
Applied mechanics

79

1. Introduction

The prerequisite for the realization of this work is a 
steady growth of interest in mobile robotics systems on the 
part of both scientific and educational institutions. The 
implementation of such a system is a complex and time-con-
suming process, which cannot be performed at the modern 
level without using a set of specialized software and hard-
ware tools to help the developer at various stages of design, 
programming and debugging. 

The solution to this problem is to develop a verbal-in-
teractive robot-technical complex, with support for modern 
mobile control technologies. This will allow to immediately 
begin to get acquainted with the hardware of electronic 
devices for various purposes, get skills in programming 
microcontrollers and program debugging. Availability of 
verbal-interactive training platform at a reasonable price 
will allow engineers and scientists from different fields, who 
need to automate their approaches, to test their ideas and 
algorithms on prototypes of robotics, to quickly prototype 
and program such models. 

The main difference of this work from similar (ongoing) 
works in other countries is its focus on the development of a 
humanoid robotic system with an open architecture based 
on modern mobile technologies. 

Humanoid robots are commonly referred to as those 
robots that at least partially resemble humans. Most such 
humanoid robots have a torso, two legs, two arms, and a 
certain shape of head. Some of them may have a face that can 
change expression to varying degrees. Although the idea of 
creating this type of robot has been around for a long time, 
it is only in the last decade that relatively humanoid robots 
have actually made quite a lot of progress.

The term android is often used as simply a synonym for 
humanoid robots, but it can also be used to describe a robot 
more specifically. Some people believe that, strictly speak-
ing, android is a robot that looks like a man, while gynoid 
would be the technically correct term for robots with a 
female appearance. 

A truly humanoid robot should have somewhat limited 
autonomous capabilities, not just a human-like appearance. 
For example, a simple calculator placed in a humanoid shell 
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This paper investigated the dependence of the sta-
bility of the knee joint, when exposed to external rota-
tional load on the lower leg, on the position of the 
graft of the tendon of the popliteal muscle. Estimation 
finite-element models of the right knee joint of an adult 
were constructed, which included the articular ends of 
the bones that form this joint, as well as its main liga-
ments. The models reflected a surgery to restore pos-
terolateral angle structures and differed only in the 
position of the popliteal tendon graft. That position was 
set by the point of attachment of the graft to the poste-
rior surface of the tibia. At the same time, the fixation 
point changed both vertically and horizontally, in the 
frontal plane. In addition, a control model was built in 
which the hamstring tendon was completely absent. As 
a result of the calculations, patterns of the distribution 
of the fields of movement of the points of the finite-ele-
ment model were obtained. As criteria for assessing the 
effectiveness of the selected position of the graft, move-
ments of the lower leg model in the horizontal plane 
were proposed. Analysis of the results of the calcula-
tions showed that the greatest movements in all direc-
tions were obtained in the control model, in which the 
hamstring of the popliteal muscle was absent. The mag-
nitudes of the considered movements derived from the 
control model exceeded the same values in the model 
with minimal movements by 17, 37, 17, 32, and 16 %. 
From the point of view of the stability of the tibia under 
rotational load, the most effective was the fixation of 
the graft on the posterior surface of the tibia as lateral-
ly as possible and closer to its articular surface. This is 
indicated by the magnitude of the movements, which, in 
this case, turned out to be the smallest in all directions
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will not become a humanoid robot. Humanoid robots are 
capable, to some extent, of adapting to their environment 
and are usually built on some form of self-learning system, 
so that they can develop and improve their abilities to solve 
problems.

The ability to move is one of the most challenging tasks 
in creating good humanoid robots, since the human body is 
actually quite a complex system in terms of its motor capa-
bilities. For example, it is incredibly difficult to create a ro-
bot that can jump, because moving a heavy robot requires a 
significant amount of energy, and adjusting and fine-tuning 
the motors to ensure that it maintains its balance during a 
collision is extremely difficult. For example, the humanoid 
robot Dexter can jump, but it was designed almost exclu-
sively for this purpose, and yet its ability to jump is still very 
limited compared to humans.

Humanoid robotic engineering recently has become 
much studied and an important topic for academic commu-
nity due to its potential usage for domestic and medical aims. 
In the work [1] there were developed several complicated 
humanlike robots, for instance, ASIMO robot, created by 
Honda Motor Company; QRIO robot [2], fabricated by 
Sony; HUBO robot [3], offered by KAIST.

But even with its limited capabilities, humanoid robots 
already have a number of applications, and in the future they 
will be able to solve many other important tasks. Humanoid 
robots can be used to perform dangerous work that requires 
human involvement, especially to operate equipment that is 
already designed to be operated by humans. They can also be 
used to serve the elderly and to care for and entertain young 
children. In fact, one area with increasing involvement of 
humanoid robots is the education of preschool children, 
who can actively interact with them without experiencing 
many of the problems that arise between robots and adults. 
Meanwhile, humanoid robots continue to improve, they can 
already replace humans in many cases, especially for work 
in space, underwater or when exploring dangerous areas on 
the ground.

The InMoov project is an open and publicly available 
project; it is possible to make exactly such a robot yourself, 
using the list of standard components and drawings of robot 
parts posted on a special website for storing 3D projects 
Thingiverse. Particularly relevant are the studies devoted 
to dedicate for optimization of kinematical solutions via 
neural networks, which are relevant for several main fields of 
computational problems nowadays, since the flexibility and 
speed of the neural networks. The solutions for forward and 
inverse kinematics problems are crucially important for the 
further development of robotics.

2. Literature review and problem statement

Humanoid robotic engineering recently has become 
much studied and an important topic for academic commu-
nity due to its potential usage for domestic and medical aims. 
In the work [1] there were developed several complicated 
humanlike robots, for instance, ASIMO robot, created by 
Honda Motor Company; QRIO robot [2], fabricated by 
Sony; HUBO robot [3], offered by KAIST.

In [4, 5] the authors developed and investigated simple, 
analytical and illustrative kinematic models for kinematic 
control of robot gait. Aldebaran Robotics and Robotis, de-
veloped and created small humanoid robots NAO [4] and 

DARwIn-OP [5]. Robots of this type have found applica-
tions in the fields of learning and entertainment, offering an 
accessible platform for students, researchers and non-profes-
sionals. 

In [6], a model of robot leg movement was developed, 
which gave a number of advantages compared to movement 
on wheels. Also in this work, the developers proposed legs 
that can overcome barriers and achieve a smooth gait on 
uneven surfaces, effectively changing the length of the legs 
in accordance with the geometry of the surface. In [7], the 
authors developed forward and inverse kinematics, enabling 
humanoids to perform complex dynamic movements. In 
paper [8], the authors developed the first conceptual design 
that defines the positions and orientation of the finite state 
effector when the active configurations of the robot’s joints 
are specified. And in [8], a second conceptual design was de-
veloped that defines joint variables to determine the actual 
positions and orientation of the finite state effector.

The first incredibly significant step to controlling a ro-
bot is to understand the mathematical model of the system. 
The INMOOV robot has been designed to operate safely in 
interaction with human, and, as a result, has become one of 
the most used research platforms in robotics labs.

Planning a robot’s motion requires understanding of the 
relationship between the actuators it is possible to control 
and the robot’s resulting position in the environment. For-
ward Kinematics of a robotic arm is the process used to find 
the position of the end-effector of the robot using the knowl-
edge of the angle of each joint. If it is necessary to find the 
angle of each joint for a particular end-effector position, it is 
necessary to invert this relationship. This process is known 
as Inverse Kinematics. Through this study the process of 
inverse kinematics for INMOOV robot is optimized by de-
veloping software application in Python.

In [9], the complexity of the inverse kinematic problem 
for open kinematics was investigated, in particular, for the 
reason that a set of solutions led to a nonlinear mapping of 
parallel and Cartesian spaces. In [10], the authors investigat-
ed analytical kinematic solutions for real-time applications, 
since the computation time of numerical solutions can vary 
significantly. In [11], the researchers proposed a closed form 
solution to complex algebraic and geometric problems that 
uses a reduced number of unknowns to express the position 
and orientation of the finite state effector.

In [12], the authors investigated the relationship between 
the constituent parameters of the Denavit Hartengerg (DH) 
robot leg by applying a geometric approach based on the 
properties of a triangle. In [13], the authors used the forward 
and backward decoupling method to solve the kinematics 
of the humanoid leg using the Hermandez-Santos inverse 
transformation method. In [14], the authors investigated the 
sagittal and frontal planes to obtain closed form solutions for 
the inverse and forward kinematics of the humanoid robot. 
In [15–17], the authors, using three variables, manipulated 
both sides of the kinematic matrix equation to express the 
motion of one leg.

The forward kinematics of a serial manipulator is a very 
well-established concept in robotics research, the most com-
monly used technique being Denavit-Hartenberg param-
eters [1]. Inverse Kinematics is more complicated, as there 
is no universal mechanism to derive the inverse kinematics 
equations of a manipulator. In fact, closed-form solutions do 
not even exist for redundant (7-DOF or more) manipulators. 
In the article [18], a method of numerical inverse kinematics 
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of robotic manipulators was developed. The main idea is to 
develop an algorithm that is complex and efficient. The study 
used the method of zero position analysis and 3×3 rotation 
matrices (instead of 4×4 displacement matrices) directly 
provides updated geometric information required by the al-
gorithm, and therefore significantly increases the computa-
tional efficiency of the numerical method. The algorithm can 
also be used as a temporary replacement for other numerical 
methods when the hand is close to a special position. The 
article [19] provides quantitative comparisons using several 
humanoid platforms between an improved implementation 
of the inverse Jacobian algorithm KDL, a set of sequential 
quadratic programming algorithms (SQP) IK, which use 
various quadratic error metrics, and a combined algorithm 
that simultaneously runs the most efficient SQP algorithm 
and an improved inverse Jacobian implementation. The arti-
cle [20] describes a new heuristic method called forward and 
inverse kinematics (FABRIC) and compares it with some 
of the most popular existing methods in terms of reliability, 
computational cost and conversion criteria. FABRIK avoids 
using rotation angles or matrices and instead finds the posi-
tion of each connection by locating a point on the line. The 
article [21] proposes an adaptive learning strategy using an 
artificial neural network ANN to control the movement of 
a robot manipulator 6 D.O.F. and overcoming the inverse 
kinematics problem, which is mainly related to features and 
uncertainties in hand configurations. In this approach, the 
network was trained to study the desired set of connection 
angle positions from a given set of end effector positions, ex-
perimental results showed an excellent mapping of the robot’s 
workspace to confirm the ability of the developed network to 
make predictions and a good generalization for any data set, 
new training using a different data set was performed using 
the same network, experimental the results showed a good 
generalization for new data sets. The article [22] presents a 
new and very effective algorithm for calculating the inverse 
kinematics of a common sequential kinematic chain 6R. The 
basic idea is to use classical multidimensional geometry to 
structure the problem and use geometric information before 
starting the elimination process. For geometric preprocess-
ing, a training model of Euclidean displacements, sometimes 
called a kinematic image, was used, which identifies the 
displacement with a point on a six-dimensional quadric in a 
seven-dimensional projective space P7. Algebraically, a sys-
tem of seven linear equations and one resultant was solved 
to obtain a one-dimensional polynomial of degree 16. At this 
step of the algorithm, two of the six connection angles were 
obtained, and the remaining four angles are obtained recti-
linearly by solving the inverse kinematics of two 2R circuits. 
In the article [23], the configuration of levers is developed, 
which are the main problems in the kinematic control of the 
robot that arise as a result of the use of the robot model. In 
this study, a solution based on the use of an artificial neural 
network (ANN) is proposed. The main idea of this approach 
is to use ANN to study the characteristics of a robotic system 
instead of specifying an explicit model of a robotic system. 
The network was designed to have one hidden layer, where 
the input data were Cartesian positions along the X, Y, and 
Z coordinates, orientation according to the RPY representa-
tion, and linear velocity of the end effector, while the output 
data were angular position and velocities for each connec-
tion, in the obstacle-free workspace. autonomous smooth 
geometric trajectories in the connection space of the ma-
nipulator. The resulting network was tested on a new set of 

data that were recorded in singular configurations to show 
the generality and effectiveness of the proposed approach, 
and then the test results were tested experimentally. The 
article [24] shows the study of the influence of some more 
important parameters on the final errors of the trajectory 
of the final effector of the proposed neural network model 
solving the inverse kinematics problem. The work studied 
the number of neurons in each layer, the sensitive function 
for the first and second layers, the coefficient of increase in 
the trajectory error, the variable step of the time delay and 
the position of this block, various cases of target data and 
the case when hidden target data were corrected. The ob-
tained results were verified using the corresponding direct 
kinematics virtual LabVIEW toolkit. One optimal sigmoid 
bipolar hyperbolic tangent neural network with time delay 
and recurrent connections (SBHTNN (TDRL)) of the type 
is obtained that can be used to solve the inverse kinematics 
problem with a maximum of 4 % trajectory errors.

The study of previous work shows that the most of the 
researchers [25, 26] have adopted methods like ANN, AN-
FIS etc. for simple problem. The features of MLPNN are 
found quite matching and hence suitable for the present 
problem having complexity and involving multiple parame-
ters. Therefore, the main aim of this work is focused on min-
imizing the mean square error of the neural network-based 
solution of inverse kinematics problem. The result of each 
network is evaluated by using direct kinematics equations 
to obtain information about their error. In other words, the 
angles obtained for each joint are used to compute the Carte-
sian coordinate for end effector. The training data of neural 
network have been selected by iterating through angle com-
binations with sufficiently precise increment.

3. The aim and objectives of the study

The aim of this study is to Identification of patterns for-
ward and inverse kinematics of both hands of the robot by 
creating imitational model and analysis of the functionality 
of the manipulator (hand) with 4-dof and workspace for the 
both hands. This will allow the created robot to achieve the 
goals, also manipulate with variety of sign languages for the 
educational systems.

To achieve this aim, the following objectives are accom-
plished:

– building model of forward kinematics for both arms 
of the robot by using method of the Denavit-Hartenberg 
parameters and finding the corresponding workspace for 
these arms;

– development of the iterative algorithm for the chosen 
configurations of the arms of the robot for achieving the 
destination in the space;

– creation of the learning algorithm for the neural 
network and experiments in order to reduce the root mean 
square error of summative difference of angles.

4. Materials and methods of research

The object of the study is the INMOOV robot, including 
kinematics for both robot arms. Research hypothesis: the 
developed kinematic model based on the machine learn-
ing method permits to reach an effective solution for the 
orientation of both robot arms compared to the iterative 
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method. A direct kinematic model for the left and right arms 
of the robot is researched. Let’s use Python-based software 
libraries for calculations, using the matpilotlib library for 
the robot arms workspace. Let’s apply an iterative method 
algorithm to find points in space for development. Using 
this algorithm, let’s develop a simulation model for both ro-
bot hand. This paper proposes a structured artificial neural 
network (ANN) model to find a solution to the inverse kine-
matics of the INMOOV 4-dof robot. The ANN model used 
is a multilayer perseptron neural network (MLPNN), which 
applies gradient descent type learning rules. An attempt was 
made to find the best ANN configuration to solve this prob-
lem. The improvement of the solution is based on minimizing 
the root-mean-square error by changing each angle by the 
joints of the robot arm.

5. Results of the direct kinematics study and InMoov 
robot simulation model

5. 1. Forward pose kinematics
InMoov robot is equipped with SDK MyRobotLab 

experimental package, provided by its developers. Apart 
from that, it has several interfaces of simulating model’s 
telecontrol, as well, real InMoov model. In the work herein 
there were offered the methods and algorithms on the tasks 
of direct and inverse kinematics for robot’s arms. There is 
discussed the methodology, tools and resources which have 
been used for robot’s arms orientation.

The task of direct kinematics is to solve the problem of 
orientation and position of finite element with account of 
joint angles. It is solved with the help of robot geometry and 
coordinates system, which are denoted in Denavit-Harten-
berg (DH) parameters [1]. DH parameters represent the set 
of four variables, which define spatial relationship between 
two permissible coordinate frames. Those variables are di 
(moving along old z), Ɵi (rotation around old z), ri (moving 
along new x) and αi (rotation around new x). The Table 1 
shows the DH parameters for the INMOOV robot model. 
Those parameters are united, using DH structure to get 
transformation matrix, which connects two coordinates sys-
tem by matrices multiplying. General homogeneous trans-
formation from one chain to the next with account of DH 
parameters is given in matrix form in terms of:

where 1i
iT −  – transformation from coordinates system i–1 

into coordinates system i.
Product of multiplication of all transformational matri-

ces should be defined.
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Table	1

DH	parameters	of	a	left	arm	with	six	degrees	
of	freedom

i αi–1(rad) ri–1 (m) di (m) Ɵi (rad)

1 π/2 0.2 0 0

2 –π/2 0.05 0 Ɵ2–π/2

3 π/2 0 –0.18 Ɵ3+π/2 

4 –π/2 0 0.286 Ɵ4–π/2 

5 π/2 0.0127 0.0135 Ɵ5

6 0 0 0.28 Ɵ6 

Equation of direct shoulder positioning kinematics gives 
positioning 4-dof (3 positions and 3 orientations) of finite ele-
ment depending on six joint angles of arm manipulator Fig. 2. 
Computation of DH parameters is the first step towards 
obtaining the equations system to compute finite point coor-
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dinates Table 2. Direct kinematics is computed using trans-
formation matrices. For the shoulder under consideration the 
matrix of transformation from the base frame to the upper 
one, using several transition transformation matrices, is set 
as following:

0 0 1 2 3 4 5
7 1 2 3 4 5 6* * * * * ,T T T T T T T   =       (11)

( )( )
( )

( )

0 1 1 2 1

5 4 1 3 1 2 3 1 2 2
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xp r c r d s

d s s s c c c c c s

d c s c c s
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Presented above equations might be used directly for 
obtaining finite positions of effectors by entering input data 
for joint angles.

Let’s denote ci=cos(Ɵi) and si=sin(Ɵi) in equations.

Table	2

DH	parameters	of	the	right	arm	with	six	degrees	of	freedom	

i αi–1 (rad) ri–1 (m) di (m) Ɵi (rad)
1 π/2 –0.2 0 0
2 –π/2 0.05 0 –Ɵ2–π/2
3 π/2 0 –0.18 –Ɵ3+π/2
4 –π/2 0 0.286 Ɵ4

5 π/2 0.0127 0.0135 –Ɵ5

6 0 0 0.28 Ɵ6

Parameter DH is a mechanical mathematical model of 
the mathematical model and coordinate system that uses 
four parameters to express two pairs of position angle rela-
tions between the connectors’ connections [2].

Research of working space. Fig. 3 shows accessible work-
ing 3-D space for left/right manipulators of InMoov robot 
with length units in centimeters. Visualization was obtained 
using MatPlotLib library in Python programming language 
in all joint angles’ limits (except for wrist joint rotation 
angle, Ɵ6 which by no means makes influence at positioning 
XYZ of the finite point). There were obtained the given space 
mappings, which are shown below in Fig. 3–7.

Upon completing creation of arms movement area, coor-
dinates and points orientation at desired path in Cartesian 
space might be applied as input data for neural network, as 
well, there will be generated general parameters, which place 
the finite effector to the required path.

Fig. 6 shows the resulting joint spatial trajectories corre-
sponding to a circular trajectory defined in Cartesian space.

Fig.	1.	Kinematic	scheme	of	a	left	arm	with	six	degrees	of	
freedom	with	coordinate	systems

Fig.	2.	Kinematic	scheme	of	the	right	shoulder	with	six	
degrees	of	freedom

Fig.	3.	Chart	of	working	space	for	left/right	arm	of	InMoov

Fig.	4.	Mapping	of	working	space	of	left/right	arm	at	XZ	plane
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This section shows all possible working areas of both robot 
arms. The projection of both hands on different coordinate sys-
tems is shown. The figure shows the interval of the maximum 
minimum degree of degrees of freedom of both robot arms.

5. 2. Iterative method of inverse pose kinematics 
solution

Iterative method through Jacobian matrix is the most ba-
sic method for iterative solution of inverse kinematics task. 
Computing pseudoinverse non-quadratic Jacobian matrices 
allows find the speed of changing input angles of arm’s parts 
to reach the point in space at every time point [3].

Initially, there is defined (current) position of the finite 
effector (x←FPK(Ɵseed)). Afterwards, angles current state 
vector is assigned values of angles initial positions (Ɵ←Ɵseed). 
Then, there is started cyclic fulfillment of computations and 
operations of angle values change, which might be executed, 
untill the distance between the aim point and current position 
of finite effector is bigger, than satisfying magnitude (repeat…
until ||xdes–x>ɛ||). 

Number of those operations represent:
1. Computation of v ector difference between location of 

a finite effector and aim point Δx←xdes–x().
2. Computation of the vector, transmitting movement 

direction of a finite effector, which is production of the unit 
vector, vector position difference and scalar value, regulat-
ing speed of angles change (x’←Δx/||Δx ||×step).

3. Assigning to angles vector the new magnitudes, which 
are vector production of pseudo inverse matrix for Jaco-
bian matrix and direction, computed earlier by the vec-
tor (ϴ←ϴ+J†(Ɵ)x’).

4. Updating the values of finite effector current position 
in the space (x←FPK(ϴ)). 

In the given case Jacobian matrix is computed, applying 
numerical method, i. e., computed by means of calculating 

vector differences at small changes of each angle for some 
small quantity, which are divided into that small magnitude. 

Algorithm 1 shows pseudocode for that computation.

Algoritm 1: Iterative Method.
1) PROCEDURE Iterative (xdes, θseed, step);
2) x←FPK(θseed);
3) θ←(θseed);
repeat

Δx←xdes–x,

' ,
| |

x
x step

x
∆

← ×
∆



θ←θ+J†(θ)x’,
x←FPK(θ),
until ||xdes–x ||<ε.

Jacobian matrix’s formal definition, the ma-
trix’s vector components’expressions and corre-
sponding Moore-Penrose pseudoinverse forms are 
shown below. J†(θ) – the pseudoinverse of Jacobi-
an matrix

( )
0 1

... ,
n

J
 ∂ν ∂ν ∂ν

θ =  ∂θ ∂θ ∂θ 
  (15)

,

i

i i

i

x

y

z

 ∂
 ∂θ 
 ∂ν ∂

=  ∂θ ∂θ 
 ∂
 ∂θ 

    (16)

( ) ( ) ( )( ) ( )
1

† .
T T

J J J J
−

θ = θ θ θ   (17)

Approximate evaluation of the pseudoinverse of Jacobian 
matrix can be done just by finding approximate values of the 
partial derivatives, which can be done by finding the ratio of 
the change of the position vector and the small increment of 
the considered joint angle

( ) ( )
,

i i

ν α − ν θ∂ν
≈

∂θ ∆θ
    (18)

... ...

.

... ...
i i i

   
   α = θ + ∆θ = θ + ∆θ   
   

   (19)

Method of cyclic descend along coordinates iteratively 
tries to make the finite effector, first, converge at sphere 
with a radius, equal to distance between manipulator basis 
and finite effector, and then do the same to convergent in the 
aim position. Fig. 7 demonstrates the initial and final states 
of the end-effector with applying the Iterative technique.

The proposed method is widely used for simulation of 
movement of object containing joints and perfectly serves 
for the task if it doesn’t require significant amount of time. 
However, this method does have some caveats, such as the 
inability to converge to a certain orientation and inherent 
computational limitations, while each iteration tries to make 
the final effector fall on the line connecting the actuated 
connection and the target position.

Fig.	5.	Mapping	of	working	space	for	left/right	arm	on	XZ	plane

Fig.	6.	Combined	paths
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5. 3. Usage of multilayer neural network for inverse 
pose kinematics solving 

Solution of robot’s inverse kinematics makes direct 
influence at robot control accuracy. Inverse kinematics solu-
tions conventional techniques, such as numerical, algebraic 
and geometrical, have insufficient speed and accuracy, and 
solution process is complicated. Thanks to ability of neural 
network to mapping, usage of neural networks for solving the 
tasks of robot’s inverse kinematics attracted wide attention. 

It is well known, that neural networks own the better 
possibilities, than other methods to solve different compli-
cated tasks. Inverse kinematics is transformation of system’s 
coordinates (X, Y and Z) into the system of coupling coordi-
nates (Ɵ1, Ɵ2, Ɵ3, Ɵ4). That transformation might be fulfilled 
for input/output work, which uses unknown transfer func-
tion. MLP (Multilayer neural net) neuron of neural network 
is a simple working element and has local memory. Neuron 
accepts multidimensional input signal, and then transfers it 
to other neurons according to their weights. It gives scalar 
result at neuron’s output. MLP transfer function, acting 
at local memory, uses learning rule to create interrelation 
between input and output. To introduce activation the time 
function is indispensable.

The authors offered the solution, using multilayer per-
ceptron with an algorithm of inverse distribution for learn-
ing. Afterwards, the network is learnt, using the data for a 
number of finite effectors positions, expressed in Cartesian 
coordinates and corresponding joint angles. Data consists 
of various configurations, accessible for robot’s arm.

The network uses learning regime, in which input data 
is introduced into the network together with the desired 
result, and weights get customized in the way, in order the 
network gives the desired result. The weights after learning 
contain valuable information, while prior to learning they 
are random and have no importance.

Clean input of buried neurons (for k inputs) is defined as

1

.
k

h j jn
j

n w o
=

= ×∑    (20)

Output signal Omj of buried neuron, as function of its 
network input is described with equation (13). Sigmoid 
function is:

1
.

1 kmj noutput O
e−= =

+
     (21)

When output data of buried layer neurons was comput-
ed, clean input signal for every input layer is calculated in a 
similar way, as in equation (14).

( )( ),mf n d oδ = −     (22)

( )1 ,m mo oδ = −      (23)

where d – aim or desired value, and om – actual value, ob-
tained from output neuron after direct computation. Error 
computation was implemented based on the principle ‘neu-
ron after neuron’ along total set (epoch) of patterns. That 
error value δ was used to fulfill corresponding corrections 
of coupling weight between output layer and buried layer. 

( ) ( )
0 0

' 1 ,
l lk k

h h lh l h h lh l
l l

f n w o o w
= =

δ = δ = − δ∑ ∑   (24)

where δh – error value of buried layer, δl – error value of 
output layer, oh – output signal of sigmoid function, and 
wlh – coupling weights between output and buried layers. 
Within the weights of couplings between output and 
buried layers, weights changes are computed according to 
equation (16).

( ) ( ) ( )0 .w old w new w old = + ηδ + α     (25)

Learning stage aim consists in minimizing the root-
mean-square error in all learning models. Network conver-
gence rate depends on learning curve and kinetic momentum 
coefficient α. 

In the work herein, double-layer neural network with 
three inputs Px, Py and Pz, and four outputs (Ɵ1, Ɵ2, Ɵ3, Ɵ4), 
was learnt, using algorithm of inverse distribution, described 
earlier, along the path of finite effector in XYZ space.

The proposed work was executed on Python Keras 
platform. Herein, learning data sets were generated, using 
equations (12)–(17). First, there was generated the set of 
40000 data in compliance with the formula for input param-
eters of Px, Py and Pz coordinates in millimeters. Those data 
sets served as the basis for learning, assessment and testing 
of MLP model. Out of data sets, 20 % were used as learning 
data, and 80 % – for testing at MLP, as it is shown in Fig. 8. 

Fig.	7.	Results	of	iterations	of	the	inverse	kinematics	
solver	in	action

Fig.	8.	Results	of	searching	points	in	space	(l=100	%)
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Inverse distribution algorithm was used for learning the 
network and obtaining the desired weights matrix. In the 
work herein there was applied the learning method, based 
on learning periods in epochs. MLPNN model formulation is 
generalized and might be used for solving direct and inverse 
kinematic task of any configuration manipulator. However, 
in the present work there was considered definite configu-
ration only to illustrate method applicability and solution 
quality, comparing with other alternative techniques. 

Mean-root-square curves, shown in Fig. 8, 9 demonstrate 
the procedure of vector construction for a new path, which 
gives an idea of proposed model success. As it is shown, in 
the result of the experiment, the used solution method gives 
possibility to select the result, which has the least error in 
the system. Therefore, the solution can be obtained with less 
measure of inaccuracy, as it is shown in Fig. 9, for the best 
efficiency of obtained data verification with required data.

Tests for generalization were carried out with random 
aim positions, showing, that the studied MLP generalized 
well along the total space. Regression coefficient analysis, 
in compliance with Fig. 9, shows conformity of 95.6 % for 
all coupling variables, which is acceptable for getting the 
inverse kinematics of InMoov robot.

Also, Fig. 10 shows the red dots show errors in finding 
the coordinates of the manipulator, the green dots are the 
exact location of the coordinates of the manipulator.

Main attention in the article was paid to applying ana-
lytical approach and neural network to solve inverse kine-
matics InMoov 4-dof robot. Mathematical models are based 

on assumption about advanced structure of the model, which 
might be non-optimal. Consequently, many mathematical 
models are not able to model complex behavior for solving 
the problem of inverse kinematics. Unlike it, ANN is based 
on pairs of input/output data to define the structure and 
parameters of the model. Moreover, they always might be 
updated to obtain better outcomes by submitting new, learn-
ing examples, while entering new data. In the given task the 
error value (root-mean-square error) practically equals to 
zero, which is much acceptable in distinction to accuracy in-
dicators and values of any typical manipulator’s recurrence 
errors. From the given research it is seen, that MLP gives 
minimal root-mean-square error for solution and unites vari-
ables as performance factor. The model of predicting joint 
angles, based on artificial neural network might be a useful 
tool for engineers – technologists for precise validation of 
manipulator movement. 

6. Discussion of forward kinematics study and InMoov 
robot simulation model

Firstly, the shown transformational matrices (2)–(7) 
are received by replacing some components of the general 
transformational matrix (1) which are represented as trig-
onometrical expressions with constant values regarding 
to the DH characteristics (Table 1, 2). After which, by 
sequential multiplication (8) of these matrices gave us the 
final equations (9)–(11) describing the coordinates of the 
end-effector in the space. Secondly, we got the working 
space (Fig. 3–5) by marking all points in the space, which 
can be reached by the end-effector, so we could visually 
estimate the movement of the manipulator. Thirdly, the 
standard iterative technique is applied to the manipulator 
and we have gained positive results (Algorithm 1, Fig. 9). 
Despite the achieved goals, this technique’s disadvantage 

is its time complexity, which requires computation of the 
Jacobs matrix and further movement’s unit vector. Although 
it was negligible in the experiment, optimization of the time 
complexity was considered to avoid time delay to proceed 
other computations in the computer. Therefore, the better 
solution for that problem is multilayer neural network, which 
can maintain properties of the complex trigonometric func-
tions in the computations. The further training (12)–(17) 
of the neural network has been done in order to gain all the 
correct properties of the network for adequate functioning. 
After which, sufficient accuracy (Fig. 8, 9) are gained. Also 
distribution of the loss per points (Fig. 10) is visualized in 
the space. Speaking of obstacles in these stuides, there could 
be problems with overtraining the neural network for partic-
ular part of the space as an input.

The article herein presents detailed kinematic analysis 
of two arms of 4-DOF InMoov humanoid robot. There 
were presented Denavit-Hartenberg parameters for every 
sequencing circuit, definite parameters of length and joint 
angles limits. There were developed common 4-dof solu-
tions for FPK kinematics with analytical results. For 4-dof 
inverse pose kinematics general solution there was pro-
posed numerical approach. There were used such modules 
as, MatPlotLib, Keras, TensorFlow and SciPy, which were 
implemented in Python programming language, for all de-
velopments in kinematics area. The authors elaborated own 
version of kinematics and dynamics library for InMoov, the 
library contains implementation of direct kinematics and 

Fig.	9.	Errors	of	finding	points	in	space	(l=100	%)

Fig.	10.	Error	points	in	space	in	various	views
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iteration algorithms for inverse kinematics with six degrees 
of freedom.

The accuracy of the neural network cannot be higher 
because to the fact that the method of evaluation is based 
on the summative difference between two vectors of the 
expected output and prediction of the neural network. This 
is caused by the properties of the Keras module and it is not 
possible to implement Keras for evaluation of the distance 
between input position and the destination because the 
Keras tensors are not available for parsing. Therefore, at 
some rare cases the error could reach about 1.5 sm. It is pos-
sible to reduce the error by enlarging the learning database 
for the neural network, however the time for learning also 
increases exponentially. 

The simulation model does not consider dynamical prop-
erties of the system. Therefore, there could be some errors 
caused by the inertia of the joints. The neural network itself 
is implemented in Python programming language, which is 
easy for implementation, but has drawbacks related to the 
speed of programming interpretation. 

One of the main advantages of the neural networks is its 
flexibility, hence it can be used for adapting the real condi-
tions as additional mathematical features of the system. In 
the further research, it is planned to develop algorithm for 
avoidance of collision between two arms.

7. Conclusion 

1. A detailed kinematic analysis of the two arms of IN-
MOOV’s 4-dof humanoid robot is presented. Denavit-Harten-
berg parameters for each sequential chain, specific length 
parameters, and limits of the connection angle were given. 
General 4-dof solutions for FPK kinematics with analytical 
results were developed. The workspaces for the corresponding 
arms were calculated for the further MLPNN algorithm.

2. The iterative algorithm were developed for the IN-
MOOV robot using Jacobian matrix’s pseudo-inverse. The 
simulative model was built for testing the iterative algorithm 
in Python programming language. The visualization was 
conducted via PyGame library.

3. The MLPNN algorithm was created via Keras library 
in Python programming language with less time complexity, 
which is constant O(1), while the iterative method has linear 
time complexity O(n). For the comparison samples of the 
experiments were obtained, where the iterative algorithm 
shows about 180 ms in average, while the MLPNN shows 
approximately 24 ms. The result is caused by the fact that 
the iterative algorithm conducts matrix multiplications 
throughout the distance from initial position to destination, 
while the MLPNN only needs constant amount of calcula-
tions. The regression coefficient according to the analysis, 
which shows a 95.6 % fit for all joint angles, is acceptable 
for obtaining the inverse kinematics of the INMOOV robot.
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