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1. Introduction

Diffusers, either as nozzles or constituent elements, are 
frequently used in many mechanisms and machines designed to 
regulate or control the production cycle. The regulator’s work 
depends mainly on the stable operation of the main unit, i.e., 
the conical diffuser. In this regard, the study of the viscous fluid 
flow in conical diffusers is relevant as the analysis results will 
reveal the conditions for mechanism unit construction, ensur-
ing its reliable and durable operation. Given its practical impor-
tance, this task has attracted the attention of many researchers. 
The stable operation area of all equipment largely depends on 
the viscous fluid flow mode in conical diffusers. Therefore, the 
study of viscous fluid flow in diffusers aims to discover patterns 
of changes in the flow’s hydrodynamic parameters that are not 
only relevant but also represent a great practical value.

2. Literature review and problem statement

The viscous fluid flow in conical diffusers is one of the clas-
sic problems of hydromechanics and has attracted the attention 

of many researchers. The classical problem statement was first 
formulated by [1, 2], who proposed the solution of equations of 
viscous fluid motion in diffusers, taking into account squares 
of components of velocities and their product multiplication. 
In further studies, justifications have been made about the ef-
fectiveness of this approach, and solutions have been proposed 
based on the results of experimental data. Despite the funda-
mental formulation of the issue and the conventional solutions 
offered, their practical implementation necessitates time-con-
suming computing work, making them difficult to implement. 

The authors of papers [3, 4] also addressed these issues in 
terms of identifying stable and unstable traffic areas in conical 
diffusers, which is important for assessing their performance. 
However, the problem’s solution was reduced to a system 
of nonlinear transcendental equations, where integration is 
loaded with difficulties. This approach did not allow efficient 
calculations for specific parameters of the diffuser. Therefore, 
the authors proposed more suitable methods for integrating 
the differential equations of motion in the cone diffuser area. 
Moreover, the solution of the boundary value problem was 
carried out at constant values of velocities in the inlet sections 
of the diffuser, which does not correspond to reality.
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Studies of patterns of changes in hydrodynamic 
parameters of the viscous incompressible fluid in a coni-
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into pressure energy. Depending on Reynolds numbers 
and diffuser opening angles, the velocity vector field is 
stationary. With an increase in the Reynolds number, the 
symmetry of the flow relative to the axis of the diffuser is 
broken. A general solution to the approximate Navier-
Stokes equations is given, based on the diffuser opening 
angle and the Reynolds number. A method for integrating 
the boundary value problem has been developed, and the 
patterns of velocity changes across the diffuser length at 
a parabolic distribution of velocities in the inlet section 
are obtained. By integrating partial differential equa-
tions that match all boundary conditions, the solution 
to the boundary value problem can be found. Graphs of 
changes in radial and axial velocities along the length 
and with a fixed value of the opening angle are shown; 
the flow pattern and the transition of a single-mode flow 
to multimode regimes are obtained. For a fixed open-
ing angle and Reynolds number, the conditions for flow 
separation from a fixed wall are derived, where the flow 
velocity changes the sign. A mixing process is observed in 
the multi-mode region, which is accompanied by numer-
ous pulsation phenomena and an unstable diffuser oper-
ation, where the resulting solutions are inappropriate. 
Based on the results of the studies obtained, it is possible 
to correctly design a conical diffuser, namely, under the 
condition of non-separated flow, to choose the opening 
angle and its length
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As for [5] reference, it is considered while solving the 
problem.

In the work [6] the authors studied the generalization of 
the Jeffrey-Hamel problem solution, obtained conditions for 
asymmetric stationary flows, and gave one-, two-, and three-
mode bifurcation solutions. Conditions for ensuring sta-
tionary asymmetric and multi-mode solutions are found for 
specific intervals of Reynolds numbers and opening angles. 
The authors of [6] generalized the Jeffrey-Hamel problem 
solution and deduced conditions for stationary asymmetrical 
and multi-mode solutions for specific Reynolds numbers and 
diffuser opening angles.

In [7], the author is studying the evolution of the main 
single-mode stationary flow of the viscous incompressible 
fluid in the flat diffuser. The Jeffrey-Hamel problem solution 
is obtained based on the opening angle of the diffuser and 
Reynolds number. It is established that starting from some 
critical value of the Reynolds number, the existence of a sta-
tionary single-mode flow is impossible. The results of exam-
ining several laminar flow regimes in a flat diffuser/confuser 
with a small opening angle were presented by the authors 
in [8]. As a result, the regularities of changes in the hydro-
dynamic parameters of the viscous incompressible liquid by 
numerical simulation are determined based on the solution of 
the Navier-Stokes equations. The existence of stationary and 
non-stationary flow regimes was determined, depending on 
the Reynolds number. The Reynolds number values determin-
ing the ranges of the existence of these regimes of fluid flow 
for Newtonian and non-Newtonian fluids are obtained.

In [9], the author, based on a numerical solution of the 
Navier-Stokes equations for a viscous incompressible fluid, has 
studied the flow regimes in a flat diffuser with a small opening 
angle. Depending on the Reynolds number, the existence of 
stationary and non-stationary flow regimes has been identified. 
The conditions of transition of current regimes in the diffuser 
from symmetrical stationary to asymmetrical stationary and 
then to non-stationary asymmetrical were obtained. The values 
of the ranges of Reynolds numbers for the existence of these 
regimes are presented. The fluid flow in diffusers most often 
occurs in non-stationary and turbulent regimes, therefore, a 
significant part of the theoretical and experimental studies are 
devoted to these very regimes in flat diffusers [10].

In [11], the authors obtained the criteria for classifying 
separations in flat diffusers, as well as diagrams for deter-
mining them. Flows in channels and in the diffuser with a 
small opening angle and at low Reynolds numbers have sim-
ilar features. Free-jet flows and flows in rapidly expanding 
channels are margin circumstances of the flow in diffusers.

In [12], an idealized solution of the Jeffrey-Hamel problem 
for an expanding channel is proposed. Numerical results for a 
two-dimensional flow in a wedge bounded by two circles are 
given. The outflow and bifurcation conditions, depending on 
the Reynolds number are shown. A mathematical model has 
been created based on studies of changes in the hydrodynamic 
parameter pattern of a viscous incompressible fluid 
in the transitional sections of flat pipes, which has 
allowed obtaining results with acceptable accuracy 
indicating motion dynamics patterns [13]. 

Despite a large number of works on the hydro-
dynamics of a viscous incompressible fluid, new 
approaches are required to investigate the change 
in patterns of hydrodynamic flow parameters in 
conical diffusers. The qualitative characteristic pa-
rameters determining the flow properties of the 

viscous incompressible liquid in a conical diffuser under flow 
stability conditions are the opening angle of the diffuser and 
the Reynolds number. In the cited sources [6–13], thorough re-
search on structural changes in the hydrodynamic parameters 
of a viscous fluid in diffusers was carried out and bifurcation 
conditions were determined related to certain values of the geo-
metric parameters of the diffuser, which limits the application 
of the results obtained for arbitrarily given diffuser dimensions. 

From the above analyses, it can be concluded that it is 
necessary to formulate a boundary value problem for study-
ing the patterns of changes in the hydrodynamic parameters 
of a viscous liquid in conical diffusers, which allows develop-
ing a universal method for computing the above parameters 
suitable for engineering calculations.

3. The aim and objectives of the study

The aim of the study is to reveal the patterns of changes 
in the hydrodynamic parameters of viscous fluid in conical 
diffusers depending on the opening angle and Reynolds 
number, which will enable to determine the dimensions of 
the diffuser from the condition of it’s stable operation, which 
is of great practical importance.

To achieve this aim, the following objectives are completed:
– to formulate the boundary problem, set initial and 

boundary conditions and develop a method for its solution, 
identify regularities of hydrodynamic parameters change of 
a viscous flow in a conical diffuser;

– to design the graphs of changes in radial velocities 
along the cross section and along the length of the diffuser, 
as well as shear stresses on the wall of the stationary channel 
along the length; 

– to determine the dependence of the bifurcation point 
on the diffuser opening angle and the Reynolds number; 

– to identify the conditions for reliable and stable opera-
tion of the diffuser.

4. Materials and methods 

4. 1. Choosing a calculation scheme
The problem of viscous fluid flow development in the 

conical diffuser is considered. The conical diffuser is made 
up of a conic surface with an opening angle (Fig. 1) that is 
directed along the axis to infinity. The motion in a conical 
diffuser will be considered in spherical coordinates, starting 
with the zero point (Fig. 1).

It is assumed that in the inlet sections of the diffuser at 
x=1, the velocities change according to a parabolic law. It is 
necessary to find patterns of change in the hydrodynamic 
parameters of a viscous fluid in a conical diffuser, assuming 
that it is axisymmetric and steady. Mass forces are neglected.

Fig. 1. On the study of a viscous fluid motion in a conical diffuser
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4. 2. Statement of the problem and formulation of the 
system of differential equations for the study

The study of the patterns of change in the hydro-
dynamic parameters of a viscous fluid is carried out on 
the basis of the Navier-Stokes equations. However, exact 
solutions to these equations are possible only for limited 
problems. This explains the fact that such problems are 
mostly solved by the finite element method. In addition 
to computational methods, exact integration of the sim-
plified Navier-Stokes equations is also effective. The 
task of studying the patterns of changes in the hydrody-
namic parameters of viscous liquids in conical diffusers 
is carried out according to the approximating system of 
Navier-Stokes equations. Let us assume that the patterns 
of radial distribution of the liquid velocity at the inlet 
section of the diffuser is spherical, i.e. 

( )21 ,r Aυ = − φ  at r=r0.

Let us consider the patterns of changes in viscous flu-
id motion, assuming that the motion is asymmetrical and 
steady. Neglecting the inertial members in equations of vis-
cous flow expressed in spherical coordinates [3, 4], we get a 
system of approximate equations.

2

2 2

1
,r r r

r

p
r r r r

φυ∂υ ∂υ ∂ υ∂ ν
υ + ⋅ = − +

∂ ∂φ ρ ∂ ∂φ
		   (1)

2
0,rp

r
∂υ∂ µ

− + =
∂φ ∂φ

		   (2)

1
0,r r

r r r
φ∂υ∂υ υ

+ + =
∂ ∂φ

	  	 (3)

where ν=μ/ρ is the kinematic viscosity coefficient, μ is the 
dynamic viscosity coefficient, υr is the fluid velocity in radial 
directions, r is the radius (Fig. 1), all the notations are well 
known [3, 4].

Having in mind, that transverse velocity υϕ is a negli-
gibly small value, we can take υϕ=0, and the radial veloc-
ity υr can be replaced for a given section with an average 
flow rate U. In these conditions, the equation will take 
the form:

2

2 2

1 1
.r r rvp

U
r r r

 ∂υ ∂ υ ∂∂ ν
= − + + ∂ ρ ∂ ∂φ φ ∂φ 

	  	  (4)

(2)–(4) constitute a system of approximate equations of 
fluid motion to identify patterns of changes in the hydrody-
namic parameters of a viscous fluid in a conical diffuser. The 
characteristic velocity is the velocity incorporated into the 

Reynolds number formula [3], Re .
Urα

=
ν

Based on the condition that is in this regime, maintain-
ing a constant value of the number Re leads to the depen-
dence of characteristic velocity on the radius

0 0 .
U r

U
r

= 			    (5)

The average flow rate in the inlet section will be:

( )0 2
0

,
2 1 cos

Q
U

r
=

π⋅ − α
	 (6) 

where Q is the fluid flow rate in the conical diffuser, 
( )2

02 1 cosrπ⋅ − α
 
is the area of the inlet section of the spher-

ical surface.
For a given initial velocity distribution, the flow rate of 

the liquid flowing into the diffuser will be:

( )
( )

2
2 2

0
0 0

2 2
0

1 sin d d

2 2 sin cos 1 1 ,

Q A r

r A

α π

= − φ φ θ =

 = π⋅ α α + α − α − 

∫ ∫
	  (7)

and the corresponding average velocity in the initial section 
of the diffuser according to (6) will be

( )2

0

2 sin cos 1 1
.

1 cos

A
U

 α α + α − α − =
− α

	 (8)

In order to obtain universal solutions to the problem, 
we introduce dimensionless variables u, v, Ψ, x, p assuming 
that:

0

,ru
U
υ

=  
0

,v
U

φφυ
=

α
 ,

φ
ψ =

α
 

0

,
r

x
r

=  2
0

.
p

p
U

=
ρ

	  (9) 

Taking into account designation (9), equations (2)–(4) 
take the form:

2

2 2 2
0 0

0 0

1 1
,

2
0,

2 1
0.

u p u u
x x x r U x

p u
U r x

u u v
x x x

  ∂ ∂ ν ∂ ∂
= − + +  ∂ ∂ α ∂ψ ψ ∂ψ 

 ∂ ν ∂− + = ∂ψ ∂ψ
∂ ∂

+ + =
∂ αψ ∂ψ

 	  (10)

From the second equation of system (10), after integra-
tion over the angle Ψ, the equation is defined:

( ) ( )
0 0

2
, ,

u
P x C x

U r x
ν

ψ = + 			    (11)

where C(x) is an unknown function of x, to be determined.
Differentiating (11) by x, we get: 

( ) ( )
0 0

,
2 .

P x dC xu
x U r x x dx

∂ ψ ν ∂  = +  ∂ ∂
 	  (12)

If we substitute 
( ),p x

x

∂ ψ
∂

 into the right side of the first  
 
equation (10) and discard the member containing the value 

u
x x
∂  

  ∂
 as a member of a lower order, the system of equa- 

 
tions (10) is finally transformed to the form: 

( )2 2

2 2

1
,

1
,

dC xu a u
x x x dx

u u dv
x x x d

 ∂ ∂
= − ∂ ∂ψ


∂ + +∂ ψ

		   (13)

where designated 2
2

0 0

.a
r U

ν
=

α
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To integrate the system of equations (13), based on the 
essence of the problem, it is necessary to establish boundary 
conditions.

4. 3. Choice of boundary conditions
To integrate the system of equations (13), the boundary 

conditions are set:
1) conditions for adhesion between the liquid and the 

wall surface:

x>0, ψ=±1, u=0, υ=0;	  (14)

2) conditions for the symmetry of the velocity profile 
along the flow section:

ψ=0, 

0,
u∂

=
∂ψ

				     (15)

3) conditions for the radial velocity distribution over the 
input arc section are given by some function f(ψ).

When x=1 

–1≤ψ≤+1, u(1, ψ)=A(1–ψ2).	  	  (16)

Thus, to study the viscous fluid flow in a conical diffuser, 
the system of differential equations (13) with boundary con-
ditions (14)–(16) is integrated.

5. Results of research to identify patterns of changes in 
hydrodynamic parameters

5. 1. Integration of the boundary value problem to 
identify patterns of change in radial and transverse veloc-
ities as well as pressure

From the solution of the equation of system (11), we get 
the form of the sum [5]

( ) ( ) ( ) ( ) ( )0 0
1 1

, ,k k k k
k k

u x R x J W x J
∞ ∞

= =

ψ = λ ψ + λ ψ∑ ∑ 	 (17)

where Rk(x) and Wk(x) are continuous functions to be de-
termined. 

From the boundary condition (16), it follows:

( ) ( ) ( ) ( )2
0

1

1 1 1 .k k k
k

A R W J
∞

=

 − ψ = + ⋅ λ ψ ∑  	  (18)

We choose an arbitrary function Wk(x) so that the condi-
tion Wk(1)=0 is satisfied. To determine the value Rk(1), both 
parts of equality (18) are multiplied by ΨJ0(λkΨ)dΨ and inte-
grating in the interval (0; 1) we get:

( ) ( )

( ) ( ) ( )

1
2

0
0

1

0 0
1 0

1 d

1 d .

n

k k n
k

A J

R J J
∞

=

− ψ ⋅ λ ψ ψ ψ =

= ⋅ λ ψ λ ψ ψ ψ

∫

∑∫  	  (19) 

Using the orthogonality property of the function 

{ΨJ0(λkΨ)}, 

( ) ( ) ( )
1

0 0 2
0 1

0, ,
d ,1

, .
2

k n

k n

n k n

J J
J

λ ≠ λ 
 ψ λ ψ λ ψ ψ =  

λ λ = λ  
∫ 	 (20)

equation (19) is transformed into the form:

( ) ( ) ( ) ( )

( )
( ) ( )

1
2

02
1 0

1 2
2 2
1

2
1 1 d

22
.

k n
k

k k

k k k

A
R J

J

J JA
J

= − ψ ⋅ λ ψ ψ ⋅ ψ =
λ

 λ λ
= − λ λ λ 

∫

	  (21)

Using the properties of Bessel functions, equality (21) is 
transformed to the form:

( ) ( )3
1

8
1 ,k k

k k

A
R C

J
= =

λ λ
 	  (22)

where λk eigenvalues, positive roots of eigenfunctions J0(λk)=0.
The first equation of system (13), taking into account (17), 

will be rewritten in the form:

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

0
1

2

0 0
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1

.

k k k
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k
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− ′

∑

∑
	 (23)

We can put the function C`(x) in a series as J0(λkΨ) ei-
genfunctions, we will have:

( ) ( ) ( )0
1

,k k
k

C x B x J
∞

=

= λ ψ′ ∑  	  (24)

where 

( ) ( )
( ) ( ) ( )

( )
1
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2 4
.k k

kk k k

C x C x
B x J d

J J

∞

=

′ ′
= ψ λ ψ ψ =

λ λ λ∑∫  	 (25)

From equations (23), taking into account (24), we can find:

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0
1

2

0 0
1

0
1

1

.

k k k
k

k k k k
k
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∑

∑
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Since J0(Ψ) is the root of the equation

( ) ( ) ( )0 0 0

1
0,J J Jψ + ψ + ψ =′′ ′

ψ
 

we will have:

( ) ( ) ( )2
0 0 0

1
.k k k kJ J Jλ ψ + λ ψ = −λ λ ψ′′ ′

ψ
 	  (27)

Equation (26), taking into account (27), is transformed 
into the form:

( ) ( ) ( ) ( ) ( )
2

,k
k k k k kR x W x R x W x xB x

x
β  + = − + −′ ′  
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where 

2 2 2,k kaβ = λ

from where

( ) ( ) ( ) ( ) ( )
2 2

.k k
k k k k kR x R x W x W x xB x

x x

 β β
+ = − + +′ ′ 

 
	 (28)

Rk(x) and Wk(x) are arbitrary differentiable functions 
from which we choose Wk(x) so that the conditions will be 
satisfied

( ) ( ) ( )
2

.k
k k kW x W x xB x

x
β

+ = −′  		   (29)

Then 

( ) ( )
2

0.k
k kR x R x

x
β

+ =′ 		   (30)

Solving equations (30), it will be 

( ) ( ) 2 2

1 .k k
k k kR x R x C x−β −β= =  		   (31)

By solving equation (29), we will look for the method of 
variation of an arbitrary constant. A particular solution of the 
homogeneous equation corresponding to equation (29) will be: 

( ) 2

.k
kW x x −β= 		   (32)

We look for the corresponding general solution in the 
form:

( ) ( ) 2

.k
k kW x D x x −β=  		   (33)

Solving equations (29) and (33) together, we get:

 ( ) ( )2 1 ,k
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1

d 1 ,k

x
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From the second equation of system (13), we have
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Bearing in mind equation (17), we get:
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( ) ( ) ( ) ( ) ( )2 2 .k k k k kF x xR x R x xW x W x   = + + +′ ′    	 (37)

After the solution of (30) and (31), it follows:

( ) ( ) ( ) ( ) 222 2 1 .k
k k k kxR x R x R x −β+ = − β −′  	  (38)

Using solutions (29) and (33), we will have:
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Substituting equations (38) and (39) into (37), we get:
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We choose an arbitrary function C(x) so that to satisfy 
the condition

( ) ( ) ( )2 2 12 2

1

2 d 0,k k

x

kx C x x C t t t−β β +− β − =′ ′∫  	  (41)

then the function Fk(x) will take the form

( ) ( ) 22 2 .k
k k kF x C x −β= − β −  		   (42)

Solving the equation (41), we will get:

( ) 4.C x x −=′  		   (43)

In accordance with solutions (25) and (43), the value of 
the coefficients Dk(x), according to equations (34) will be: 
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Substituting the values of the coefficients Ck and Dk(x) 
from equations (22) and (44) into equations (31) and (33), 
we calculate the values of the function Rk(x) and Wk(x). 
According to the calculated values of these functions, 
from equations (17) we obtain the pattern of speed change 
u(x, Ψ):
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∑ 	 (45)

Substituting the calculated values of the function 
Fk(x) from the equation (42) and the coefficients Ck 
from (22), substituting into equation (36), to calculate 
the value of the velocity component υ(x, Ψ), we obtain 
the equation
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After integrating the last equation, we finally obtain the 
value of the velocity component υ(x, Ψ)
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∑ 	 (47)

Calculating the patterns of pressure change from (11), 
we get the equation:
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According to (43), the value of the function C(x) will be:
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3
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where the value C(1) according to (48) will be:
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Taking into account (49), we finally obtain the pattern 
of pressure change along the length of the conical diffuser:
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The formulas for determining the radial (45) and trans-
verse (47) velocities and the pressure distribution through-
out the diffuser length (50) are derived from the results of 
solving the boundary value problem.

5. 2. Calculating the separation point coordinate 
based on the diffuser opening angle and the Reynolds 
number

Flow separation occurs at points where shear stresses 
go to zero. A formula for calculating the shear stress on 
the wall of a fixed channel is derived. Due to the gradi-
ent of velocity and viscosity, shear stresses are formed 
between the layers of the liquid, which is determined by 
the formula [4]

,

1
.r

r r r r
φ φ

φ

∂υ υ ∂υ
τ = µ ⋅ + − ∂φ ∂ 

		   (51)

In view of the negligible transverse velocity compo-
nent υϕ, compared to the derivative of υr to the angle of ϕ, 
the shear stress by the angle ϕ on the diffuser wall ϕ=α 
will be determined by the formula

,r

r φ=α

 ∂υµ
τ = ⋅ ∂φ 

or dimensionless form

0 0 1

1
.

u
U r x ψ=

ν ∂
τ = ⋅ ⋅

α ∂ψ
 			    (52)

Substituting the expression for the radial velocity (45) 
into (52), we obtain the formula for determining the dimen-
sionless shear stress between the fluid layers:
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The pattern of the change in shear stresses on the fixed 
channel wall will be obtained from (53) under the condition 
Ψ=1, and we will have:
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Based on the expression obtained, we get the place of 
flow separation from the diffuser wall from the condition 
that separation occurs at the place where the shear stresses 
become zero:

( )
2 22

2 2

2
0.

2

k k

k k

Ax x x−β −β− −
+ =

λ β −
		  (55)

According to the proposed formula (55), the separation 
point coordinates are determined.

5. 3. Graphs of changes in the hydrodynamic parame-
ters of a viscous fluid in conical diffusers

Numerical calculations were carried out and graphs 
were plotted to identify changes in the hydrodynamic 
parameters of a viscous flow in a conical diffuser. Based 
on the solutions obtained, we study the nature of the flow 
features in a conical diffuser. From the obtained equations 
for the distribution of velocities u(x, Ψ) and υ(x, Ψ), it 
follows that for x→∞, u(∞, Ψ)→0 and υ(x, Ψ)→0. These 
conditions are fully consistent with the condition of con-
stant flow.

The graphs were plotted in order to visualize the pat-
terns of changes in the radial velocity u(x, Ψ) (45) along 
the cross-section and along the length of a conical diffuser, 
as well as the shear stress on the wall of a fixed channel, 
depending on the opening angle α=20°, 10°, 5° and the Reyn-
olds number 20 to 110 Re=20, 40, 60, 80, 100, 110. Fig. 2–9 
show the indicated graphs for cases α=10° and 5° at Re=60 
and Re=110. 

Numerical calculations were carried out at a constant 
value A=2.0.

The calculated results and graphs clearly show the dy-
namics of current processes and the impact of the opening 
angle and Reynolds number on flow structural changes.
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Fig.	2.	Graphs	of	changes	in	the	radial	velocity	according	to	(45)	u(x,	Ψ)	in	a	conical	diffuser	along	the	cross-section	at	an	
opening	angle	α=10°	and	the	Reynolds	number	Re=60	at:	1	–	x=1.03;	2	–	x=1.05;	3	–	x=1.2;	4	–	x=1.5;	

5	–	x=2.0;	6	–	x=3.0;	7	–	x=5.0

Fig.	3.	Graphs	of	changes	in	the	radial	velocity	according	to	(45)	u(x,	Ψ)	in	a	conical	diffuser	along	the	cross-section	at	an	
opening	angle	α=10°	and	the	Reynolds	number	Re=60	at:	1	–	Ψ=0.1;	2	–	Ψ=0.3;	3	–	Ψ=0.5;	4	–	Ψ=0.7;	5	–	Ψ=0.9

Fig.	4.	Graphs	of	changes	in	shear	stresses	according	to	(53)	in	a	conical	diffuser	at	an	opening	angle	α=10°	and	Reynolds	
numbers:	1	–	Re=40;	2	–	Re=60;	3	–	Re=70;	4	–	Re=80
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Fig.	5.	Graphs	of	changes	in	the	radial	velocity	according	to	(45)	u(x,	Ψ)	in	a	conical	diffuser	along	the	cross-section	at	an	
opening	angle	α=5°	and	the	Reynolds	number	Re=110	at:	1	–	x=1.05;	2	–	x=1.1;	3	–	x=1.2;	4	–	x=1.5;	5	–	x=2.0;	

6	–	x=3.0;	7	–	x=5.0

Fig.	6.	Graphs	of	changes	in	the	radial	velocity	according	to	(45)	u(x,	Ψ)	in	a	conical	diffuser	along	at	an	opening	angle α=5°	
and	the	Reynolds	number	Re=110	at:	1	–	Ψ=0.1;	2	–	Ψ=0.3;	3	–	Ψ=0.5;	4	–	Ψ=0.7;	5	–	Ψ=0.9

Fig.	7.	Graphs	of	changes	in	the	shear	stresses	according	to	(53)	in	a	flat	diffuser	at	an	opening	angle	α=5°	and	the	Reynolds	
number:	1	–	Re=10;	2	–	Re=20;	3	–	Re=30;	4	–	Re=40
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5. 4. Identifying the parameters for the diffuser�s reli-
able and stable operation

The conditions for continuous flow are ob-
tained, a formula is derived, and a graph is 
constructed for determining the diffuser length 
from the condition of its reliable operation.

The separation point is a special point for 
the shear stress function. The coordinate value 
x in (55) is presented in an indefinite form. The 
decision of the uncertainty is revealed according 
to L’Hopital’s rule [6]. As a result, it turns out

( ) ( )
2 2

2

2
1

2 221

2
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2

k k

k

k

k k k

Ax x x−β −β−∞
+

β →=

 − + − =
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∑    (56)

whence follows the condition
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x x−  

− = λ 
   (57)

As 2
2

1
Re,k a

λ = = α  we can get: 

exp .
Re
A

x =
α

  (58) 

For a visual representation of the place of separation, a 
graph of the function (58)x from αRe was plotted when A=2, 
which is shown in Fig. 10.

According to the constructed graph, the diffuser length 
is calculated at which the viscous fluid moves in a stationary 
state.

Fig.	8.	Graphs	of	the	change	in	the	velocity	component	according	to	(47)	υ(x,	Ψ)	at	Re=50,	α=10°:	1	–	x=1.002;	2	–	x=1.2;	
3	–	x=1.5;	4	–	x=2.5;	5	–	x=3.0;	6	–	x=5.0

Fig.	9.	Graphs	of	the	change	in	the	velocity	component	according	to	(47)	υ(x,	Ψ)	at	Re=90,	α=10°:	1	–	Ψ=0.1;	2	–	Ψ=0.3;	
3	–	Ψ=0.5;	4	–	Ψ=0.7;	5	–	Ψ=0.9

Fig.	10.	Graph	of	(58)
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6. Discussion of the results on the development of 
viscous fluid flow in a conical diffuser

Formulas for the distribution of radial (45) and trans-
verse (47) velocities, as well as pressure along the length 
of the diffuser (50), and tangential stresses on the wall 
of a fixed channel (54) were obtained using the results of 
solving the boundary value problem for a parabolic distri-
bution of velocities in the initial sections of the diffuser.

The studies were carried out with a parabolic distri-
bution of velocities in the conical diffuser inlet section, 
which more accurately corresponds to reality than the 
uniform distribution considered in [3, 4].

The graphs constructed using computer calculations 
by formulas (45) and (54) demonstrate the development of 
the process in a conical diffuser, which is also confirmed 
by the results of experimental studies in [6, 7].

The analysis of numerical calculation results (58) 
and the obtained graphs (Fig. 2–7) revealed that the 
coordinates of the separation points were determined de-
pending on the opening angle and Reynolds number. The 
viscous fluid flow to the separation point is considered 
stationary and strictly axisymmetric, as shown in the 
graphs (Fig. 2, 5). The flow is disrupted after the separa-
tion point, and the solutions obtained do not provide ac-
curate results. They can, however, be used for qualitative 
studies. The sign of the shear stress and radial velocity 
change at the separation points. It is clear from the graph 
that the coordinates of the separation point coincide with 
the data defined by the graphs u(x, Ψ) and τ(x, Ψ). In 
addition, it can be seen that the conditions for continu-
ous flow in a conical diffuser at small opening angles are 
possible at significantly higher Reynolds numbers. With 
an increase in the opening angle, the area of single-mode 
stationary flow is sharply reduced (Fig. 4, 7), resulting 
in stationary regime disruption. Multimode flow begins, 
accompanied by pulsation disturbances and unstable op-
eration of the diffuser, the results of which are unreliable. 
The main goal of diffuser design is to develop a stable 
operating regime, which can be accomplished by selecting 
the correct dimensions.

The approximate equations of motion for a viscous 
fluid were integrated in cylindrical coordinates, which re-
duces the accuracy of the integration. However, it is quite 
appropriate to use integration findings in engineering cal-

culations. The initial distribution of velocities in the inlet 
portions of the diffuser’s parabola’s refinement coefficient 
is the only issue.

Based on the problem’s relevance, further development 
is associated with the conditional clarification of the ini-
tial distribution of velocities and the related constructive 
changes in the diffuser’s inlet section.

7. Conclusions

1. It has been possible to identify patterns of changes 
in hydrodynamic parameters in a channel with a parabolic 
distribution of flows in the inlet section, which is accu-
rate, by determining the characteristics of the movement 
of a viscous fluid running in conical diffusers, formulating 
a boundary value problem, and developing a method for 
solving the Navier-Stokes approximation equations.

The pressure along the diffuser length, shear stresses 
on the wall of a fixed channel, and radial and transverse 
velocities are all calculated by a universal technique that 
uses dimensionless parameters.

2. Graphs of change in the dimensionless hydrodynamic 
parameters of the flow and shear stress on the channel wall 
have been plotted for dimensionless parameters of the diffus-
er. Due to the universality of the obtained graphs, it is possi-
ble to determine and analyze the influence of the geometric 
parameters of the diffuser on the nature of their change.

3. The conditions for reliable and uninterrupted opera-
tion of a conical diffuser depending on the opening angle and 
the Reynolds number at which the regime transition from 
symmetrical to asymmetric is carried out are established.

4. Based on the findings of the studies obtained, it is 
possible to correctly design a conical diffuser, that is, to 
select the angle of the opening and its length under the 
condition of non-separated movement, which can guaran-
tee its reliable operation.

Conflict of interest

The authors declare that they have no conflict of inter-
est in relation to this research, whether financial, person-
al, authorship or otherwise, that could affect the research 
and its results presented in this paper.

References

1.	 Jeffery, G. B. (1915). The two-dimensional steady motion of a viscous fluid. The London, Edinburgh, and Dublin Philosophical 

Magazine and Journal of Science, 29 (172), 455–465. doi: https://doi.org/10.1080/14786440408635327 

2.	 Hamel, G. (1917). Spiralförmige Bewegungen zäher Flüssigkeiten.. Jahresbericht der Deutschen Mathematiker-Vereinigung, 25, 

34–60. Available at: https://gdz.sub.uni-goettingen.de/id/PPN37721857X_0025?tify={%22pages%22:[41],%22panX%22:0.487,%

22panY%22:0.784,%22view%22:%22info%22,%22zoom%22:0.348}

3.	 Targ, S. M. (1951). Osnovnye zadachi teorii laminarnykh techeniy. Moscow: Gostekhizdat, 420.

4.	 Slezkin, N. A. (1955). Dinamika vyazkoy neszhimaemoy zhidkosti. Moscow: Gostekhizdat, 519.

5.	 Tikhonov, A. N., Samarskiy, A. G. (1977). Uravneniya matematicheskoy fiziki. Moscow: Nauka, 735.

6.	 Akulenko, L. D., Kumakshev, S. A. (2008). Bifurcation of multimode flows of a viscous fluid in a plane diverging channel. Journal of 

Applied Mathematics and Mechanics, 72 (3), 296–302. doi: https://doi.org/10.1016/j.jappmathmech.2008.07.007 

7.	 Kumakshev, S. A. (2020). Flat diffuser: Steady state flow of a viscous incompressible fluid. Engineering Journal: Science and 

Innovation, 7 (103). doi: https://doi.org/10.18698/2308-6033-2020-7-1993 

8.	 Volkov, E., Fedyushkin, A. (2019). Symmetry of the flow of Newtonian and non-Newtonian fluid in a flat diffuser and confusor. 

Physical-Chemical Kinetics in Gas Dynamics, 20 (2), 1–19. doi: https://doi.org/10.33257/phchgd.20.2.791 



Applied mechanics

71

9.	 Fedyushkin, A. I. (2016). The transition flows of a viscous incompressible fluid in a plane diffuser from symmetric to asymmetric and 

to non-stationary regimes. Physical-Chemical Kinetics in Gas Dynamics, 17 (3). Available at: http://chemphys.edu.ru/media/publ

ished/%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D1%8F__%D0%A4%D0%B5%D0%B4%D1%8E%D1%88%D0%BA%D0

%B8%D0%BD_%D0%90%D0%A4%D0%9C-10_2016_corr.pdf

10.	 El-Behery, S. M., Hamed, M. H. (2011). A comparative study of turbulence models performance for separating flow in a planar 

asymmetric diffuser. Computers & Fluids, 44 (1), 248–257. doi: https://doi.org/10.1016/j.compfluid.2011.01.009 

11.	 Gerasimenko, V. P., Tkachuk, A. S., Ytsishin, A. A. (2012). About polars of straight-wall diffusers. Power and heat engineering 

processes and equipment, 8, 137–142. Available at: http://library.kpi.kharkov.ua/files/Vestniki/2012_8.pdf

12.	 Haines, P. E., Hewitt, R. E., Hazel, A. L. (2011). The Jeffery–Hamel similarity solution and its relation to flow in a diverging channel. 

Journal of Fluid Mechanics, 687, 404–430. doi: https://doi.org/10.1017/jfm.2011.362 

13.	 Sarukhanyan, A., Vartanyan, A., Vermishyan, G., Tokmajyan, V. (2020). The Study of Hydrodynamic Processes Occurring on 

Transition of Sudden Expanding of Hydraulic Section of Plane – Parallel Full Pipe Flow. TEM Journal, 1494–1501. doi: https://

doi.org/10.18421/tem94-23 


