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The performance of Wi-Fi fingerprinting 
indoor localization systems (ILS) in indoor 
environments depends on the channel state 
information (CSI) that is usually restric
ted because of the fading effect of the mul-
tipath. Commonly referred to as the next 
positioning generation (NPG), the Wi-Fi™, 
IEEE 802.11az standard offers physical layer 
characteristics that allow positioning and 
enhanced ranging using conventional me- 
thods. Therefore, it is essential to create an 
indoor environment dataset of fingerprints of 
CIR based on 802.11az signals, and label all 
these fingerprints by their location data esti-
mate STA locations based on a portion of the 
dataset for fingerprints. This work develops 
a model for training a convolutional neural 
network (CNN) for positioning and localiza-
tion through generating IEEE® 802.11data. 
The study includes the use of a trained CNN 
to predict the position or location of several 
stations according to fingerprint data. This 
includes evaluating the performance of the 
CNN for multiple channel impulses respon
ses (CIRs). Deep learning and Fingerprinting 
algorithms are employed in Wi-Fi positioning 
models to create a dataset through sampling 
the fingerprints channel at recognized posi-
tions in an environment. The model predicts 
the locations of a user according to a signal 
acknowledged of an unidentified position via 
a reference database. The work also discusses 
the influence of antenna array size and chan-
nel bandwidth on performance. It is shown 
that the increased training epochs and num-
ber of STAs improve the network performance. 
The results have been proven by a confusion 
matrix that summarizes and visualizes the 
undertaking classification technique. We use 
a limited dataset for simplicity and last in 
a short simulation time but a higher perfor-
mance is achieved by training a larger data
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1. Introduction

Positioning is a predictive issue in which the model’s 
predicted position for a station (STA) is the task’s output. 
Positioning may predict the user’s precise location, however, 
compared to localization; it can have a greater error for posi-
tions throughout a region. In the classification job of localiza-
tion, the model’s estimated label for a given place of the map 
where an STA is situated is its output. The ability to accurately 
estimate a user’s overall location is more crucial than being 
able to precisely place them for activities like locating a bed-

room on an aisle in a shop or a floor of a building. The Wi-Fi™, 
IEEE 802.11az standard [1] is universally denoted as the next 
positioning generation (NPG) providing physical layer cha
racteristics that can position and enhance ranging employing 
classical methods [2, 3]. Classical methods depend on the con-
ditions of line-of-sight (LOS) to successfully obtain sequential 
information like the angle of arrival (AoA), spatial information, 
or time of arrival (ToA) from multi-path signals to calculate  
a range or distance between network nodes. At what time the 
range among three devices (minimum) is capable to measure, 
trilateration is possible to use to calculate position estimations.
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Deep learning and fingerprinting systems are used for 
Wi-Fi localization techniques to obtain sub-meter accura-
cies including multipath environments non-line-of-sight [4]. 
A fingerprinting classically includes Channel State Infor-
mation (CSI) like channel estimates or received signal 
strength indicators (RSSIs) from received signals measured 
at an environment or particular location [5]. Throughout the 
network training stage, the method generates a dataset via 
sampling the channel fingerprinting of an environment at 
numerous identified locations. The user location estimates 
of the network are based on received signals of unknown 
locations and rely on a reference database [6–8]. Directed 
Acyclic Graph residual network of Deep Learning was wide-
ly used for image classification [9] and for improving noisy 
images that are already filtered by the bilateral process via a 
multi-scale context aggregation network as discussed in [10].

It is important to create an indoor environment dataset 
of fingerprints of channel impulses responses (CIR) based 
on 802.11az waveforms and label all the fingerprints by their 
location data. These datasets are trained with deep learning 
convolutional neural network (CNN) to estimate STA posi-
tion based on a portion of the dataset for fingerprints. The 
trained model performance is evaluated by creating estima-
tions for the STA locations according to their remainder CIR 
fingerprints of the dataset.

2. Literature review and problem statement

Wi-Fi Round Trip Time (Wi-Fi RTT) is a new technolo-
gy established by IEEE 802.11 that may be used for internal 
translation and range determination. With this in mind, 
the paper[11] proposed a combined internal localization 
approach for Wi-Fi RTT and PDR networks by integrating 
data based on the Kalman filter for Wi-Fi RTT and PDR, but 
the proposed approach didn’t discuss the localization system 
for IEEE 802.11 Wi-Fi. The study [12] focused on Wi-Fi 
Fine Time Measurement as well as data analysis and pro-
cessing for internal localization. Although an approach was 
proposed to decrease the error due to multipath propagation, 
the final positioning error was less than 2.2 m and the appli-
cation of internal Wi-Fi localization was not accurate with a 
highly complex algorithm. The researchers in the study [13] 
modeled the received signal in a multipath channel based 
on the IEEE 802.11 standard and they seemed a statisti-
cal analysis of the received signal strength index based on 
IEEE 802.11 wireless LAN in indoor location sensor systems. 
However, this study also didn’t discuss the issue of Wi-Fi 
localization. At the same pace, the study [14] sought inter-
nal zero-configuration localization across the IEEE 802.11  
wireless infrastructure by developing a localization algo-
rithm to build a zero-configuration system and create the 
theoretical base. Although the study discussed the indoor 
localization and tracking system to support and manage lo-
cation-based network services, there are no details about the 
three-dimensional information for the proposed localization 
system. Ref [15] investigated Wi-Fi-based internal localiza-
tion using CNNs by proposing several approaches to offer 
internal localization: magnetic field, Bluetooth, Wi-Fi, and 
so on. However, IEEE 802.11 didn’t address 3D Wi-Fi loca
lization. In terms of cost savings, the paper [16] dealt with  
a stand-alone sensory platform for monitoring excessive solar 
irradiation and sought to develop it for on-site monitoring 
of environmental parameters. The advantage of this paper 

is that it presented a sensory platform using the ESP8266 
microcontroller, which is an open compact computer capable 
of communicating via Wi-Fi using the IEEE 802.11 standard, 
but the system was not discussed for 3D Wi-Fi fingerprints. 
The issue of fingerprints Wi-Fi modeling was discussed in 
the study [17], which involved the use of Wi-Fi fingerprints 
to identify joint activity and internal localization. However, 
the proposed system didn’t cover the three-dimensional  
Wi-Fi environment.

Therefore, all this allows to argue that it is appropriate to 
conduct a study devoted to creating an indoor environment 
dataset of fingerprints of CIR based on 802.11az signals, and 
label all these fingerprints by their location data estimate STA 
locations based on a portion of the dataset for fingerprints. 
Furthermore, it may be essential to develop an IEEE 802.11n 
Wi-Fi protocol supported by one-dimensional convolutional 
layers for the common task of activity recognition.

3. The aim and objectives of the study

The aim of the study is to develop three-dimensional 
localization systems with STA and AP nodes using deep 
learning convolutional neural architecture for IEEE 802.11 
Wi-Fi. This will make it possible to measure the performance 
of Wi-Fi fingerprinting indoor localization systems (ILS)  
in indoor environments.

To achieve this aim, the following objectives are ac
complished:

– to visualize STA and AP objects in the indoor scenario;
– to analyze every STA-AP pair using ray-tracing  

techniques;
– to show the actual locations of STAs;
– to apply a Deep learning Convolutional Neural Net-

work (CNN) and show the outcomes through a confu-
sion matrix.

4. Materials and methods

4. 1. The object and hypothesis of the study
The object of research is deep learning convolutional 

neural systems nodes. 
The research subject is to create deep learning con-

volutional neural architecture-based IEEE 802.11 Wi-Fi 
three-dimensional localization systems using STA and AP 
nodes. This will enable the evaluation of Wi-Fi finger-
printing indoor localization systems’ (ILS) performance 
in enclosed spaces. The main hypothesis of the study is to 
consider a relatively small dataset for simplicity to execute 
the simulation in a short time. However, accurate results 
require a larger dataset. A MATLAB environment with 
both WLAN and Deep Learning toolboxes has been used to 
conduct the attempts. This work merges deep learning and 
Fingerprinting algorithms in a Wi-Fi positioning system to 
obtain an accuracy not exceeding one meter even with mul-
tipath environments of non-line-of-sight (NLOS). There-
fore, two mathematical models including a single access 
point RSSI-based [4], and deep learning with CSI-based 
fingerprinting [5] for indoor localization models. Finger-
prints usually have channel condition data like a channel es-
timation from an acquired signal or received signal strength 
indicator (RSSI), which can measure at an exact location in 
such environments.
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4. 2. Environment creation of indoor propagation
In this stage, let’s generate training data by specifying an 

indoor 3 Dimensional map of (STL) format, which is a common 
3D map format. The office map includes studying and confe
rence rooms with several tables and chairs, as shown in Fig. 1.

 
Fig. 1. Indoor 3 Dimensional office map of (STL) format

Let’s assume that there are a number of STAs and four ac-
cess points (AP) specifying the environment network, which 
defines the propagation channel to create fingerprints and its 
associated channel impulse response (CIR) with ray-tracing 
strategies [18].

4. 3. STA and AP Parameters
An increased number of channel realizations and CIRs 

per fingerprint are produced by larger antenna arrays.  
A greater bandwidth raises the CIR’s sample rate, which 
sharpens its capture. Since the size of every fingerprint 
should match the geometry of the input layer model, alter-
ing these elements renders the dataset mismatched through 
the pre-trained architectures. Therefore, in this subsection, 
let’s select the channel bandwidth and the transmitting 
and receiving sizes of each antenna array to control the 
resolution and data quantity for every fingerprint. Table 1  
lists the parameters’ values and the type of array for the 
developed model.

Table 1

Parameters values and array type for the developed model

Parameter Values Array type

rxArraySize [4 1] Linear receive array

txArraySize [4 1] Linear transmit array

chanBW CBW40 Not applicable

Next, let’s indicate the amount of STAs to 500, and 
their distribution as a uniform to map the environment. The 
distances between STAs have been specified at 0.5meters in  
all directions.

4. 4. Positioning and Localization
It is necessary to specify the simulation as positioning  

or localization. In this work, let’s set the simulation to lo-
calization. Instead of identifying an STA’s exact location, 
a localization operation identifies its overall location. The 
diagram of the small office’s layout is depicted in Fig. 2, with 
distinct regions acting as categories for localization. 
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Fig. 2. The diagram of a small office’s layout: 	

a – overall top view; b – side view

The parameters are set in such that the APs’ locations are 
indicated by the red square marks. The area where the STAs 
are distributed in the example during the training process is 
shown by the blue dashed box. In this study, let’s limit the 
STAs’ height to a range of (0.8–1.8) meters. For portable 
consumer electronics, this range provides a reasonable range 
of values. Additionally, this restriction reduces the possibility 
of STAs being positioned in inaccessible areas.

4. 5. Creating Labels and Features for 802.11az CIR 
Fingerprint.

This part demonstrates how to calculate the CIRs for all 
STA-AP pairs based on the computed ray-tracings. The pro-
cessing chain to produce CIRs is shown in Fig. 3.

Every AP sends an 802.11az packet over a congested route, 
which every STA accepts. The case presupposes that every 
STA is able to distinguish among APs such that there are no 
AP interferences. If there is a pathway between an AP and 
a location or if synchronization was unsuccessful because of 
small SNR, packet receipt at that location fails. The produced 
CIR in this case is a zero vector. In this scenario, the training 
data is the magnitude of each multipath element in the CIR. 
As a result, the CIRs that are produced have genuine values.

The labels and features combination is used to train the 
Convolutional Neural Network (CNN) for the location names 
and STA positions [9]. Dataset is created initially for the deep 
learning CNN stage to estimate functions over varied domain 
ranges. In this work, four blocks make up the CNN, and each 
block has a ReLU, batch normalization, average pooling layer, 
and convolution. The utilized CNN includes seven major layers:

1. An input layer to identify the type and size of inputs.
2. A convolutional layer to perform the process of convo-

lutions through several filters on the input layer.
3. A normalizing batch layer to prevent gradients insta-

bility using activation normalizing of layers.
4. A nonlinear ReLU activation function to threshold the 

prior functional layer output.
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5. A pooling layer to pool and extract the features and the 
information.

6. A dropout layer to arbitrarily deactivate a fraction for 
the previous layer parameters throughout training to avoid 
over-fitting.

7. An output layer to define the data output type  
and size. 

The workflow of the CNN application is shown in Fig. 4.
Before the final layers, the design here applies dropout 

regularization of (20 %).
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Fig. 3. The processing chain to produce CIRs
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|======================================================================================================================| 
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  | 
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       | 
|======================================================================================================================| 
|       1 |           1 |       00:00:02 |        9.38% |       31.94% |       2.1517 |       1.8084 |      1.0000e-04 | 
|       1 |          36 |       00:00:24 |       56.25% |       54.17% |       1.2123 |       1.1220 |      1.0000e-04 | 
|       2 |          50 |       00:00:31 |       56.25% |              |       1.0482 |              |      1.0000e-04 | 
|       2 |          72 |       00:00:46 |       59.38% |       62.50% |       0.9373 |       1.0042 |      1.0000e-04 | 
|       3 |         100 |       00:01:02 |       56.25% |              |       1.0433 |              |      1.0000e-04 | 
|       3 |         108 |       00:01:08 |       84.38% |       67.36% |       0.5474 |       0.9121 |      1.0000e-04 | 
|======================================================================================================================| 

From the validation data, check the model's performance. Pass the 
validation set features through the network to predict labels, and then 
compare the predicted labels to the validation set labels to assess the 
network's performance. 

Set training 
data. 

 

Workflow of the CNN architecture  

Identify CNN 
layers. 
 

Configure 
learning 
process. 
 

Train the 
model. 
 

Evaluate model 
performance. 
 

Dataset is divided into training and validation portions. The model is 
learned to fit training data by adjusting its weighted parameters 
according to the error of its predictions. 

Input layer, Convolutional layer, Batch normalization layer, Activation 
(ReLU) layer, Pooling layer, which extracts and pools feature 
information, Dropout layer, which randomly deactivates a percentage 
of the parameters of the previous layer during training to prevent over 
fitting, and Output layer, which defines output data. 

 For each task, the labels provided to the network are matched with the 
anticipated model output. For both challenges, the characteristics are 
pictures of CIR fingerprints. 

Decide how many training data samples the model will analyze in each 
training cycle. A larger data collection, larger samples number. 

Set the validation frequency to once every epoch, at which the network 
examines the unseen data to check for generalization. 

Arrange the training procedure. Number of trains the model in a row 
using the entire training data set depends on the number of epochs. 

 
Fig. 4. The workflow of the CNN application
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5. Results of the developed network

5. 1. Create STA and AP Positions
Here, let’s produce the STA and AP objects. A visualiza-

tion of these objects in the indoor scenario is shown in Fig. 5.

 
Fig. 5. A visualization of STA and AP objects 	

in the indoor scenario

The waveform parameters are set. Let’s set the number 
of STSs that represent space-time streams to the size of the 
transmit antenna array in order to guarantee that the signal 
from each send antenna participates in the fingerprinting of 
an STA during channel estimation. Where the APs are repre-
sented by red circles while the STAs with blue ones.

5. 2. Creating Channels’ Characteristics based on Ray- 
Tracing Strategies

Here, let’s only consider the first-order reflections and 
LOS to adjust the ray-propagation parameters because the 
simulation time is increased as the reflections max number 
increases. Ray-tracing techniques in parallel for all receivers 
and transmitters are considered. The visualization of the 
computed ray-tracings among a single STA and all the APs 
is shown in Fig. 6.

 

Fig. 6. The analysis of every STA-AP pair using 	
ray-tracing techniques

The colored lines represent the related path losses in dB.

5. 3. The actual locations of STAs
Fig. 7 shows a three-dimensional map that shows the 

actual positions of STAs.

 
Fig. 7. A three-dimensional map shows the actual 	

locations of STAs

The three-dimensional map shows the actual positions of 
STAs according to the predicted class that are represented 
here the conference room, the desks (1–4), the office, and 
storage classes.

5. 4. Applying Deep learning CNN
This subsection includes applying a statistical and visual 

view of CNN architecture. 
Fig. 8 displays a confusion matrix where the rows rep-

resent the expected class and the columns represent the 
actual class. 

The diagonal cells relate to accurately categorized obser-
vations. The off-diagonal cells are associated with observa-
tions that were misclassified. 

The major diagonal’s elements will be noticeably larger 
than the other matrix elements if the network functions 
correctly.

 

Fig. 8. A confusion matrix where the columns 	
represent the actual class and rows represent 	

the expected class

A screenshot of the model training, when execu- 
ted  on a 1.3GHz CPU/8GB memory computer, is shown  
in Fig. 9.

Because of the short data set and brief training period 
used in this section of the work, the results are modest. 

A CNN that has been pre-trained on a huge amount of 
data can produce more accurate findings.
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6. Discussion of the results of simulating  
a three-dimensional localization system

The STA and AP objects were produced initially and 
visualization of these objects in the indoor scenario was 
shown in Fig. 5. The fingerprinting procedure is repea
ted under various noise settings [10, 15, 20] by defining 
a range of SNR values in order to imitate environmental 
fluctuations. Ray-tracing techniques were carried out in 
parallel for all receivers and transmitters, where the re-
sults between STA signals and all the APs are shown  
in Fig. 6. Each STA’s allocated color indicates where it is 
expected to be. Each STA’s allocated color for positioning 
indicates the expected position’s distance error as indicated  
in Fig. 7. A cumulative distribution function is also pro-
duced by the function (CDF). The percentage of the data 
for which the measured distance error is less than or equal 
to the corresponding value on the x-axis is represented  
by the y-axis. 

The results have been proven by a confusion matrix that 
summarizes and visualizes the undertaking classification 
technique as depicted in Fig. 8, where the rows represent the 
expected class and the columns represent the actual class. 
The diagonal cells relate to accurately categorized obser
vations. The off-diagonal cells are associated with observa-
tions that were misclassified. The major diagonal’s elements 
will be noticeably larger than the other matrix elements if the 
network functions correctly.

The presented example was with a limited performance 
level, where the accuracy is about 68 %. Therefore, it is pos-
sible to exploit pre-trained models with more training data, 
which can achieve higher performance levels.

Fig. 9. Model training iterations when executed on 1.3GHz CPU/8GB memory computer
 

7. Conclusions 

1. This work visualized STA and AP objects in three-dimen-
sional indoor scenarios by defining a range of SNR values. The 
fingerprinting process is repeated under varied noise conditions 
to simulate environmental changes, where the results demon-
strated the connection between STA signals and all of the APs.

2. The Ray-tracing techniques were carried out in parallel 
for all receivers and transmitters, where every STA-AP data pair 
has been analyzed and visualized using ray-tracing techniques.

3. The presented approach succeeded to show the actual 
locations of STAs. Each STA’s allocated color indicates where 
it is expected to be. Each STA’s allocated color for positioning 
indicates the expected position’s distance error.

4. The application of Deep learning CNN achieved 68 % 
accuracy with this limited information through a confusion 
matrix that summarizes and visualizes the undertaking clas-
sification technique.
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