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1. Introduction

Pipelines are critical tools to deliver the fluids of hy-
drocarbon as a source of energy. It is not limited, but most 
pipelines in modern society are even used to transport flam-
mable, explosive, and corrosive fluids [1]. In an aggressive 
medium with minimum corrosion mitigation and risk-based 
assessment, the material tends to fail and causes severe 
financial consequences. Recently, a few publications have 
reported the risk of material related to oil pipelines [2–4]; 
however, the studies have not covered the influence between 

the root cause analysis (RCA) and the calculated risk to 
mitigate the reoccurrence of failure. 

The sole RCA is insufficient to reveal why the material 
failed without collecting and analyzing all risk possibilities 
related to the properties and environment of the pipelines. 
Furthermore, the mitigation plan may suffer from inade-
quacy correlated to assessing the corresponding risk. The 
incomplete gap between the two is critical to reassuring that 
the mitigation plan has been delivered properly to prevent 
the failure from reoccurrence. This study offers an alterna-
tive approach to unveil the benefit of gaining an in-depth 
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The paper reports the development of 
a Risk-Based Inspection (RBI)-Machine 
Learning perspective. The Optical Emission 
Spectrometry (OES), Tensile and Hardness 
Test, Scanning Electron Microscope (SEM),  
Energy Dispersive X-Ray Spectrosco- 
py (EDS), Sulfate Reducing Bacteria Check, 
and X-Ray Diffraction (XRD) was used 
to analyze the root cause of the pipeline’s 
failure. Corrosion attack shows at the cross-
section microstructure based on SEM results. 
Carbon, Manganese, Phosphorous, and 
sulfur’s chemical composition is dramatically 
lower than the standard API 5L Grade X42.  
Siderite and hematite dominate the compo-
sition of the corroded area as a result 
of CO2 dissolving in water. In contrast, 
hematite is generated due to the pipe and 
outdoor atmosphere reaction. Severe 
local wall thinning of the sand abrasion 
causes the degradation of the material’s 
mechanical properties and increases the 
corrosion rate. This result amplifies by the 
development of Machine Learning (ML) 
of Pearson Multicollinear Matrix and 
Supervised ML (Random Forest, Support 
Vector Machine, and Linear Regression) 
to estimate the corrosion degradation of the 
material. The source of datasets provided 
by ILI inspection includes the calculated 
PoF Remaining Useful Life (RuL) as input 
data, while Probability of Failure (PoF) 
prediction serves as output data. The 
Random Forest shows superior predictions 
of 92.18 %, with the lowest validation loss 
of 0.0316. The modeling result confirms 
the experimental outcome. This work 
demonstrates the implementation strategy 
to reduce the analysis time, minimize human 
bias, and serve as a reliable reference tool 
and guideline to maintain the integrity of the 
subsea pipelines
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primary cause of material’s failure to re-measure the risk.
Therefore, it is necessary to study the connection between 
the RCA and risk evaluation from given pipelines to guar-
antee the deliverable of oil and gas meets the demands of 
industry and society. 

Recently, risk-based inspection (RBI) risk assessment 
has extended to the utilization of Machine Learning (ML). 
Authors of [5–7] argue that the risk assessments are subjec-
tive and often dissimilar to the actual condition of assessed 
pipelines. The model of RBI remains to suffer from why the 
impact of corrosion varies despite the uniformity of treat-
ment, such as the addition of biocide, pigging, and cathodic 
protection. By considering the limitation, the engineer 
would not correctly deduce the appropriate pipeline integri-
ty mitigation plan (PIM) due to a lack of data management 
handling and data processing about the actual condition of 
pipelines. In addition, it would impose a higher financial 
issue due to higher operational costs and unsuitable recom-
mendations for pipeline integrity. ML models can reduce 
higher dimensional data and calculate the risk based on 
the relationship between risk input and output parameters. 
It aims to predict the actual condition of pipelines without 
discharging the need for the actual inspection. Hence, com-
bining RCA and RBI based on ML can be implemented into 
daily operational practice where it resolves the primary issue 
of the conventional RCA and RBI. 

2. Literature review and problem statement

The RCA model is essential to identifying the failure of 
metals and has become a critical tool in modern industrial 
development. Without RCA, the business impact of material 
loss consumes the company’s time and finances, especially in 
the oil and gas (O&G) industry. Some mitigation strategies 
have been implemented, including using a green corrosion 
inhibitor [8–11], failure analysis (FA) [12], and Risk-Based 
Inspection (RBI) based on AI [6]. Amongst the strategies, 
the blending implementation of FA and AI is critical to 
preventing uncertainty-induced risk. A recent publication 
reports that AI implementation’s advantage is reducing the 
processing data analysis time [5]. In addition, this advent of 
information technology minimizes the human subjectivity 
in measuring the risk. The above knowledge has become the 
primary reason for the suitability implementation between 
the FA and AI.

The validation of the preceding arguments lies in rec-
ognizing the source of failure, including implementing sev-
eral laboratory assessments and utilizing Machine Learn-
ing (ML). Previous studies by [13] show the sole role of fault 
analysis relates to the diagnosis technique. The research uses 
gradient boosting to improve the identification of the fault in 
twin study cases in the chemical process industry. However, 
the study reports its inability to identify some true root 
causes of the flaw. The other research by [14] argues that the 
matrix materials examination detects the corrosion product 
and suggests the possible pitting corrosion appearance. De-
spite its achievement, the model of RCA remains to suffer in 
predicting the pairwise related corrosion parameter quickly. 

However, the above studies neglect the essential in-
formation of the pipeline’s actual condition and the utili-
zation of provided data to suggest valuable maintenance 
recommendations. This work discusses the recent advent 

of technology in sensors of Inline Inspection (ILI), which 
operates the intelligence pigging to supply the defect of pipe-
lines’ information to help identify the RCA analysis. ILI is a 
widespread technique used to help evaluate the condition of 
unprotected pipelines. Several types of intelligence pig are 
magnetic flux leakage (MFL), ultrasonic testing (UT), and 
electromagnetic acoustic transducer (EMAT) [1]. Accord-
ing to the author [15], ILI is utilized to monitor the health 
condition of the pipelines and ensure the inspection schedule 
and activities to minimize the risk and cost of unavoidable 
corrosion. The tool can identify defect detection, predict the 
defect’s growth, and serve as a risk management system.

The paper[16] showsthe RCA’s role in controlling inter-
nal corrosion due to impure gasses (CH4, CO2, H2S) and 
Microbiological Induced Corrosion (MIC) bacteria. The 
paper discusses the significance of palm oil corrosion inhibi-
tors in reducing the effect of the above factor. But there were 
unresolved issues related to measuringthe pipeline’s wall 
thinning in considering its time in service and its remaining 
development. The principal reason for these inadequacies 
lies in the measure of the actual condition of pipelines. This 
objective makes the relevant analysis impractical and has an 
inherent bias in objectively assessing the recommendation.

On the other hand, the work of [17] elaborates the role 
of ILI and Internal Corrosion Direct Assessment (ICDA) 
in distinguishing between the piggable and non-piggable 
pipelines. The work presents adequate information on the 
corrosion threat and implements the National Association of 
Corrosion Engineers (NACE) standards. Although the gen-
erated assessment is valid in unveiling the location of inter-
nal corrosion, the study demonstrates the limitation of risk 
assessment and analysis. The research of [18] compares the 
previous survey to reveal the exact failure location of a pipe-
line through the implementation of RBI. The work tackles 
the research limitation by selection and optimization of di-
rect assessment of the high-risk pipelines. The paper mainly 
discusses the various corrosion growth without considering 
the difficulties associated with the risk heterogeneity from 
the effect of contaminant CO2 gas. 

In addition, the paper of [19] argues the role of anti-cor-
rosion protection against the threat of CO2 gas and their de-
velopment. The conducted research uses the field assessment 
to identify the most aggressive internal corrosion condition 
and analyze the normative documentation to record the 
findings. Due to the unprecedented situation recently, the 
higher frequency of field inspection is costly and imposes 
tremendous effort to maintain the integrity of pipelines. 

In contrast, the other researcher [20] introduces a novel 
technique to remove the effect of oil sands deposition due 
to their aggressive abrasion on the inner side of pipelines. 
The report highlights the ranking system of the corroded 
material based on the corrosion degradation assessment and 
eventually reduces the cost of the inspection. However, the 
missing part of the research is the discussion related to the 
growth of microbiologically induced corrosion (MIC). The 
MIC has been considered responsible for the rapid increase 
of MIC due to the formation of H2S and FeCO3. A similar 
hypothesis was proposed to impose pipelines’ rapid deteri-
oration through biofilm formation on the coupon’s surface.

A way to overcome these difficulties can be resolved 
using the combination of RCA and intensive application 
of ML. On one side, the RCA is an attractive method for 
many researchers and practitioners. A recent study by [21]
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equips the research by developing the ultrasonic sensor to 
internally overcome the obstacles of crack visualization and 
generate the anomaly’s historical datasets.At the same time, 
ML retains its validity in gathering and processing the ILI 
data to provide comprehensive studies of the failed materi-
als.The work of [22]reviews several methods of collecting the 
potential datasets from the field inspection results and their 
historical data. 

On the other hand, the risk execution based on the re-
corded data may not be sufficient to assess the risk without 
conducting a direct inspection such as ILI is also critical. The 
author of [23] describes the benefit of ILI in significantly im-
pacting the assessment of the pipeline integrity management 
program. The works model that ILI is a promising tool to 
study the severity level of pipelines and detect possible threats 
corresponding to unresolved pipeline issues. The challenge in 
using the ILI database shows the processing time required to 
handle and process the massive data. It includes the possible 
duplication and irrelevant datasets from several parameters 
of measurement. The most prominent method to overcome 
these difficulties is optimizing ML performance in which the 
entire data of ILI is treated as features. At the same time, the 
calculated risk of PoF is considered labels. 

All this allowsto assert that it is expedient to conduct a 
study on devoted are to mapping the relationship between 
the root cause factors and the severity assessment to ensure 
the proper implementation of maintenance of pipelines.

3. The aim and objectives of the study

The study aims to offer a new perspective to address the 
scientific issue of RCA related to the practice of RBI using ML 
as a primary tool in measuring the risk of the failed pipeline. 

To achieve this aims, the following objectives are accom-
plished:

– to analyze the failed material, including its chemical 
composition and mechanical properties;

– to identify the classification of corrosion compounds 
using metallography, SEM, EDX, and XRD characterization;

– to study the effect of bacterial activity in increasing 
the threat of corrosion due to the richness of organic acids;

– model the failure material using the Supervised ML by 
implementing the confusion matrix and SVM, RF, and LR 
algorithms to minimize human subjectivity and bias.

4. Materials and Methods

4. 1. Object ofresearch
The paper aims to improve the model of RCA and offers 

a new era for utilizing the experimental result in predicting 
the probability of failure (PoF). The work further harnesses 
the laboratory data and uses the ILI data to give a valid 
recommendation of the likelihood of material to fail. Up to 
the author’s knowledge, the proposed research methodology 
would impair the existing RCA technique and project the 
PoF’s score aiming to reconstruct the maintenance plan. 
This work highlights the use of fundamental ILI-generat-
ed data such as fatigue, embrittlement, wall thinning, and 
degradation of the internal coating and collects the data to 
assess the risk. All mentioned factor becomes a significant 
part of the consideration to seek the root cause of the API 5L 
Grade X42 as a means to transport oil and calculate the risk.

The risk matrix projects the risk profile where the mul-
tiplication of Probability of Failure (PoF) and Consequence 
of Failure (CoF) corresponds to its severity level. However, 
there are various standards to determine the failure of struc-
tural reliability, such as DNV, 2010a [24], 2010b [25]. The 
calculated PoF of API 581 of Remaining Useful Life (RuL) 
is implemented in this paper to enhance the RCA from the 
same material. The motivation for using PoFRuL is to in-
dicate the pipelines’ actual condition and incorporate the 
failure prediction.

4. 2. Materials
The as-received specimen of the subsea pipeline has a 

specification of API-5L-X52 PSL2, as illustrated in Table 1.

Table	1

The	detailed	specification	of	material

Parameters Data

Outer diameter (inch) 14

Wall Thickness (inch) 0.5

Length (km) 21.3

Design pressure (psig) 500

The characterization process was performed based on the 
above specification. 

4. 3. Methods
4. 3. 1. Chemical composition characterization
Sample material of ex-spool 16″ was subjected to a 

chemical composition test. One small piece of the material 
was prepared and sectioned for a flat surface before con-
ducting Optical Emission Spectroscopy (OES). The test 
follows the standard of ASTM A751 and E415 using WAS 
Lab Foundry-Master Oxford Instrument. The flat specimen 
was burned using a spark to create optical emission due 
to electron excitation in the metal specimen. The detector 
then analyzed the optical emission for each spectrum in the 
optical emission. Each element has a spectrum pattern, and 
the spectrum’s intensity corresponds with the concentration 
of the component in the material. The examination intends 
to obtain the percentage composition of Carbon (C), Man-
ganese (Mn), Phosphorous (P), Sulfur (S), and Iron (Fe) 
which impacted the failure of the material.

4. 3. 2. Visual Examination, Hardness, and Tensile Test
The pipe was cut into two sections in the longitudinal di-

rection. For each specimen, one set of specimen was prepared 
for the tensile test while the other was utilized for the hard-
ness test. The visual examination was conducted to verify 
the color of the internal coating and the surface of the dent 
layer. The tensile specimen is tested under the ASTM E8 
standard using Shimadzu Servopulser. The dog bone speci-
men was uniaxially tensioned using a tensile machine until 
the specimen gauge length had a fracture. The change of load 
and specimen extension were recorded to measure the stress 
and strain in the specimen. The examination’s expected 
result identifies the dent location and the leakage direction.

Moreover, the hardness test was conducted on sample 
material using Rockwell Hardness Tester Machine. The sam-
ple preparation was similar to the previous method. The test 
was conducted under ASTM E18 using Rocky DR Rockwell. 
The flat specimen was indented using Rockwell B indenter, 
a hardened steel ball. The sample was first loaded with a 
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minor load of 10 kg to fix the indenter and then continued by 
loading with a significant load of 100 kg to give permanent 
indentation on the material surface.This examination intends 
to examine the dispersion of corrosion products on the surface 
of metals. This knowledge allows the engineer to predict the 
types of corrosion and their root cause.

4. 3. 3. Metallography Examination
The specimens were cut and prepared for metallographic 

examination. The preparation for metallographic examina-
tion includes mounting, grinding, polishing, and etching. 
The etching was conducted using Nital solution to reveal the 
microstructure and morphology. The specimen preparation 
was completed by ASTM E3 using Buehler Metaserv-250, 
and the observation of the specimen under the microscope 
was conducted per ASTM E407 using Olympus GX41 – 
Inverted Metallurgical Microscope. The etching technique 
revealed the microstructure, which controlled corrosion on 
a specific phase in the steel material. The work selected two 
test locations to examine the crack area specimen and their 
adjacent crack area.

4. 3. 4. SEM-EDX Characterization
A scanning electron microscope (SEM) test was con-

ducted on the surface area of the sample material at the crack 
area to observe the feature of the surface area. The speci-
men observation using a scanning electron microscope was 
conducted using FEI Inspect F50. The microanalysis of the 
corrosion product was utilized using energy-dispersive X-ray 
spectroscopy (EDX) embedded with SEM. The scanning of 
the specimen in the SEM instrument was carried out using 
an electron beam. A microphotograph was generated using a 
secondary electron (SE) model to produce a topographical 
image. Further examination of the corrosion product was 
performed using the EDX method by utilizing the speci-
men’s excitation. The detector measured the X-ray intensity 
and was proportional to the concentration of elements on the 
spot. Moreover, the test’s expected result correlated to the 
corrosion product’s structure. 

4. 3. 5. X-ray Diffraction Characterization (XRD)
The analysis of corrosion products was conducted using 

the XRD (Philips PW 24 X-Ray Spectrometer). Moreover, 
the powder specimen of the corrosion product was exposed 
to an X-Ray to obtain the diffraction pattern. The result 
of diffraction was then analyzed using X’Pert High score 
software.

4. 3. 6. Bacterial activity sampling
The analysis of bacterial activity was inspected 

semi-quantitatively using the Sani-Check SRB. The sea-
water was taken from the inside of leakage pipelines and 
filtered from the debris precipitate upon pigging activity 
completion. The standard seawater solution was placed 
inside the conical flask at 250 mL and allowed one night to 
change the color. The series of 5 dilution solutions was pre-
pared to ensure variation population growth of the bacteria. 
The depth of solution cloudinessequals the highest amount 
of bacteria to 106 colony/ml.

4. 3. 7. Machine Learning modeling and Pearson Mul-
ticollinear Matrix

As previously outlined, the ML shows its capability to 
measure the relationship between the ILI parameters and 

the PoF. The total dataset is 1451 instances. The source of 
data was generated from the ILI inspection of the inspected 
pipelines (Supplementary 1). Table 2 shows the input and 
output data to capture the ML model’s use further.

Table	2

The	detail	of	input	and	output	data	in	the	intelligent	system

Input Data Output Data

Distance of pipeline

PoF Prediction

Length of pipeline

The width of the wall thinning

The thickness of the wall 
thinning

PoFRuL

Corrosion rate

Appendix 1 summarizes the ILI data, which covers the 
information in Table 2. Pearson Correlation Matrix imple-
ments to compute Pearson’s correlation coefficient. The 
strong correlation coefficient was given beyond 0.5, while 
the lower value was removed as reported in the published 
work of[26]. In addition, this work was carried out using a 
standard computer with 120 GB SSD storage, RAM 8 GB, 
and Intel i5. The work used the open source of Phycharm 
Community Edition 2021.3 embedded with a Jupyter note-
book. Also, the project used several libraries of Pandas, 
Keras, NumPy, sklearn.ensemble, and sklearn.metrics.

4. 3. 8. Logistic Regression (LR)
Based on the publication of [27], the correlation between 

the input and output datasets was measured using the func-
tion of logistic regression. It utilizes the probability of the 
datasets belonging to particular classes. Equation (1)shows 
the likelihood calculation as reported in [28]:

( )log log .
1

Tp
it p x

p

  
= = α + β   − 

  (1)

In the above equation, p is the probability, α is the linear re-
gression function, and βT is the coefficient vector regression [22]. 
The predictive value of the corroded metal is in the binary num-
bers 0 (Not failed) and 1 (Failed). At the same time, logit(p) is 
considered a Y-axis that defines the prediction of a material’s 
failure probability based on the input data. The selected param-
eters are «liblinear» solver and the «ovr» multi_class. 

4. 3. 9. Random Forest
An ensemble classifier of Random Forest (RF) provides 

better performance than a single classifier. The RF compiles the 
decision trees’ value that comprises the random input dataset 
to replace the initial dataset as cited in the previous work [29]. 
The utilization of an ensemble algorithm prevents training data 
overfitting and advantages the variation with fewer correla-
tions between predicted and the error of prediction. The work 
of [26] elaborates a comprehensive discussion of RF.

4. 3. 10. Support Vector Machine (SVM)
The fundamental principle of SVM corresponds to sepa-

rating a set of binary datasets located in feature space with 
maximum hyperplane to give optimum separation margin 
from two classes. In this study, the input data set is consid-
ered an element vector Xi∈Rn (Table 1). The value of 0 and 1 
correlates to the prediction of severe or non-severe condition 
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of the pipeline. Therefore, the equation (2) shows the calcu-
lation of the hyperplane that separates two classes [30],

( ) ( ){ }0 .Tf x w x b= × φ + =   (2)

In the above equation, w is the vector normal, b cor-
responds to bias, and ϕ(x) is the feature map to convert 
the input feature to a space of higher-dimensional space.

5. Result of research of RCA-RBI based Machine 
Learning

5. 1. Root cause analysis results
5. 1. 1. Chemical composition results
Table 3 shows the OES result of the pipe material’s 

chemical composition. The material complies with the 
speciation referred to as API 5L Grade X42 PSL 1.

Table	3

Chemical	Composition	results

Sample Code C(%) Mn(%) P(%) S(%) Fe(%)

Spool 16″ 0.14 0.43 0.021 0.022 Bal.

API 5L Grade 
X42 PSL 1

0.28max 1.3max 0.03max 0.03max Bal.

The material is considered mild carbon steel with  
a higher composition of Manganese (0.43 %) and Sul-
fur (0.022 %). In comparison, the Phosphorous is slightly 
lower than the rest of the elements (0.021 %), as depicted 
in Table 3.

5. 1. 2. Results of Visual Inspection, Hardness, 
and Tensile Tests

Upon the pipeline cutting, the subsea pipeline’s vi-
sual inspection shows a dent in the sectional direction, as 
illustrated in Fig. 1.

Fig. 1 reports the source of the leakage at the  
6 o’clock position and generally from the pipeline ID. In 
addition, a dent appears on the surface of the failed ma-
terial (Fig. 2, a). The complete sectioning of the leak area 
reveals the peeled-off surface in the surrounding area, as 
illustrated in Fig. 2, b.

The result of the removal layers of the coating in-
dicates the abrasive material intensively contacts and 
damages the coating surface. It is also essential to notice 
that the peeling of the layer shows in a right-hand side 
direction over the dent. Tables 4, 5 present the hardness 
and tensile test results to determine the ex-spool materi-
al’s mechanical properties. 

Table	4

The	Hardness	Test	Result	of	Ex-Spool	

Sample Code Hardness

Spool 16” 80 HRB

API 5L Grade X42 PSL 1 NA

From the above information, the hardness of the spec-
imen is 80 HRB. This value is in conjunction with the 
spool’s high microstructural inhomogeneity. The result 
impacts how these properties correlate to the probabili-
ty of failure and approximation of the remaining useful 

life (RuL). Hence, proper investigation of the hardness test 
advantages the preparation and maintenance plan of the 
pipelines. Table 5 shows that the test result’s tensile strength 
is lower than the minimum specified magnitude value under 
the design codes and standards. 

Fig.	1.	The	condition	of:	a	–	the	clock	position	of	pipelines;		
b	–	the	opposite	part	of	the	dent

a

b c

Fig.	2.	The	specimen	of:	a –	peeled-off	coating;	b –	suspected	
abrasive	affected	area
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Table	5

Tensile	Test	Result

Sample Code
Tensile 

Strength, MPa
Yield 

Strength, MPa
Elonga-
tion (%)

Ex-Spool 16” MOL 451 368 33

API 5L Grade X52 PSL-1 460 min 360 min –

As a result, the failed sample shows an extension of 
33 % elongation while the yield strength (368 MPa) is 
higher than the standard code. Hence, from the previous 
mechanical evaluation characterization, it can be concluded 
that the material has lost its ability to withstand load and 
is susceptible to failure (Table 5). This result demonstrates 
the complete alignment with the Hardness test and visual 
examination.

5. 2. Corrosion Product Analysis Results
The metallography, SEM, and EDX analysis of corrosion 

products show the actual condition on the surface of MS. 
Fig. 3, a shows the types of ex-spool specimen’s ferrite and 
pearlite microstructure. The white grain represents the 
ferrite, while the dark grain is associated with the pearlite. 
In addition, there is no evidence to show the defect in the 
specimen’s microstructure.

The results indicate that all micrographs exhibited CO2 
corrosion due to the FeCO3 accumulation [31], which causes 
severe pitting corrosion to occur in and around the pearlite 
regions (Fig. 3, b). This phenomenon confirms the speed of the 
flow of erosive material to increase the rate of pitting corrosion 
along the direction of the pits of teardrop-shaped (Fig. 1, a).

A surface morphology study in-
tends to understand the internal loss-
es due to corrosion. Fig. 4, a shows 
the flowery structure of the scanned 
leakage area, and it corresponds to 
Fe2O3 or γ-FeOOH as a corrosion 
product. In addition, the presence 
of cotton balls correlated to the 
α-FeOOH (goethite).

Location 1 highlights the leak-
age of the pipeline at the exact lo-
cation, while the adjacent inspected 
site is shown in location 2. Fig. 4 il-
lustrates the crystal structure of iron 
oxides (cotton ball and flowery) and 
their irregular forms. The shallow cu-
bic structure (Fig. 4, b) correlates to 
the presence of Fe(CO3)3. The above 
result is comparable to the research 
of [32]. The compound agrees with the 
outcome of EDX, shown in Table 6.

Based on Table 6, the amount of 
Fe and O dominates the number of 
other compounds. The above result 
confirms iron carbonate and iron ox-
ide are exhibited in the leak location. 
The same table illustrates the pres-
ence of sulfur in both areas, in which 
location 1 shows a higher percentage 
of S than that of the second location. 
The common elements Fe, Si, Cl, O, 
and S, proposed the microbial activity 
from the organic 

The feature of corrosion products can be further studied 
by identifying their morphology using XRD. Fig. 5 illus-
trates the types of corrosion products.

Fig.	3.	The	microstructure	of:	a – taken	from	the	area	far	
from	the	leakage;	b	–	Microstructure	of	the	cross-section	

Ex-spool	16″	MOL

a

b

Fig.	4.	The	SEM	image	of	the	two	inspected	of	a	–	Location	1;	b	–	Location	2

Location 1

Location 2

a

Location 1

Location 2

b
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Fig. 5 shows the collection of corrosion products from 
the internal pipeline. It comprises iron sulfate, iron carbon-
ate, iron sulfide, and iron oxides. The appearance of troilite 
(FeS) formation is affected by the dissolved hydrogen sulfide 
gas (H2S) in water. This compound agrees with 
the appearance of the Sulfur atom, as shown in Ta-
ble 7. Moreover, the siderite formation is affected 
by dissolved carbon dioxide gas (CO2) in water.

Table	6

The	EDX	Result	of	Two	Locations

Element Location 1 Wt( %) Location 2 Wt( %)

Fe 61.77 63.44

O 26.28 29.98

Mn 1.17 0.84

Cl 4.13 2.50

S 1.36 0.79

Si 1.77 1.13

The XRD analysis shows the peak of FeSO4, 
FeS, FeCO3, Fe3O4, and Fe2O3(Fig. 5). Siderite, 
magnetite, and hematite dominate deposited as 
the corrosion product detected on all rusted areas. 
However, the score of siderite 12 demonstrates 
that the CO2 reacts with Fe and deposits on the 
surface of the metal. The formation of Fe2O3 and Fe3O4 
results from aqueous corrosion and weathering of the pipe 
material during outdoor exposure.

Table	7

The	corrosion	products	XRD	analysis	results	from	the	area	
around	the	leakage.

Ref. Code Score
Compound 

Name
Displacement 

(°2θ)
Chemical 
Formula

00-001-0703 4 Iron Sulfate –0,293 FeSO4

00-001-1247 3 Troilite 0,118 FeS

00-003-0746 12 Siderite –0,014 FeCO3

01-074-0748 8 Magnetite –0,323 Fe3O4

01-085-0599 5 Hematite –0,428 Fe2O3

5. 3. Bacterial activity result
Fig. 6 shows the bacterial monitoring result from Janu-

ary to December 2020 to assert the presence of sand deposi-
tion, and organic material increases the corrosion rate. 

As stated in the previous section, the microorganism 
activity increases the susceptibility to metallic corrosion. 
Sulfate-reducing bacteria (SRB) doubles the corrosion rate 

of carbon steel since it produces sulfides [33] and 
consumes hydrogen in cathodic reactions [30]. 
As shown in Fig. 6, the bacteria colonies rose 
dramatically in August and December, increasing 
the evolution of hydrogen gas and conductive FeS. 
These activities occur on the surface area of the 
bacteria’s cell [34].

5. 4. Machine Learning studies result
This paper presents the selected features: log 

distance (the distance between the oil well and 
the inspected anomaly in the pipelines), length, 
width, and peak depth corresponding to the cor-
rosion product, corrosion rate, PoFRuL, and PoF 
prediction. Fig. 7 shows the quality of the model, 
and according to the author [35], a pairwise score 
of less than 0.5 indicates irrelated pairwise. 

In contrast, the more significant pairwise 
identification when the scores are more than 
0.5 provides reliable inferences. The length and 
width of the pit corrosion identify to exhibit a low 
relationship with a score of 0.33. The relationship 
between the PoFRuL has a strong relationship 

(0.88) with PoF prediction. Moreover, the corrosion depth 
matches the PoFRuL as it has a score of 1, as depicted 
in Fig. 7. The PoF prediction and the pipeline distance 
showed no correlation as it has a low score of (–0.14). Also, 
there is a weak correlation between the width of siderite 
and the PoF prediction (0.064).

The primary tool implemented for identifying relevan-
cy between the features and labels is Machine learning. 
Features (input data) are the corrosion-caused parameters.
This model’s label is the learning output attributed to the 
PoF prediction. The value determines the significance of 

Fig.	5.	The	XRD	Characterization	of	the	Ex-spool	specimen

Fig.	6.	The	SRB	monitoring	result



Materials science

27

ML to forecast the failure of material while suggesting the 
inspection time upon the flaw of materials. It is essential 
to remember that PoF prediction may address the human 
bias and subjectivity in classifying any pipeline defect. 
Fig. 8 shows the performance of the ML models, Random 
Forest (RF) outperforms the Linear Regression (LR) and 
Support Vector Machine (SVM). The hyperparameter of 

modeling represents the optimum modeling condition in RF 
using the ILI datasets.

As summarized in Fig. 8, the RF provides the highest ac-
curacy of 92.18 %, with the lowest validation loss of 0.031604, 
despite an intensive model evaluation required to confirm this 
hypothesis. Likewise, LR of 67.81 % provides the most insuffi-
cient accuracy with a validation loss of 0.031604. 

Fig.	7.	The	Pearson	Multicollinear	Matrix

Fig.	8.	The	comparative	performance	of	ML
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6. Discussion of RCA analysis and Risk Modelling

The amount of elements in the specimen corresponds 
with their fundamental chemistry composition to determine 
the corrosion resistance. Table 2 compares the elemental 
percentage between the ex-spool material with the standard 
API 5L composition. It can be seen that the smaller amount 
of element correlates to the dissolution of the element during 
the service. Also, the presence of manganese and sulfur in-
creases the ability of the metal to adverse the effect of corro-
sion. The lower amount of manganese (5 %) suggests the ex-
spool tends to rust, although it has a minor contribution to 
the overall material’s degradation [36]. The study [37] shows 
that Mn remains an essential element in reducing the erosion 
velocity of sand through the solid 
strengthening of manganese.

The evolution of phospho-
rous (P) content after the materi-
al has been in service for several 
years reveals under specification 
(0.021 %) versus (0.03 %). The re-
sult lowers the hardness and cor-
rosion resistance due to the dam-
age to the amorphous structure 
in the interface of metal-metalloid 
alloys [38]. Furthermore, the con-
tent of sulfur (S) is 0.022 %, and 
it shows the role of S as a metal 
passivator to reduce the corrosion 
containing sulfur corrosion. A recent study [39] shows a sim-
ilar result; however, the alloy remains susceptible to attack 
by corroded chloride ions since the ex-spool materials are 
submerged in seawater. 

Fig. 9 illustrates the anomaly on the ex-spool material 
to showcase the pipe’s dent, which is approximately 18 % 
inward and reduces the inner diameter at the dent location.
The position shows that the corrosion mechanism after a 
certain period in service decreases the wall thickness of the 
inner surface of the pipelines. Moreover, it can also confirm 
the presence of teardrop-shaped pit corrosion resulting 
from elongating the fluid flow direction. The presence of a 
green internal coated surface exfoliated at the exact location 
proves that during the commissioning period, the engineer 
painted the inner layer of pipelines. It is also critical to note 
that the unpeeled coating shows many scratch lines oriented 
towards the lengthwise of the pipelines. No shallow pits nor 
channeling appeared, resulting in the leak in another loca-
tion. It confirms that the leakage originated in the opposite 
area against the dented area. The leak progresses due to high 
fatigue life as the pipeline is submerged in seawater [22]. It 
increases the localized deformation levels on the inner pipe 
surface where it initiates the crack to grow.

Also, a dent in the pipeline caused inward deformation 
and reduced the pipeline’s inner diameter while restricting 
the internal flow. Thus, as a consequence, localized turbu-
lence and increased velocity can be expected to occur in this 
dent area. This turbulence and higher flow velocity might be 
detrimental to the internal pipe surface when combined with 
the fine sands, as shown by the presence of debris inside the 
pipeline (Fig. 9).

The result is comparable with the research conducted 
by [40] where the degradation of metal in the inner layer of 
the pipe resulting severe growth of wall thinning. Moreover, 
it can be seen from the illustration that the turbulence oc-

curred at the inward dent protrusion. However, the observed 
lines on the remaining coating material prove an abrasion 
in the area around the dent whenever the pigging process is 
performed. 

The combination of dent pipe, high velocity, and sand 
particles inside the pipe has created an abrasion effect on the 
internal pipe wall. This abrasion effect slowly removed the 
coating material and caused the corrosion attack on the pipe 
material (CS). The turbulence of sand particles was then 
collaborated to further release the corrosion products on the 
area where the coating was removed. It results from a severe 
wall thinning, leading to leakage. As previously highlighted, 
the corrosion product reveals the presence of iron carbonate 
with little iron sulfide [41].

The hardness test depicts surface resistance due to mate-
rial deformation through surface penetration and stretching 
methodology. The hardness value of the specimen of 80 HRB 
produces a microstructure comprised of ferrite and pearlite 
and indicates the diverse corrosion phenomenon [42]. In 
addition, the above microstructure phase accelerates the 
progress of corrosion, where the pearlite induces a faster 
speed of local corrosion [43]. The hardness test result also 
provides valuable information about active layer removal, 
which intensively protects the pipeline. This study proves 
that reducing the strength and rigidity of ex-spool material 
lowers their hardness. 

The considerable hardness value also correlated to sur-
face heterogeneity, confirming the reduction of carbon, 
phosphorus, manganese, and sulfur content. 

The tensile test result also illustrates how the material 
has experienced plastic deformation. As exhibited in Table 4, 
the tensile strength of the specimen value is lower than the 
standard and refers to lower ductility and strength of mate-
rials. This value represents an approximately 2 % decrease 
in Ultimate Tensile Strength (UTS) and causes an increase 
in yield strength. At the same time, it lowers the mechanical 
properties and contributes to the noticeable rise in elonga-
tion after the tensile test.

The best explanation to describe the degradation of the 
materials is by capturing the linear relationship between the 
increase in corrosion rate and the gradual degradation of 
their mechanical properties. Based on the report of [44] pro-
vides clear guidance on the attacking process of electrolyte 
ions from seawater (which contains numerous ions) to the 
atomic structure of materials. It showcases that the internal 
surface of metals becomes less rigid and immediately reaches 
fatigue condition.

Notably, the root cause of failed ex-spool material re-
mains related to the exfoliation of the thick corrosion film 

Fig.	9.	Schematic	illustration	of	a	dent	on	pipe	effect	to	the	flow	pattern	inside
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in microstructure and their electrochemical reaction. Fig. 3 
illustrates the condition of the microstructure of the ex-spool 
corroded area, and it shows the presence of the ferrite and 
pearlite (ferrite+cementite) phases.The work of [45] argues 
that the combination of ferritic and pearlitic MS structures 
exhibits remarkable mechanical properties compared to cast 
iron. However, the specimen of ex-spool 16‘’ MOL (com-
prised of ferrite and pearlite) likelihood of corrosion remains 
high due to the dissolution of metal under a high concentra-
tion of chloride ions in seawater. 

It is believed that the white grains (Fig. 3) of ferrite are 
chemically active when the metal is exposed to brine to verify 
the transformation from α-iron to oxides and hydroxides of 
Fe2+ within the pearlite phase in the absence of cementite [46]. 
In the ferrite microstructure, the protective film’s thickness 
was found. However, due to the abrasion of sand and high flow, 
the ferrite is eroded. In addition, the cementite lamellae of the 
pearlite grains provide the knowledge of the oxidation of ferrite 
Fe (in α-iron) into Fe2+. The work [47] shows the dissolution of 
Fe2+ within the Fe3C lamellar facilitates iron carbonate forma-
tion to promote the iron anodic dissolution. 

On the other hand, the cementite acts as a cathodic re-
gion where the reduction occurs due to the low overvoltage 
of hydrogen [48]. The thin-film penetration of Fe2+ inside the 
inner layer allows the high content of Fe2+ and 2

3CO −

 which 
results in the supersaturation. It causes the precipitation of 
FeCO3 and is responsible for local acidification since the re-
sulting carbonic acid exists in a higher concentration of CO2 
gas and lowers the pH of the solution. 

According to [49], the presence of Fe-cementite in-
creases the pitting corrosion resistance of carbon steel by 
elevating the amount of Fe3C. The pearlite is shown by the 
dark grains. There are no defects in terms of microstructure 
observed in the observed sample. The metallography result 
aligns with CO2 harms the pearlitic carbon steel, as reported 
in the previous studies [50–52], and gives Fe2CO3 the pre-
dicted corrosion product. Both figures (Fig. 3) depict that 
ferrite inherent in a single-phase structure with the same 
morphology. Unlike ferrite, the pearlite shows a multiphase 
system corresponding to lamellar ferrite and Fe3C.

The microstructure is observed to be expected for car-
bon steel. The metal loss observed results from continuous 
corrosion attack accompanied by corrosion product removal. 
As can be seen, the trace of remaining corrosion products 
is still observable in the microphotograph. Without proper 
mitigation, the anodic dissolution of iron might cause a more 
significant deterioration of the metal.

Fig. 4 shows the surface morphology of the failed mate-
rial, and the presence of a flowery structure is evidence. The 
SEM microphotographs showed the crystal structure of iron 
oxides (cotton ball and flowery). Besides the structure of 
the cotton ball and flowery, irregular structures are also ob-
served. The dominant element detected is iron, oxygen, chlo-
ride, and sulfur. As reported that the pipe was submerged in 
the sea, the chlorides could also be from the seawater ingress 
during lifting after pipe replacement. 

Cracking on the surface of the metal is observed due to the 
volume expansion of the corrosion product. It can be observed 
from the SEM by 5000x magnification (Fig. 4, a, b). With 
increasing time exposure of the subsea pipeline in water, the 
small flowery floccule appears, which indicates the presence 
of α-FeOOH [52]. Furthermore, the SEM images could detect 
the goethite (cotton ball) associated with the increased local-
ized corrosion due to the excessive amount of chloride (Ta-

ble 5) [50] and agrees with the reported work [53]. It is 
suspected that the granular sand product existing on the cou-
pon’s surface of ex-spool material indicates the γ-Fe2O3⋅H2O. 

Based on Table 5, the amount of Fe and O dominates the 
composition of other compounds. The above result confirms 
iron carbonate and iron oxide are observed in the leak loca-
tion. The growth of the damaged area correlates to the dent, 
which continually restricts fluid flow inwardly and causes 
the surrounding area to fail. 

Results demonstrated that one common element in EDX 
is S, which proposed the organic components’ microbial ac-
tivity. The presence of sulfur in both locations shows a high-
er percentage of S (location 1) than in the second location. It 
shows the presence of FeS and the more S atom uptaken by 
the reaction between dissolved iron and S in this location.

Also, it shows the formation of oxides in the area of 
pearlitic[54] and confirms the examination of the preceding 
microstructure result. Table 5 shows that the total amount 
of the elements in location 1 is higher than in location 2, 
indicating a higher trace of corrosion product. The variation 
component in both areas corresponds to material corrosion 
resistance toward severe environmental conditions. The sub-
sea location induces the threat of corrosion due to bacteria 
lowering the pH and yielding the organic acids. As a result, 
it breaks down the protected oxide layer. 

In this work, it is predicted that microorganisms accept 
electrons and obtain the energy from the oxidation process 
of metal oxides when the shortage of energy from organic re-
sources occurs [55]. The result confirmed the various corro-
sion products which were obtained using SEM. Therefore, a 
combination of all mentioned factors damages the condition 
of pipelines in the extended service run.

The compounds detected in the corrosion products col-
lected from the internal pipe are shown in Fig. 5. It can be 
inferred that the depletion of S in the chemical composition 
is related to the formation of troilite, which is affected by 
the dissolved hydrogen sulfide gas (H2S) in water. However, 
the higher displacement angle of FeS has not significantly 
influenced the failure of the specimen. 

In contrast, the appearance of the siderite peak is in 
good agreement with the amount of dissolved CO2 in water. 
The broadening of the siderite peaks at –0.014 indicates the 
inhomogenous surface from multiple corrosion products. It 
also correlatedto the scattered pit corrosion on the top of the 
coupon. The formation of hematite and magnetite is affected 
by the aqueous corrosion or weathering of the pipe material 
during outdoor exposure. Nevertheless, the small score of 
these compounds confirms that the presence of these com-
pounds in the corrosion products was small. However, the 
analysis needs supporting data regarding the water analysis 
inside the pipeline. Therefore, the XRD results show that the 
CO2 dominates the failure of failed material.

The result of seawater sampling activity to verify the con-
tribution of sulfate-reducing bacteria (SRB) shows a gradual 
increment of bacteria’s colony per milliliter of sample solution. 
It is a common practice that an alternative way to control the 
magnitude of bacteria is the addition of biocide. Equation (3) 
shows the complete reaction as previously studied by [56],

( )3 2 2HCO H CO g H O.− ++ → +   (3)

Equation (3) shows the high likelihood of the SRB pro-
ducing CO2. Therefore, the risk of uncontrolled SRB causing 
the excessive insoluble metal sulfide has been elucidated.
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The work has explicitly introduced that the presence of 
CO2 and bacterial activities have become a significant root 
cause of the failed material. From an industrial perspective 
and practice, pipeline inspection management (PIM) should 
align with RCA’s evaluation to suggest a better maintenance 
program. Therefore, this paper bridges the RCA analysis and 
ILI Inspection. However, due to the high data volume of the 
inspection, it is challenging to learn the actual condition of 
pipelines using the conventional method. In this work, the 
implementation of PMM shows the great importance of using 
the ILI database to suggest the maintenance program of PIM. 

The matrix calculates the correlation value between 
pairwise features in this work. It can be seen that the most 
related pairwise is shown by the PoF prediction and PoF-
RuL. Hence, it justifies the argument of the equivalency 
between the PoF prediction and PoFRuL. By default, the 
prediction of failure can be summarized by calculating the 
remaining useful life, which projects the ratio between the 
thickness of inspected pipeline and the corrosion rate. This 
knowledge is adopted in this work to showcase the risk of 
corrosion due to CO2 gas. 

Fig. 7 shows that the pit corrosion length and width ex-
hibit a low relationship with a score of 0.33. The relationship 
between the PoFRuL has a strong relationship (0.88) with 
PoF prediction and justifies the argument of the equivalency 
between the PoF prediction and PoFRuL. Moreover, the 
corrosion depth matches the PoFRuL as it has a score of 1. 
It shows that the corrosion depth has become the primary 
factor impacting materials’intergrity. The understanding 
agrees that the CO2 corrosion increases the wall thinning of 
the inner layer of the pipeline. In the long run, it damages the 
pipeline and causes unprecedented shut-down. 

On the other hand, the PoF prediction and the pipeline 
distance from the first pig launcher showed no correlation. 
It shows that the longer the pig launcher is from the initial 
position, the minimum effect of corrosion can be detected by 
the sensor device of ILI [57]. Also, there is a weak correla-
tion between the width of the corrosion product and the PoF 
prediction (0.064).

In this work, the implementation of ML employs a few 
algorithms to project the correlation of all datasets provided 
by ILI inspection. RF, LR, and SVM are selected to predict 
whether the pipeline remains protected despite severely de-
graded a single section of its long pipeline. According to the 
result, the RF exhibits the highest impact with lower loss, 
indicating that nearly 1349 of the output data (the PoFRuL) 
are correctly predicted and represent the actual pipeline condi-
tion. The significance of RF shows its capability to collect de-
cisions over numerous information on the decision tree, which 
is influenced by the input data and their model parameter 
[58]. On the contrary, the LR shows the lowest performance in 
suggesting the corrosion effect of CO2 gas dissolution in water. 

Based on the presented datasets, the most logical rea-
soning behind this value is the model merely approximates 
the probability of whether the pipelines become corrosive 
or non-corrosive. This dataset’s LR is also unreliable since 
the model may not translate the non-linearity between the 
features and PoF prediction [59]. This result is similar to 
existing research [57] which emphasizes the weakness of 
LR due to a change of scales. Also, the LR is unreliable in 
translating the non-linearity between the features and PoF 
prediction in this dataset[58]. With this result, the accuracy 
of root-cause-analysis is significant and amplifies the human 
objectivity to assert the experimental judgment. 

The limitation of the paper includes the types of mate-
rial of API 581 X42 and the subsea environment. The failed 
material correlates to the peeled green coating in the inner 
layer of pipelines. However, the specification of the exfoli-
ated coating requires extensive study. Moreover, the work 
remains to suffer to identify the type of bacteria progres-
sively producing CO2 gas. This uncertain classification may 
lead to improper corrosion mitigation and extends the more 
significant operational loss. 

On the other hand, the utilization of Supervised Ma-
chine Learning to acquire knowledge from massive data-
sets is limited to Linear Regression (LR), Support Vector 
Machine (SVM), and Random Forest (RF) only. Unsu-
pervised machine learning, such as Gaussian Mixture Mo-
dels (GMM) [60], allows the engineer or scholar to predict 
the risk profile according to the risk’s similarity. Pearson 
Multicollinear Matrix is used to evaluate the relationship 
between the parameter from the ILI data [61].

Pearson Multi collinear Matrix is used to evaluate the 
relationship between the parameter from the ILI data [61], 
despite the matrix only represents the correlation between 
the pairwise parameter. However, the improvement of risk 
distribution remains significant to achieving high prediction 
accuracy.

To this end, the disadvantage of this research covers the 
selection of characterization methods to elaborate the score 
of XRD compounds. The little score shows the amount of 
the corrosion product was lower in magnitude. Knowing 
the detailed information about the elemental composition 
increases the accuracy of the failed material inside the pipe-
lines. Moreover, the principal causes of the failure remain 
unable to reveal the segmented risk of long pipelines. Due 
to the risk of corrosion being heterogeneous, the assumption 
of making generalization risk may not adequately affect 
inspection accuracy. As initially outlined, GMM is suitable 
for performing risk profiling and is the key to unlocking the 
actual condition of the corresponding pipeline under severe 
or non-severe conditions.

Therefore, the development of this research may be 
re-validated through comparison using several inspection 
data from various conditions and treatments. The validation 
of the ML model will appear to be adjusted due to different 
types of environments. Eventually, the approach to address 
the corrosion risk may vary due to conditions, temperatures, 
and environmental processes. Using the model, the engineer 
can quickly identify and evaluate the maintenance program, 
including adding a chemical inhibitor, cathodic protection, 
and another ILI inspection.

7. Conclusions

1. In this work, the depletion of Mn and dissolution of  
S composition suggest the ex-spool material fails due to its 
inadequacy to lower the speed effect of sand’s erosion with 
the indication of the quantitative indicator. The result of 
visual inspection demonstrates that the severe corrosion 
location is at the 6 o’clock position. It is also possible to ob-
serve the exfoliated green internal coating and scratch lines 
to prove that the flow of sand abrasion appears. The pipe-
line’s dent further slowers the fluid flow velocity and is ac-
countable for the pipeline’s strength reduction. In addition, 
the elongation has risen at 33 %, confirming the movement 
of the atomic structure generated from intensive moving 
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abrasive substances to provide a more extensive deposition 
of corrosion product.

2. The appearance of siderite (displacement angle of 
–0.014) confirmsthe presence of the ferrite and pearlite 
phases. The results demonstrate that the CO2 gas is respon-
sible for the failure material. The white grains of ferrite re-
main observed on the surface of an ex-spool specimen, which 
is associated with α-Iron transformation to Fe-oxide and 
hydroxide. The pearlite of black grains corresponds with a 
combination between ferrite and cementite. The appearance 
of two phases is evident in the SEM image and reflected in 
the percentage composition of EDX as corrosion products. 
Furthermore, cracking appears due to a greater volume of 
corrosion product where the α-FeOOH and γ-Fe2O3⋅H2O 
represent the flowery and cotton ball structures.

3. Bacterial activity lowers the material’s mechanical 
properties with qualitative indication. The microorganism 
continuously produces the CO2 gas, which is attractive to 
dissolve Fe2+ to give FeCO3 and reduce surface passivation 
against corrosion.

4. The PMM shows the strongest correlation between 
corrosion depth and the PoF prediction, which provides the 
highest score of 0.88. The sole parameter of wall thinning 

due to CO2 corrosion from the modeling method agrees with 
the experimental result with the indication of qualitative 
and quantitative from the research development. In addition, 
RF provides the best model to demonstrate the risk of cor-
rosion with 92.18 % accuracy. At the same time, LR shows 
thatitmay be insufficient to map the relationship between 
the label and features data (67.81 %). The two algorithms 
correctly compare the indication of corrosion, both quanti-
tative and qualitative.
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