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This paper has defined and investigated for stabi
lity the steady state modes of motion of a single-mass 
resonant vibratory machine. The vibratory machine 
has a platform that is supported by viscoelastic sup-
ports. The platform moves rectilinearly translationally.  
A vibration exciter is installed on the platform. The 
vibration exciter consists of N identical loads – balls, 
rollers, or pendulums. The center of mass of each load 
can move in a circle of a certain radius with a center 
on the longitudinal axis of the rotor. Each load, when 
moving relative to the body of the vibration exciter, is 
exposed to a viscous resistance force.

It was established theoretically that with small 
forces of viscous resistance and any number of loads, 
the vibratory machine has jamming modes under which 
the loads that are collected form a conditional com-
bined load and lag behind the rotor. In this case, there 
are two bifurcation speeds of the rotor. At speeds less 
than the first bifurcation speed, the vibratory machine 
has one single (first) jamming mode. When the first 
bifurcation speed is exceeded, the second and third 
jamming modes appear. When the second bifurcation 
speed is exceeded, the first and second jamming modes 
disappear. The first jamming mode is resonant.

In the cases of two or more loads, the vibratory 
machine also has an auto balancing mode (no vibra-
tions), under which the loads rotate synchronously 
with the body of the vibration exciter and mutually 
balance each other.

With small forces of viscous resistance, the compu-
tational experiment found that odd jamming modes are 
stable if they are numbered in ascending order of the 
frequency of load jamming. An auto-balancing mode 
is stable at the rotor speeds above the resonance. For 
the onset of a resonant mode of motion of the vibratory 
machine, it is enough to slowly accelerate the rotor to  
a speed lower than the second bifurcation speed.

The results reported here are applicable in the 
design of resonant single-mass vibratory machines 
with inertial vibration exciters of the ball, roller, or 
pendulum type
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1. Introduction

In powerful resonant vibratory machines, the intense 
vibrations of the platforms are provided by relatively small-
mass inertial vibration exciters [1]. This increases the pro-
ductivity of vibratory machines, reduces material intensity, 
improves energy efficiency.

The simplest resonant inertial vibration exciters are 
operated on the Sommerfeld effect [2]. In the correspond-
ing resonant vibratory machines, there are several possible 
steady state motions at the same time. Investigating their 
stability is a difficult mathematical problem. In addition, the 
stability of a certain steady state motion can be local. There-

fore, the question remains how to implement such a motion 
in practice.

Once all possible steady state motions of the vibratory 
machine are known, then the study of their stability and the 
possibility of implementation is effectively carried out by  
a computational experiment.

Information on the stability of a certain steady state 
mode of motion and the ability to ensure the desired mode 
is necessary for the design of vibratory machines. It is sig-
nificant that the rotor speed can be an object of control. Its 
change can ensure the onset of the desired mode of motion of 
the vibratory machine, control the amplitude of the oscilla-
tions of the platform, etc.
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2. Literature review and problem statement

The Sommerfeld effect [2] has been investigated in va
rious rotary machines with passive auto balancers in the 
following works:

– [3] – for a rotor that performs spatial motion and a ball 
auto balancer; 

– [4] – within the framework of a flat rotor model and  
a ball auto balancer; 

– [5] – for a rotor that performs spatial motion and two 
pendulum auto balancers.

It was found that loads in the form of balls [3, 4] or pen-
dulums [5] can get stuck at one of the resonant frequencies 
of oscillations of the rotor, performing both flat [4] and 
spatial [3, 5] motions. At the same time, the loads are col-
lected, which creates a conditional combined load. Jamming 
modes occur with small resistance forces in the system. 
Jamming modes do not allow an auto balancing mode to be 
established (under which loads balance the rotor and rotor 
oscillations are absent).

Ways to use the Sommerfeld effect to design resonant 
vibratory machines were investigated in the following works:

– [6] – for a two-mass system, one of the platforms of 
which hosts a low-power DC electric motor with a pendulum 
rigidly mounted on the shaft;

– [7] – for a three-mass system whose one platform hosts 
a wind wheel with unbalanced mass.

It was found that the pendulum [6], a wind wheel 
with unbalanced mass [7] get stuck at one of the resonant 
frequencies of oscillations of the platform, which excites 
intense vibrations. It is significant that intense vibrations  
occur only with small resistance forces in the supports of 
vibratory platforms.

In [3–5], the effect of stuck loads in the auto balancer was 
considered undesirable. Taking into consideration the results 
reported in [6, 7], paper [8] proposed using the ball, roller, or 
pendulum auto balancers as exciters of two-frequency vibra-
tions. At the same time, intense resonance oscillations excite 
loads in the auto balancer when stuck at a resonant speed. 
Rapid oscillations are induced by the unbalanced mass on the 
body of the auto balancer. It is clear that when a vibratory 
machine is operated under a resonant mode, the auto balanc-
ing mode is undesirable.

In [9], for a single-mass vibratory machine, possible 
steady state two-frequency modes of motion were analyti-
cally found. In [10], a computational experiment determined 
the motion of the vibratory machine, which over time will 
be established when the body of the vibration exciter is 
overclocked to any speed. At the same time, the stability of 
all possible steady state motions of the vibratory machine 
was not investigated. As a result, no recommendations were 
given to ensure the necessary steady state mode of motion. 
In addition, in [10], only two-frequency vibrations were 
investigated. However, to design purely resonant vibratory 
machines, it is necessary to investigate vibration exciters of 
the ball, roller, pendulum type without unbalanced mass on 
the body of the vibration exciter.

It should be noted that the effect of the stuck unbalanced 
masses in a single-mass vibratory machine, as undesirable, 
was investigated in the following works:

– [11] – using the method of energy balance; 
– [12] – using the method of direct separation of motions; 
– [13] – using the averaging method for partially severely 

fading systems.

The methods used in [11–13] are somewhat cumbersome 
and time-consuming to use. They did not make it possible 
to investigate the form of all possible steady state motions 
of the vibratory machine, their stability, the possibility of 
ensuring over time the implementation of a certain (ne
cessary) mode of motion by a vibratory machine. There-
fore, the methods used below are those whose effectiveness 
was proven in [9, 10]. They are based on the method of 
small parameter [14], elements of the theory of bifurcation  
of motions [15], information on the theory of auto balancing 
systems [16].

3. The aim and objectives of the study

The aim of this work is to define possible steady state 
modes of motion of a single-mass resonant vibratory machine 
that works on the Sommerfeld effect and to study their  
stability. The obtained results will make it possible to design 
such vibratory machines with stable desirable steady state 
modes of motion.

To accomplish the aim, the following tasks have been set:
– to theoretically find the steady state modes of motion 

of the vibratory machine, highlight those observed in practice 
and pre-evaluate their stability based on the general theory; 

– through a computational experiment, investigate the 
stability of possible steady state motions of the vibratory 
machine with two loads; 

– via a computational experiment, investigate the stabi
lity of possible steady state motions of a vibratory machine 
with one load.

4. The study materials and methods

In theoretical studies, a previously developed model of 
a single-mass resonant vibratory machine with a rectilinear 
translational motion of the platform (without unbalanced 
mass on the body of the vibration exciter) is used [9].

The vibratory machine (Fig. 1) includes a platform, 
mass M. The platform hosts a vibration exciter – ball,  
roller (Fig. 1, b), or pendulum (Fig. 1, c). The platform moves 
progressively in a vertical direction. The platform is suppor
ted by a viscoelastic support with a coefficient of rigidity k 
and viscosity b. The position of the platform is determined 
by the coordinate y, and in the position of static equilibrium 
of the platform y = 0.

The body of the vibration exciter (housing) has mass Mc 
and rotates around the shaft, point K, at a constant angular 
velocity w. The center of mass of the body is at point K. The 
position of the body is determined relative to the XK, YK axes 
by the angle wt, where t is time.

The vibration exciter has N identical loads. The weight 
of one load is m. The center of mass of the load moves in  
a circle of radius R with the center at point K (Fig. 1, b, c). 
The position of the load number j relative to the body is 
determined by the angle jj, / , / .j N= 1  The load is exposed 
when moving relative to the body to the force of viscous re-
sistance, which has a module b RW j| |,′−j ω  / , /,j N= 1  where 
bW is the coefficient of viscous resistance force and the bar 
behind the value denotes the time derivative t. The action of 
the forces of weight is neglected.

The differential equations of motion of a single-mass 
vibratory machine in dimensionless form are as follows [9]:



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/7 ( 117 ) 2022

70

  y hy y sy+ + + =2 0,

  j εβ j ε jj j jn y+ −( ) + =cos ,0  / , / .j N= 1 	 (1)

In (1):
– dimensionless variables and time:

y
YM
NmR

= Σ ,  s
Nx jj

N
=

=∑1
1
cos ,j

s
Ny jj

N
=

=∑1
1
sin ,j  τ ω=  t; 	 (2)

– dimensionless parameters:

h
b

M
=

2 Σ ω
,  n =

ω
ω

,  ε
k

=
Nm
MΣ

,

β
ω

=
b M
Nm

W Σ
2


,  ω =
k

MΣ

. 	 (3)

In turn, in (2), (3):
– MS = M+Mc+Nm – the mass of the entire system;
– k – dimensionless coefficient equal to 7/2 for a ball,  

3/2 for a roller, and 1+JC/mr 2 for a pendulum.

 
 
 

   

a

 
 
 

   
b c

Fig. 1. Single-mass vibratory machine, model, 	
and the kinematics of motion [9]: a – platform; 	

b – ball or roller; c – pendulum

Using the system of equations (1), possible steady state 
modes of motion of the vibratory machine are sought and 
classified. The small parameter method [14] is used. A small 
parameter is e. The stability of steady state modes of motion 
is preliminarily evaluated using elements of the theory of 
bifurcation of motions [15], information from the theory of 
auto balancing systems [16].

The system of equations (1) in normal form is as fol-
lows [10]:

z z0 1= ,   z zj j2 2 1= + , / , /,j N= 1    z z z A BN

T

1 3 2 1
1, ,..., +

−( ) = .	 (4)

In (4):
– new variables:

z y0 = ,  z y z1 0= =  ,  z2 1= j , z z z j j3 1 2 2= = = j j,..., ,

z z zj j j N N2 1 2 2+ = = = j j,..., ,  z zN N N2 1 2+ = = j ;	 (5)

– matrix and vector:
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




	 (6)

where h = 1/N.
The equation system (4) is used for integration. The en-

tire integration interval:

τ Î[ , ],0 T  T > 0. 	 (7)

The interval at which the steady state motion is examined:

τ τÎ −[ , ],T TΔ  0 1< Δτ . 	 (8)

The values for the parameters T and Dt are selected by 
attempts. At the time interval [0, T–Dt], the motion must be 
established. At the time interval [T–Dt, T], the rotor must 
make several revolutions. 

The average frequency of rotation of the load under the 
mode of jamming is calculated by averaging:

ω
τ

τ τ
τj j jT

T
z z= = ( )+ +−∫2 1 2 1

1
Δ Δ

d , / , /,j N= 1 	 (9)

or calculating the roots of equation (22).
To devise recommendations for ensuring a certain steady 

state mode of motion, we shall slowly accelerate the rotor 
under any initial conditions under the following law:

n
n T T

n
τ

τ τ( ) =
<




2 20

0

if ;

otherwise.
	 (10)

In (10), n0 is the working rotor speed. 
Computational experiments were conducted for the case 

of 2 (h = 0.5) and 1 (h = 1 = 1) loads. At the same time, it was 
assumed that the qualitative pattern of well-established 
motions and their stability for the cases of 2 or more loads 
is the same.

In the nonlinear system, there can be several simulta-
neously stable established motions [15]. In this case, the 
steady state motions are locally asymptotically stable. With 
a change in the rotor speed, the areas of attraction of various 
stable steady state motions may change. In the vicinity of 
bifurcation speeds of the rotor, the attraction area can be 
«infinitely» small.

To check the global asymptotic stability of a certain 
steady state mode of motion, we shall accelerate the rotor ac-
cording to law (10) under any initial conditions. In the case 
of global asymptotic stability of a certain steady state motion, 
it will be established over time under any initial conditions.

To check the local asymptotic stability (or instability) 
of a certain steady state mode of motion, we shall set the 
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initial conditions corresponding to this mode. In the case of 
local asymptotic stability, the vibratory machine will con-
tinue to carry out the specified steady state mode of motion.  
In the case of instability, the vibratory machine will even-
tually leave the unstable established motion and move to 
another (stable) steady state mode of motion.

5. Results of studying the stability of the steady state 
motions of the vibratory machine 

5. 1. Classification of steady state modes of motion of 
vibratory machines, possible conditions for their stability

At e = 0, the system of differential equations (1) takes  
the form:

  y hy y sy+ + + =2 0, j j = 0,  / , / .j N= 1 	 (11)

The last N equations in (11) have the following solution:

j τ ψj j= +Ω ,  / , /,j N= 1 	 (12)

where the yj parameters are stable and it is taken into consid-
eration that the loads in the vibration exciter on the installed 
motion can rotate only at the same angular speeds Ω.

From (2), after the transformations, we find:

s sy = +( )0 0sin ,Ωτ ψ 	 (13)

where

s
N jj

N

jj

N

0 1

2

1

21
= ( ) + ( )= =∑ ∑cos sin ,ψ ψ

tan sin cos .ψ ψ ψ0 1 1
=

= =∑ ∑jj

N

jj

N
	 (14)

Taking into consideration (13), the first equation in (1) 
takes the form:

 y hy y s+ + = +( )2 2
0 0Ω Ωsin .τ ψ 	 (15)

The partial solution to the differential equation (14) is:

y
s

h h
0

2
0

2 2 2 2

2
0

01 4

1

2
=

−( ) +

−( ) +( ) −

− +( )









Ω

Ω Ω

Ω Ω

Ω Ω

sin

cos

τ ψ

τ ψ 
. 	 (16)

Introduce:

cos ,ϑ Ω
Ω

Ω Ω
( ) =

−( )
−( ) +

1

1 4

2

2 2 2 2h

sin ,ϑ Ω
Ω

Ω Ω
( ) =

−

−( ) +

2

1 42 2 2 2

h

h

tan .ϑ Ω Ω Ω( ) = − −( )2 1 2h 	 (17)

Then:

y
s

h
0

2
0

2 2 2 2
0

1 4
=

−( ) +
+ + ( ) 

Ω

Ω Ω
Ω Ωsin .τ ψ ϑ 	 (18)

By law (18), the platform moves on any possible steady 
state motion. Note that in zero approximation it is impossible 
to find the parameters Ω and yj. 

Substitute (18) in N last equations in (1). We obtain such 
equations:

εβ ε
τ ψ

τ ψ ϑ

Ω
Ω Ω

Ω Ω

Ω Ω

−( ) −
+( )

−( ) +
×

× + + ( )  =

n
s

h

j
4

0

2 2 2 2

0

1 4

0

cos

sin , // , / .j N= 1 	 (19)

In (19), aperiodic components create in the following ap-
proximations age components that interfere with the onset of 
steady state motion. We distinguish the aperiodic components 
by averaging equation (19) for time at the interval [0, 2p/W].  
We obtain that on possible steady state motions:

ε
β

ψ ψ ϑ

Ω
Ω

Ω Ω

Ω

−( ) +
−( ) +

×

× − + ( ) 


















n
s

h

j

4
0

2 2 2 2

0

2 1 4

sin 

= =0 1, / , / .j N 	 (20)

We are looking for possible solutions to the system of 
equations (20). In practice, with small internal resistance 
forces, only the auto balancing mode and jamming modes are 
implemented, under which the loads are collected (forming  
a conditional combined load) [3–5, 9, 10]. Let’s limit our-
selves to these cases:

1. Auto balancing mode:

n = Ω,

s
N

yjj

N

jj

N

0 1

2

1

21
0 0= ( ) + ( ) = =( )= =∑ ∑cos sin .ψ ψ 	 (21)

The mode exists in the cases where N³2. This is a sin-
gle (N = 2) or multiparametric (N>2) family of steady state 
motions. On these motions, the total imbalance of loads is 
zero, the loads rotate synchronously with the rotor, there are 
no fluctuations in the platform.

From the theory of auto balancing systems, it is known 
that the auto balancing mode can be stable only at the rotor 
speeds above the resonance (n>1) [16]. Therefore, we enter 
this speed (nr = 1) and check the stability of the auto balanc-
ing mode at the rotor speeds above the resonance.

2. Jamming modes under which loads are collected:

ψ ψ ψ0 = =j
 ,  / , /,j N= 1  s0 1= , 	 (22)

and the angular load jamming velocities are the roots of the 
equation:

β Ω
Ω

Ω Ω
−( ) +

−( ) +
=n

h

h

5

2 2 2 21 4
0. 	 (23)

Equation (23) is investigated in [9]. The main results are 
as follows.

The solution to equation (23) in parametric form is as 
follows:

n
h

Ω Ω
Ω

Ω Ω
( ) = +

−( ) +

c 5

2 2 2 21 4
,  c

β
=

h
, Ω Î +¥( )0, . 	 (24)

In critical cases, dn dΩ Ω( ) =/ ,0  whence the following 
equation is obtained to search for bifurcation (multiple) fre-
quencies of load jamming:
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F h

h

Ω Ω Ω

Ω

( ) = +( ) − −( ) +( ) +

+ + −( ) +





− −

1 2 1 2 2 3

5 4 1 2 2 4 1 2

8 2 6

2 2 4

c c

c hh2 2 1 0( ) + =Ω . 	 (25)

With small forces of viscous resistance in the supports, 
there are two bifurcation speeds of rotor n1, n2 [9]. At the 
same time, 1<n1< n2 and:

– ∀n Î (0, n1) there is a single frequency of load jamming 
W1, and 0<W1<1;

– ∀n Î (n1, n2) there are three frequencies of load jam-
ming W1,2,3, such that 1<W1<W2<< W3< n;

– ∀n Î (n2, +¥) there is a single frequency of load jam-
ming W3, such that 1<< W3<n.

According to the theory of bifurcations of motions, 
different modes of stuck composite load can acquire or lose 
stability only when crossing the points of bifurcations of mo-
tions [15]. Bifurcation parameter is the rotor speed n.

5. 2. Results of studying the stability of the steady 
state modes of motion of the vibratory machine for the 
case of 2 loads

Regardless of the number of loads, a computational expe
riment will be conducted for the following calculation data:

c = 0.1; h = 0.1; e = 0.05; b = 1.0; 

s = 1; T = 2,000, Dt = 0.005. 	 (26)

In (26), the dimensionless parameters c, h, e  are an order 
of magnitude less than 1 and, therefore, are small. They cor-
respond to the case of small resistance forces in the system. 

From (25), we find two bifurcation speeds of a stuck load:

Ωc1 1 0176618= . ; Ωc2 1 4050126= . .	 (27)

From (24), we find two bifurcation speeds of rotor:

n n c1 2 1 9377474= ( ) =Ω . ;  n n c2 1 3 5741110= ( ) =Ω . . 	 (28)

The bifurcation speeds of jammed composite load (27) 
and rotor rotation (28) do not depend on the number of loads 
in the vibration exciter. 

In the case of two (or more) identical loads in the vi-
bratory machine, in addition to the jamming modes, there  
is an auto balancing mode. Therefore, computational expe
riments test the stability of both jamming modes and auto 
balancing mode.

Our experiments show that at rotor speeds below the 
resonance (n<1), a globally asymptotically stable jamming  
mode is W1. It occurs at any constant pre-resonant rotor speed.

Fig. 2 shows the process of setting the jamming mode W1 
in the limit case. The rotor accelerates to a resonant frequen-
cy of n0 = 1 according to law (10) (Fig. 2, a). Even during 
the acceleration of the rotor, the loads come together, rotate 
as one combined load (Fig. 2, b) and, at the same time, lag 
behind the rotor (Fig. 2, c).

Immediately after the end of the acceleration of the 
rotor, the jamming mode W1 is executed. The actual speeds  
of rotation of loads fluctuate around their average value  
of W1 (Fig. 2, d). At n = 1, from (23) we find W1 = 0.797023. 

During the acceleration of the rotor, the amplitude of the 
oscillations of the platform increases (Fig. 2, d). After setting 
the jamming mode W1, the platform fluctuates almost accord-
ing to the ideal harmonic law (Fig. 2, f).

The first jamming mode W1 is stable with a gradual 
further acceleration of the rotor to any speed less than the 
second bifurcation speed n2. 

 
 
 

 
 
 

 

 
 
 

 
 
 

 

 
 
 

 
 
 

 

                   a                             b

                   c                             d

                   e                             f

Fig. 2. The onset of the stuck mode W1 when the rotor 
accelerates to a resonant frequency (n0 = 1): a – a plot of 

changing the rotor speed; b – motion of loads relative to the 
body of the vibration exciter under the mode of jamming W1; 
c – plots of changes in the speed of rotation of loads at the 

interval [0, T ]; d – at the interval [T–Dt, T ]; e – plots of 
motion change (t), velocity v(t) and acceleration a(t) of the 
platform at the interval [0, T ], f – at the interval [T–Dt, T ]

Fig. 3 shows the occurrence of the jamming mode W1 in 
the limit case. The rotor accelerates according to law (10) 
to the speed n0 = 3.57, slightly less than the second bifurca-
tion speed n2 but greater than the additional characteristic  
speed n*. Even during the acceleration of the rotor, the loads 
come together, rotate as one combined load (Fig. 2, b) and, at 
the same time, lag behind the rotor (Fig. 3, a).

Immediately after the end of the acceleration of the 
rotor, the jamming mode W1 is executed. The actual speed of 
rotation of loads varies around its average value W1 (Fig. 3, b).  
At n0 = 3.57, from (23) we find

W1 = 1.0134222, W2 = 1.0219888,

W3 = 3.1802558.	 (29)

Thus, W1>1. During the acceleration of the rotor, the am-
plitude of the oscillations of the platform increases (Fig. 3, c). 
After setting the jamming mode W1, the platform fluctuates 
almost according to the ideal harmonic law (Fig. 3, d).

Note that at n0 = 3.57 the amplitude of oscillations of the 
platform is almost 3 times greater than at n0 = 1. At n0 = 3.57, 
the velocity of load jamming is closer to the resonant speed 
than at n0 = 1.

At the rotor speeds above the resonance (n>1), the auto 
balancing mode becomes locally asymptotically stable. If at 
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the initial moment of time the auto balancing mode of mo-
tion is carried out, then in the future the vibratory machine 
carries out this mode of motion. The auto balancing mode 
with increasing rotor speed increases the attraction area. 
Therefore, the auto balancing mode may occur with a gradual 
acceleration of the rotor, for example, provided that the loads 
balance each other during launch. This case of the onset of 
auto balancing mode is shown in Fig. 4.

 
 
 

 

 
 
 

 

                   a                             b

                   c                             d

Fig. 3. The onset of the jamming mode W1 when accelerating 
the rotor to the speed n0 = 3.57, a slightly lower than the 
second bifurcation speed n2: a – plots of changes in the 

speed of rotation of loads at the interval [0, T ]; b – at the 
interval [T–Dt, T ]; c – plots of changes in the motion y(t), 

speed v(t), and acceleration a(t) of the platform at the 
interval [0, T ]; d – at the interval [T–Dt, T ]

The rotor accelerates to a frequency of n0 = 3.57 by law (10).  
During rotor acceleration, the loads do not have time to 
come together. Therefore, the stuck mode W1 does not have 
time to establish. After rotor acceleration, the loads line up 
opposite each other, balance each other, and rotate synchro-
nously with the rotor (Fig. 4, a). During rotor acceleration, 
the loads first begin to lag behind (Fig. 4, b) and try to get 
together. However, with the increase in the rotor speed, they 
are suddenly captured in motion and catch up the rotor. Next, 
the loads rotate synchronously with the rotor (Fig. 4, c).  
In addition, loads during the acceleration of the rotor first 
excite intense vibrations (Fig. 4, d). However, after rotor 
acceleration and the onset of auto balancing, the vibrations 
disappear (Fig. 4, d).

At rotor speeds greater than the first bifurcation 
speed (n>n1), the third jamming mode W3 was locally asymp-
totically stable. This mode of jamming does not occur with  
a gradual acceleration of the rotor and, therefore, it is diffi-
cult to implement in practice.

Fig. 5 shows the onset of the stuck mode W3 at the 
initial conditions close to this mode. The rotor rotates at 
a constant speed slightly less than the second bifurcation 
speed n2 (Fig. 5, a). At the initial moment, the loads rotate 
synchronously with the rotor and are assembled, the platform 
is deviated from the position of static equilibrium. On the 
steady state motion W3, the loads are collected and rotate 
as one combined load (Fig. 5, b) and, at the same time, lag 

behind the rotor (Fig. 5, c). The actual speed of load rotation 
varies around its average value of W3 (Fig. 5, d). The value  
of W3 is given in (29).
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Fig. 4. The onset of auto balancing mode when accelerating 
the rotor to the speed n0 = 3.57, slightly smaller than the second 

bifurcation speed n2, provided that during the start the loads 
balance each other: a – the motion of loads relative to the 

body of the vibration exciter under the auto balancing mode; 	
b – plots of changes in the speed of rotation of loads at 	

the interval [0, T ]; c – at the interval [T–Dt, T]; d – plots 	
of changes in the motion y(t), speed v(t), and acceleration 

a(t) of the platform at the interval [0, T]; 	
e – at the interval [T–Dt, T]

All the time of integration, the platform fluctuates in-
tensively (Fig. 5, d). After setting the jamming mode W3 the 
platform fluctuates almost according to the ideal harmonic 
law (Fig. 5, e).

In the rotor rotation range with speeds between the 
first and second bifurcation speeds (n1<n<n2), theoretically 
there is a second jamming mode W2. However, it has proven 
unstable under any initial conditions. Even if at the initial 
moment there is a second mode of jamming, then the vibra-
tory machine leaves this motion. In this case, over time, the 
first jamming mode is established.

Thus, in the range n Î (n1, n2), the locally asymptotically 
stable are the first and third modes of jamming, as well as 
an auto balance mode. The onset of a certain regime de-
pends on the initial conditions. The second jamming mode  
is not stable.

At rotor speeds greater than the second bifurcation speed, 
both the third jamming mode and the auto balancing mode 
are locally asymptotically stable. It depends on the initial 
conditions. However, with the gradual acceleration of the 
rotor, an auto balancing mode occurs. At the same time, at 
speeds at which there is no resonant mode, the vibration ex-
citer is turned off. This can be used to «turn off» the vibration 
exciter when the rotor exceeds the second bifurcation speed.
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Fig. 5. The onset of the jamming mode W3 when rotating 	
the rotor at the speed n0 = 3.57, slightly less than the second 
bifurcation speed n2: a – a plot of changing the rotor speed; 

b – motion of loads relative to the body of the vibration 
exciter under the mode of jamming W3; c – plots of changes 

in the speed of rotation of loads at the interval [0, T ]; 	
d – at the interval [T–Dt, T ]; e – plots of changes 	
in the motion y(t), speed v(t), and acceleration a(t) 	

of the platform at interval [0, T ]; 	
f – at the interval [T–Dt, T ]

5. 3. Results of studying the stability of the steady 
state modes of motion of the vibratory machine for the 
case of 1 load

In the case of one load, the vibratory machine has only 
jamming modes.

Therefore, computational experiments test the stability 
of jamming modes, especially in the vicinity of bifurca-
tion  speeds. 

When rotating the rotor with speeds less than the first  
bifurcation speed n1, globally asymptotically stable is jam-
ming mode W1. It occurs under any initial conditions.

When rotating the rotor with speeds greater than the 
first bifurcation speed n1 but less than the second bifurcation 
speed n2, locally asymptotically stable are the odd jam-
ming modes (W1, W3), and the even mode (W2) is unstable.  
To establish the first (resonant) mode of jamming, it is 
enough to slowly accelerate the rotor. To set the third jam-
ming mode, one needs to start from the initial conditions 
close to the third mode.

When rotating the rotor with speeds greater than the 
second bifurcation speed n2, the globally asymptotically 
stable is jamming mode W3. It occurs under any initial 
conditions. The jamming mode W3 retains stability with  
a gradual decrease in the rotor speed to the first bifurca-
tion  speed. 

The transitional processes in the event of a certain mode 
of jamming in the case of one load are similar to transient 
processes for the case of two loads.

6. Discussion of results of studying the stability  
of the steady state motions of the vibratory machine

With any number of loads, depending on the speed of the 
rotor n, the vibratory machine has 1 or 3 jamming modes. 
Only odd modes can be stable if they are numbered in as-
cending order of the frequency of load jamming.

In the cases of two or more loads, the vibratory machine 
has an auto balancing mode (no vibrations) under which the 
loads rotate synchronously with the body of the vibration 
exciter and mutually balance each other. The auto balancing 
mode can be stable only at the above-the-resonant speeds of 
the rotor (n>1).

With small viscous resistance forces in the case of two 
identical loads:

– when the rotor rotates with speeds less than the first 
bifurcation speed n1, globally asymptotically stable is the 
mode of jamming W1 (Fig. 2);

– when rotating the rotor with speeds greater than the 
resonant frequency nr and less than the first bifurcation  
speed n1, locally asymptotically stable are jamming mode W1 
and auto balance mode;

– when rotating the rotor with speeds greater than the 
first bifurcation speed n1 but less than the second bifurcation 
speed n2, locally asymptotically stable are the odd jam-
ming modes W1 (Fig. 3), W3 (Fig. 5), and an auto balancing  
mode (Fig. 4), while the even mode W2 is unstable;

– when rotating the rotor with speeds greater than the 
second bifurcation speed n2, locally asymptotically stable are 
the jamming mode W3 and auto balancing mode.

Note that the auto balancing mode attraction area is 
much larger than the attractive jamming area of the third 
mode. Therefore, in practice, it will be difficult to ensure  
a third jamming mode. 

Thus, with a gradual acceleration of the rotor to a speed 
exceeding n2, an auto balancing mode occurs. At the same 
time, at speeds at which there is no resonant mode, the vibra-
tion exciter «turns off». This can be used as a limiter when 
the rotor exceeds the second bifurcation speed. At the same 
time, the vibration exciter will be purely resonant.

With small viscous resistance forces for the case of one load:
– when rotating the rotor with speeds less than the first 

bifurcation speed n1, the globally asymptotically stable is 
jamming mode W1; 

– when rotating the rotor with speeds greater than the 
first bifurcation speed n1 but less than the second bifurcation 
speed n2, locally asymptotically stable are the odd jamming 
modes (W1, W3), while the even mode (W2) is unstable;

– when rotating the rotor with speeds greater than the 
second bifurcation speed n2, the globally asymptotically  
stable is jamming mode W3.

Consequently, when the rotor exceeds the second bifur-
cation speed n2, the resonant jamming mode is replaced by 
a third jamming mode with a much higher frequency and  
a lower amplitude of the platform oscillations. This can be used 
to design a combined vibratory machine that works under both 
resonant and non-resonant modes. After setting the third mode 
of jamming, the rotor speed can be reduced to the first bifur-
cation speed. At the same time, both the frequency and ampli-
tude (non-resonant) oscillations of the platform will change.

It should be noted that the stability of various steady 
state motions can be influenced by certain unaccounted fac-
tors, in particular a slight imbalance of the rotor, eccentricity, 
and roughness of the running track, etc. Therefore, in the 
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future, it is planned to investigate by a full-scale experiment 
the stability of possible steady state modes of motion of  
a single-mass resonant vibratory machine with a straight-line 
translational motion of the platform.

7. Conclusions

1. With small forces of viscous resistance and any number 
of loads, depending on the speed of the rotor, the vibratory 
machine has 1 or 3 modes of load jamming and two bifurca-
tion speeds of the rotor. When the first bifurcation speed is 
reached, the second and third jamming modes appear. When 
reaching the second bifurcation speed, the first and second 
modes of jamming disappear. Resonant is the first jamming 
mode. Only odd jamming modes can be stable if they are num-
bered in ascending order of the frequency of load jamming.

In the cases of two or more loads, the vibratory machine 
has an auto balancing mode (no vibrations) under which the 
loads rotate synchronously with the body of the vibration 
exciter and mutually balance each other. An auto balancing 
mode can be stable only at the above-the-resonant speeds of 
the rotor.

2. With small viscous resistance forces for the case of two 
identical loads:

– when rotating the rotor with speeds less than the first 
bifurcation speed, the first jamming mode is globally asymp-
totically stable; 

– when rotating the rotor with speeds greater than the 
resonant speed and less than the first bifurcation speed, the 

first jamming mode and auto balancing mode are locally  
asymptotically stable;

– when rotating the rotor with speeds greater than the 
first bifurcation speed, but less than the second one, locally 
asymptotically stable are the odd jamming modes and an auto 
balancing mode while the even jamming mode is unstable; 

– when rotating the rotor with speeds greater than the 
second bifurcation speed, the locally asymptotically stable is 
the mode of jamming and auto balancing mode.

With a gradual acceleration of the rotor to speeds:
– smaller than the second bifurcation speed of the rotor, 

the first – resonant jamming mode – is set; 
– greater than the second bifurcation speed of the rotor, 

the auto balancing mode is set.
3. With small viscous resistance forces for the case of one load:
– when rotating the rotor with speeds less than the first 

bifurcation speed, the first jamming mode is globally asymp-
totically stable; 

– when rotating the rotor with speeds greater than the 
first bifurcation speed, but less than the second one, locally 
asymptotically stable are the odd jamming modes while the 
even mode is unstable;

– when rotating the rotor with speeds greater than the 
second bifurcation speed, the third jamming mode is globally 
asymptotically stable.

With a gradual acceleration of the rotor to speeds:
– smaller than the second bifurcation speed of the rotor, 

is the first – resonant – jamming mode is set; 
– greater than the second bifurcation speed of the rotor,  

a third jamming mode is set.
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