser-
vative) quasilinear strictly hyperbolic systems. In particular, 
we obtain the uniqueness of the vanishing viscosity limit.

For a comprehensive account of the recent uniqueness 
and stability theory, we refer to [1, 8].

The mathematical model in [14] consists of the usual 
equations derived from the mass conservation of both fluids 
along with the Darcy-Muskat and the capillary pressure laws.  
The major difficulties related to this model are in the non-
linear degenerate structure of the equations, as well as in the 
coupling in the system.

Many numerical experiments assume convergence in the 
local limit. However, recent analytical results state that:

a) in the general case, convergence does not take place, 
since counterexamples can be given; 

b) convergence can be restored by adding viscosity to 
both local and non-local equations. 

Guided by the analytical results, the role of numerical 
viscosity in the numerical study of the local limit of nonlocal 
conservation laws is very important. In particular, [15] shows 
that the numerical viscosity of Lax-Friedrichs-type schemes 
jeopardizes the reliability of the numerical scheme and erro-
neously determines convergence in cases where convergence 
is excluded by analytical results. 

The Buckley-Leverett model (1942) is the basis of many 
modern studies. By applying the Buckley-Leverett displace-
ment mechanism, a mathematical model was developed to 
predict the efficiency of flooding in stratified reservoirs [16]; 
a model is developed for the prediction of waterflooding per-
formance in stratified reservoirs using the Buckley-Leverett 
displacement theory [17] and a theoretical relationship is 
deduced to describe dynamic changes of the front of water 
injection, water saturation of producing well [18].

The model from [19] is a neural network that is coope-
ratively trained to match any available experimental data 
and obey the governing physical laws. This approach is being 
used as a new way to model and correlate with the history 
of flow and transport problems in porous media. The me-
thodology is used to model the 2-phase immiscible transport 
problem (Buckley-Leverett). An additional benefit of the 
approach is that it is highly scalable and can leverage different 
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computing architectures, including CPUs, GPUs, and dis-
tributed clusters. All of the above works emphasize the rele-
vance of studying the modern theory of Buckley and Leverett.

A high-resolution numerical model simulating a three-
phase immiscible fluid flow in both unsaturated and satura-
ted zones in a porous aquifer was proposed in [11]. There, the 
main approach to the numerical solution of the problem is 
based on the (complete) explicit evolution of discretized (in 
space) variables.

Numerical modeling of the flow of immiscible fluids is of 
great importance in many areas for the proper management  
of underground resources, in particular water. Very relevant 
is the recently presented high-resolution numerical model 
that simulates a three-phase immiscible fluid flow in both 
unsaturated and saturated zones in a porous aquifer [20]. 

In the theory of immiscible two-phase flow presented 
in [21], the conservation of mass is provided by general equa-
tions, which require some additions for a porous medium. The 
basic equation can be derived from the relative permeability 
data. It turns out to have a surprisingly simple form when ex-
pressed in the correct variables [22]. The resulting system of 
equations can then be solved for a structured porous medium. 
However, the question remains what happens when the po-
rous medium has a nontrivial structure along its entire length.

Recent work [23] is devoted to the study of the Cauchy 
problem for a system of differential equations describing the 
unsteady flow of a compressible fluid in a homogeneous and 
inhomogeneous porous medium with a general nonlinear fil-
tration law in a three-dimensional space. In [23–25], using the 
methods of four-dimensional mathematics, a special four-di-
mensional space of space-time coordinates was developed, as 
well as a functional space of regular functions, and analytical 
conditions were obtained in the general form of the law of non-
linear filtration for which the Cauchy problem has a solution.

We now summarize the review and provide a brief analy-
sis to deduce the purpose of our work. The study of the gene-
ral theory of two-phase immiscible flow in heterogeneous po-
rous media is a complex task with applications to petroleum 
engineering and hydrogeology. As already noted in the works 
cited above, many methods have been proposed for various 
aspects of this problem. Although the physical mechanisms 
of the development of large-scale regularities in such flows 
have been studied only partially. The circle of ideas has been 
applied in contexts, usually where solutions of high quality 
are of critical importance and where conventional difference 
methods, which excel for smooth solutions, perform poorly. 
When two immiscible fluids compete for the same pore 
space, we are dealing with the immiscible two-phase flow in 
porous media. The main problem in studying porous media 
is to find the correct description of an immiscible two-phase 
flow at the continuum level, that is, at scales where a porous 
medium can be considered as a continuum. It requires the 
solution of the Riemann problem for the hyperbolic system in 
order to advance the tracked discontinuities in the solution.  
In two space dimensions, the propagation of a tracked dis-
continuity is achieved by local splitting of the hyperbolic 
operator in normal and tangential directions. As the solution 
is smooth in the tangential direction on each side of a dis-
continuity, it suffices to look at the RP solution in one space 
dimension, corresponding to an analysis of the propagation 
of the discontinuity in the normal direction. Equations in 
one spatial dimension can be written as the familiar Buckley- 
Leverett equation. Research at the pore level of an immis-
cible two-phase flow is developing at a very high rate due to 

advances in experimental methods combined with an explo-
sive increase in computing power. For the case of a nonlinear 
fractional flow function f s C( ) ∈ 2  having at most a finite 
number of inflection points (as in immiscible flow), the Rie-
mann problem solution is described in terms of a single family 
of waves consisting of both rarefaction waves (across which 
s varies smoothly) and shock waves (across which s varies 
discontinuously). By adding a small viscosity to the original 
system, the correct parabolic equation can be obtained. The 
problem is that it is necessary to prove the uniqueness of the 
limit of vanishing viscosity when the viscous term parabolic 
equation tends to zero, which we will deal with below.

3. The aim and objectives of the study

The aim of this study is to identify regularities of the flow 
of a mixture of two immiscible fluids whose viscosity depends 
on pressure, generalizing the classical Buckley-Leverett model.  
Such extension is mainly motivated by the possibility to ob-
tain the convergence of the viscous approximation, and the 
uniqueness of the solution of the original Buckley-Leverett 
equation. Therefore, the scientific component of the aim is to 
develop an alternative approach to the uniqueness and sta-
bility of solutions with vanishing viscosity, where v = v(x) is 
piecewise smooth with a finite number of jumps. In light of the 
results of experimental observations of the flow of mixtures of 
oil and/or water through sands, certain conclusions are drawn:

– relative to the changing character of the displacement 
as depletion proceeds and on the effects of the properties  
of the fluids;

– and of producing conditions on the ultimate oil recovery.
To achieve the aim, the following objectives are accom-

plished:
– to introduce an auxiliary boundary value problem 

called the Riemann problem, where the initial data are piece-
wise constant with a single jump at the origin;

– to apply the method of vanishing viscosity to solve the 
Riemann problem, obtain an approximate solution to the 
general Cauchy problem;

– to present a numerical solution of the problem under 
consideration to confirm or refute the convergence of the 
found solution to a function well approximated by the solu-
tion of the corresponding Riemann problem. 

4. Materials and methods

Consider filtration of a two-phase liquid in a porous 
medium in water-pressure mode. The field is covered by  
a network of wells and their location schemes can be different. 
The oil-bearing formation is considered unlimited, of con-
stant thickness, the porous medium is non-deformable, and 
the ratio of capillary pressure to the total hydrodynamic 
pressure drop is small, which allows considering the problem 
to obey the classical Buckley-Leverett model. 

High-precision modeling of immiscible two-phase flows 
in porous media is very important. But even with such 
high-precision numerical modeling, the lack or fuzziness 
of information, for example, about: the relative permea-
bility and functions of the capillary pressure in them [26];  
single-phase turbulent flow [27]; two-phase pressure drops 
for homogeneous separated flow [28], does not allow a de-
tailed comparison with experiments.
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This is the mass conservation equation for two phases (oil 
and water):

∂
∂

+ ∇⋅( ) =
r f

r νο ο
ο ο

S
t

0,

∂
∂

+ ∇⋅( ) =
r f

r νϖ ϖ
ϖ ϖ

S
t

0, (1)

with the natural physical constraint S0+Sw = 1, where f – the 
effective porosity of the reservoir; r0, S0 and rϖ, Sϖ – the den-
sity and saturations of oil and water, respectively; v0, p0 and  
vϖ, pϖ – the superficial velocity and the pressure of the oil 
and the water phases, respectively.

The Cauchy problem for a system of conservation laws in 
one space dimension takes the form:

u f ut x
+ ( ) = 0,  (2)

u x u x0, ,( ) = ( )  (3)

here u = (u0, uϖ) is the vector of conserved quantities (oil 
and water, respectively), while the components of f = (f0, fϖ) 
are the fluxes of oil and water, respectively. We assume that 
the flux function f: R2→R2 is smooth and that the system is 
strictly hyperbolic; i.e., at each point u, the Jacobian matrix 
A = Df(u) has n real, distinct eigenvalues λ1(u) < … < λn(u). 
For t, u, f:

a) the time variable t ∈ R+, the space variable is one 
dimensional and for the time being, we let x vary on the 
whole R, so x ∈ R;

b) the unknown is u: R+× R N;
c) the flux is f: RN→RN is smooth (as smooth as needed, 

as a matter of fact, f ∈ C2 is usually enough). 
One can then select bases of right t and left eigenvec-

tors ri(u), li(u) normalized so that:

ri ≡ 1, l r
i j

i ji i⋅ =
=
≠





1

0

if

if

,

.

The Riemann problem, in which the initial data is piece-
wise constant with one jump at the origin, is written in the 
following form:

u x
u x

u x
0

0

0
,

,

.
( ) =

<
>







−

+

if

if
 (4)

The viscosity solution of a Cauchy problem is unique and 
coincides with the limit of Glimm and front-tracking appro-
ximations for a strictly hyperbolic system of conservation 
laws satisfy the standard assumptions.

For each i ∈ {1, …, n}, the i-th characteristic field is either 
linearly degenerate, so that:

D u r ui iλ ( )⋅ ( ) = 0,

for all u, or else it is genuinely nonlinear ; i.e.,

D u r ui iλ ( )⋅ ( ) > 0,

for all u.
For the time being we focus on the Cauchy problem ob-

tained by coupling 1 (2) with the datum (3), where u x( ) is  
a given function u x R N( ) →: .R

Lemma 1 (Rankine-Hugoniot conditions). Fix λ ∈ R, u–, 
u+ in R N. The function:

ν
ν λ
ν λ

t x
x t

x t
,

,

,
( ) =

<
>







−

+

if

if
 (5)

is a weak solution of (2) if and only if the so-called Ran-
kine-Hugoniot conditions hold, i.e. [3–6].

f u u u u+ − + −−( ) = −( )λ .   (6)

Definition. Assume that system (1) has at least one entro-
py-entropy flux pair (η, q) with η convex. A locally bounded 
function u(x): R+×R→R N is an entropy admissible solution  
of (2) if it is a weak solution of (1) and the inequality:

η u u( ) + ( ) ≤
t x

q 0,  (7)

is satisfied in the sense of distributions for every entropy- 
entropy flux pair (η, q) with η convex. In other words,

η
j j

u u( ) + ( ) ≥( )

∞

∫∫ ( )
,

t x
R

q 0
0

 (8)

for every j ∈ ∞( ) ×( )∞C Rc 0, , such that j(t, x) ≥ 0 every (t, x).
Lemma 2. Fix λ ∈ R, u–, u+ in R N and let v be the function 

defined as in (5). Then the entropy inequality (8) is satisfied 
for every test function j ≥ 0 if and only if:

λ η u u u u+ − + −−( )( ) ≥ ( ) − ( )
t

q q .  (9)

The so-called Riemann problem is a particular type of Cau-
chy problem, which is obtained by coupling the system of con-
servation laws (2) with an initial datum in the form (5), where 
u– and u+ are given states in RN. Note that the Cauchy problem 
(2), (3) has a solution in the form (5), provided λ ∈ R satisfies 
the Rankine-Hugoniot conditions (5). Also, we recall Lemma 2, 
which says that v in (5) is entropy admissible if and only if (8) is 
satisfied for every entropy-entropy flux pair (η, q) with η convex.

A long-standing conjecture is that the entropic solutions 
of the hyperbolic system (2) coincide with the limits of so-
lutions to the parabolic system:

u f u ut x xx+ ( ) = ε ,  (10)

when the viscosity coefficient ε→0 because of the recent 
unique results, it looks indeed very plausible that the vanishing 
viscosity limit should single out the unique «good» solution of 
the Cauchy problem, satisfying the appropriate entropy condi-
tions. In earlier literature, results in this direction were based 
on three main techniques: Comparison principles for parabolic 
equations; Singular perturbations; Compensated compactness. 

In our point of view, to develop a satisfactory theory of 
vanishing viscosity limits, the heart of the matter is to estab-
lish a priori BV bounds on solutions u(t, x) of (9) ε, uniformly 
valid for all t ∈ [0, ∞] and ε > 0. This is indeed what we will 
accomplish in the present paper. Our results apply, more  
generally, to strictly hyperbolic 2×2 systems with viscosity, 
not necessarily in conservation form:

u A u u ut x xx+ ( ) = ε .

The modeling of multiphase flows in porous media is of 
major importance in many fields of applications. Particularly  
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in enhanced oil recovery applications of petroleum engineering. 
The classical mathematical models for multiphase flows are 
based on a straightforward generalization of Darcy’s law for 
a single-phase flow [9]. A natural question arises about the 
importance of the influence of one phase on another phase. 
In some applications, it is shown that the coupling effects are 
small and therefore they can be neglected.

We show below the construction of the solution of the 
weak admissible solution of the Riemann problem (1)–(3).

Remark. In the case of one-dimensional flow of incom-
pressible immiscible liquids under conditions where capillary 
pressure and the influence of gravity can be ignored, the dis-
placement process allows a simple mathematical description.

It is known that if ε > 0 is the coefficient of viscosity, then 
the viscous friction force acting on each particle of the porous 
medium x(t) and related to the unit of mass can be assumed 
to be equal to ε ∙uxx. Then returning to the mathematical mo-
del of Buckley-Leverett (then instead of u(t, x), we will write 
in s(t, x) – water saturation):

s s s st x xx+ ⋅ = ⋅ε , (11)

where ′ ( ) =F s s1 2  is the Leverett function.
The assumed method at ε→0 is called the «vanishing 

viscosity» method. Given that:

s s
s

t x

x

= ⋅ −






ε
2

2
,

we introduce the potential u(x, t) defined by the equality (11):

du s
s

dtx

x

+ ⋅ −






ε
2

2
,

In this case,

u sx = ,

u s
s

u
u x

t x xx= ⋅ − = ⋅ −ε ε
2 2

2 2
,

that is, the function u(x, t) satisfies the equation:

u u ut x xx+ = ⋅
1
2

2 ε .  (12)

Make a replacement in (12):

u z= − ⋅2ε ln .

Then:

u
z
zt
t= − ⋅2ε ,

u
z
zx
x= − ⋅2ε ,

u
z
z

z
zxx

xx x= − ⋅ + ⋅2 2
2

2ε ε .

Equation (11) will take the form:

− ⋅ + ⋅ = − ⋅ + ⋅2 2 2 22
2

2
2 2

2

2ε ε ε ε
z
z

z
z

z
z

z
z

t x xx x ,

in other words, the thermal conductivity equation is ob-
tained regarding z(x, t):

z zt xx= ⋅ε . (13)

This method is often called the Florin-Hopf-Cole trans-
formation. From the substitutions made, it follows that the 
solution of equation (10) has the form:

s u
z
zx
x= = − ⋅2ε ,

where z(x, t) is the solution (13).
Suppose that a wave of the form propagates through an 

injection well:

s x t s
s s

x t
s ats t

s ats t
,

,

,
,( ) = +

−
⋅ + −( )( ) =

<
>





−
+ − −

+2
1 sign ω

ω
ω

 (14)

where ω = const. Suppose that there is a generalized solution 
to the equation of the form (2) in the sense of fulfilling the 
integral identity. To do this, it is necessary and sufficient that 
the condition is met on the break line ω = const:

ω = =
( ) − ( )

−
+ −

+ −

dx
dt

F s F s

s s
. (15)

The idea of the «vanishing viscosity» method, in this case, 
is that this solution (discontinuous) of the form (14) is ac-
ceptable. That is, for x ≠ ω solutions of sε(x, t) of the equation:

s F s st x xx
ε ε εε= +( ) = ⋅( ) ,  (16)

for ε→0, it is obtained as a pointwise limit.
Given the structure of the solution s(x, t), we will look for 

a solution to equation (16) in the form:

s x t u
x tε ξ ξ

ω
ε

, , .( ) = ( ) =
−

 (17)

Substituting a solution of this type in (16), we get that 
the function u(ξ) is the solution of the equation:

− ⋅ ′ + ( )( )′ = ′′ω υ υ υF . (18)

At x ≠ ωt, the function s
x tε υ

ω
ε

=
−





 pointwise approxi-

mates for ε→0 function s = (x, t) of the form (6) if and only if 
the function υ(ξ) satisfies the boundary conditions:

s n t s s n t s−( ) = ( ) =− +, , , ,  (19)

where n is a sufficiently large distance from the well.
It should be noted that υ(t) is not the only solution, i.e. 

there can be υ υ ξ ξ= −( )0 , for any ξ0 ∈ R.
Integrating (18), we get:

′ = − ⋅ + ( )+ = ( )+υ ω υ υ υΦ ΦC C ,  C = const.  (20)

If these conditions are met, the solutions of equation (18) 
that interest us are given by the formula.

Following the method of Gelfand, for an autonomous equa-
tion (20) with a smooth right part Φ υ( )+C  to have a solution 
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that tends to the constants s– at n→–∞ and s+ at n→+∞, it 
is necessary and sufficient to meet the following conditions:

a) s– and s+ – special points of the original equation, i.e., 
zero on the right side of the equation (20):

Φ Φυ υ( )+ = ( )+ =C C 0,

that is, as a result, we have:

 Φ Φs s C− +( ) = ( ) = − ;

b) another option between s– and s+, there are no other 
special points and the right part (20) on the specified interval:

1) positive at s– < s+ the solution increases, i.e. 

 Φ Φυ( ) − ( ) >−s 0, ∀ ∈( )− +υ s s, .  (21)

2) negative at s– > s+, i.e. the solution decreases:

 Φ Φυ( ) − ( ) <+s 0, ∀ ∈( )+ −υ s s, .  (22)

If these conditions are met, the solutions of equation (10) 
that interest us are given by the formula:

dυ
υ

ξ ξ
υ

υ

 Φ Φ( ) − ( ) = −
−

∫ s
0

0 ,

where υ0 2
=

++ −s s
 – the location of wells.

The given conditions (21), (22) are an analytical record 
of the tolerance condition. By varying s–, s+ and F(s), various 
converging sequences of valid generalized solutions can be 
constructed. At the same time, any point-to-point limits of 
acceptable solutions are also considered acceptable.

5. Results of the study of the accuracy of the coincidence 
of the viscous solution with the limits of approximations 

of vanishing viscosity

5. 1. Introduce an auxiliary boundary value problem 
called the Riemann problem, where the initial data are 
piecewise constant with a single jump at the origin

We introduced the auxiliary Riemann problem as fol-
lows: the Riemann problem (4) is the initial value problem 
when the initial data consists of two constant states u– and 
u+ se parated by a jump discontinuity at x = 0 (we use lower 
10 cases u for the unknown because it is a scalar). That is, the 
initial value problem (2) and (3), where (3) is implied as (4):

u x
u x

u x
0

0

0
,

,

.
( ) =

<
>







−

+

if

if

Weak solutions to the Cauchy problem (2) and (3) were 
constructed in the famous work of Glimm. This global exis-
tence result is true for small initial data and under the addi-
tional assumption from section 4 above.

5. 2. Applying a modification of the vanishing viscosity 
method to the solution of the Riemann problem construc
ted in the previous step above, we obtain an approximate 
solution to the general Cauchy problem

A basic step is thus the analysis of the vanishing viscosity 
solution to a general Riemann problem. The construction 

given here extends the previous results to general, noncon-
servative hyperbolic systems. As in the cases considered 
in [26] for a given left state s–, there exists a Lipschitz 
continuous curve of right states s+, which can be connected  
to u– by i-waves. These right states are here obtained by 
looking at the fixed point of a suitable contractive transfor-
mation. Remarkably, our center manifold plays again a key 
role in defining this transformation. Our main results at this 
stage are presented as follows.

As a result, we get that the solution s(x, t) can jump from 
s– to s+ (in the direction of increasing x). That is, this jump oc-
curs during the transition from the water phase to the oil phase.  
In this case, the conditions for an acceptable gap are met (Fig. 1):

a) for s– < s+, the graph of the function F(s) on the seg-
ment [s–, s+] must be located below the chord with the ends 
(s–, F(s)) and (s+, F(s+));

b) in the case of s– > s+, the graph of the function F(s) on 
the segment [s+, s–] must be located no higher than the chord 
with the ends (s–, F(s)) and (s+, F(s+)).

 

Fig.	1.	Construction	of	chord	(s, F(s))	for	front	saturation

The obtained conditions make it possible to regulate 
filtration processes in the bottom hole formation zone tak-
ing into account the initial information, in particular, some  
data from Table 1.

Table	1

Initial	data	used	in	modeling	with	the	one-dimensional	
Buckley-Leverett	problem

Parameter Value

Porosity 0.28

Oil viscosity 1.e-4 kg/ms

Water viscosity 0.5e-4 kg/ms

Oil density 881 kg/m3

Water density 1,000 kg/m3

Water relative perm calculation  
for a given water saturation

11.174

Oil relative perm calculation  
for a given water saturation

3.326

Cross-sectional area 0.4 m2

The position of the shock as it progresses at different time 
steps is shown in Fig. 2.

Fig. 3 shows a difference in the water saturation front Swf. 
Therefore, one can see a difference in the water saturation 
front position. Observe that, in this case, the cross-terms  
are not equal.
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Fig.	2.	Water	saturation	profile	as	a	function	of	time	«t»		

and	distance	«x»

 
Fig.	3. Fractional	flow	curve	in	terms	of	water	saturation	Sw :	

red	–	derivative	dfw/dSw ;	blue	–	fractional	flow	fw

The gap tolerance conditions obtained by the «vanishing 
viscosity» method are in perfect agreement with the forecast 
calculations. Indeed, the convexity property of the func-
tion F(s) in the Buckley-Leverett mathematical model (up) 
down by definition means that any chord connecting points 
in a straight line shows the validity of the Buckley-Leverett 
mathematical model itself.

5. 3. Present a numerical solution of the problem under 
consideration to confirm or refute the convergence of the 
found solution to a function well approximated by the 
solution of the corresponding Riemann problem

It is rather well-known that the difficulty resides in the fact 
that the typical water fractional flow curve has an inflection 
point, which provides two values of water saturation at the 
same time since df dSw w  will reach a maximum value (Fig. 4) 
for typical examples with capillary pressure. 

 
Fig.	4.	Derivative	of	fractional	flow	dfw/dSw

The numerical experiments suggest convergence in the 
local limit and convergence can be recovered provided vis-
cosity is added to both the local and the nonlocal equations. 
Motivated by these analytic results, we investigate the role  
of numerical viscosity in the numerical study of the local 
limit of nonlocal conservation laws (Table 2).

Table	2
Results	of	calculations	of	experimental	data

Sw dfs/dSw

0.500 0.152

0.525 0.313

0.550 0.487

0.575 0.889

0.600 1.519

0.625 2.721

0.650 4.219

0.675 5.817

0.700 6.613

The model of nonlinear wave propagation and how the use 
of the method allows you to cope with sharp fronts (or discon-
tinuities) and develop them correctly, as well as to follow the 
formation of a jump and rarefaction (Fig. 5, a, b), is presented. 
The formation of an abrupt jump (jump) is observed.

 
 
 

 

 
 
 

 

a

b

Fig.	5.	Shock	and	rarefaction	formation:		
a	–	fractional	flow	graph; b –	classical	graph	of	oil		

and	water	phases

Fig. 5 shows the fractional flow graph associated with 
the classical Darcy’s system together with the one associated 
with the coupled system for three values of tolerances as  
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indicated above. For instance, if one chooses to use the Welge 
approach to locate the front, that is, if we trace a line passing 
through the saturation Swc, corresponding to the beginning 
of the water injection, and tangent to the fractional flow, we 
observe different values of Swf affecting the waterfront posi-
tion and therefore it is advance. Fig. 5, b shows the classical 
graph of oil and water phases, respectively, corresponding to 
the tolerances above.

6. Discussion of the results, the main result of the limits 
of vanishing viscosity approximations

Our result is based on the fact that the entropy solutions 
of the hyperbolic system (2), (3) indeed coincide with the 
exceptions of the parabolic system (10). In our point of 
view, to develop a satisfactory theory of vanishing viscosity 
limits, the essence of the question is a good approximation 
of the limits of the solution of a parabolic system. Roughly 
speaking, a function u is a viscosity solution if: in a forward 
neighborhood of each point of the jump, the function u is well 
approximated by the self-similar solution of the correspond-
ing Riemann problem.

In principle, different subsequences ε→0 may yield diffe-
rent limits. To achieve uniqueness, it is sufficient to define a vis-
cous solution for a hyperbolic system of conservation laws (2), 
(3) based on local integral estimates (7), (8). By prioritizing in 
this way, we can also visualize the results of the shock position 
estimation as it develops at different time steps (Fig. 2).

In other early works, the results of numerical simu-
lation of the transition flow of saturated-unsaturated wa-
ter [2, 4, 13–15] are presented, which complicates the 
analysis of the viscous solution. We provide an improved 
Buckley-Leverett theory model for each phase of a two-phase 
fluid flow depending on saturation, capillary pressure, perme-
ability and porosity of various phases, and initial and boun-
dary conditions. The improvement of the model is carried out 
by calculating the mass conservation coupling equation for 
each phase. Here, we presented a method allowing any clas-
sical existing code or software based on the classical Darcy’s 
approach taking into account the coupling between phases.

We agree that most industrial regulations use the classical 
Darcy approach for modeling multiphase flows, and any de-
viation from this scenario will be called a «Darcy-free flow». 
In our case, we can avoid this because the system (2), (3) is 
not a physical, but rather an artificial mathematical system 
that can be solved using standard petroleum solutions, and 
their artificial solution can be manipulated to obtain a solu-
tion to the physical system (1).

The considered method, based on the Buckley-Leverett 
theory, uses vanishing viscosity for frontal advance, but in 
general, it can be applied to a variety of systems that use 

different technological approaches and opens the way for 
further research. In particular, stochastic analysis of two-
phase flow in stratified porous media seems promising [13]. 
Stochastic models, which include some assumptions about 
porous media, simplify and stabilize fuzzy information.

We neglect the effects of capillarity and the medium is 
originally saturated with oil. This should be taken into ac-
count in practice. Since growing experimental, computation-
al and theoretical evidence should be noted that the consti-
tutive equation for the average seepage velocity has the form 
of a power law in the pressure gradient over a wide range  
of capillary numbers.

In the future, we plan to use stochastic data and ana-
lyze them.

7. Conclusions

1. The main step is to analyze the solution with vanishing 
viscosity of the general Riemann problem, whose actions are 
theoretically explained by the fact that for a given left state 
u– there is a continuous Lipschitz curve of right states u+:

– in a forward neighborhood of each point of the jump, 
the function u is well approximated by the self-similar solu-
tion of the corresponding Riemann problem;

– on a region where its total variation is small, u can be 
accurately approximated by the solution of a linear system 
with a constant coefficient.

2. Solutions are derived for the horizontal, steady flow of 
two viscous incompressible fluids, including the permeability 
endpoints, which can be used to generate the relative perme-
ability curves of the Buckley-Leverett class. From a qualita-
tive point of view, we find an important result. The relative 
permeabilities depend on the fluid pressure and this occurs 
also when we model the solid matrix as a rigid medium. This 
fact helps us to understand some remarkable quantitative dif-
ferences of experimental data with the classical model. More-
over, the mathematical analysis we have provided allows us 
to gain insights to perform rational experiments to validate 
the theoretical models.

3. The numerical solution of the model under consider-
ation confirms the convergence of the left and right limits of 
the found solution to a function that well approximates the 
solution of the original corresponding Riemann problem:

– depending on the wettability, capillary action, and 
pore-size distribution, low-permeability media also favor 
the appearance of preferential flow paths for the phases and 
therefore further limit momentum exchange by reducing the 
fluid-fluid interfacial area;

– highly permeable media may yield large fluid-fluid in-
terfaces relative to the fluid-solid ones, therefore maximizing 
exchanges.
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