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Predicting the function of proteins is a cru
cial part of genome annotation, which can help 
in solving a wide range of biological problems. 
Many methods are available to predict the func
tions of proteins. However, except for sequence, 
most features are difficult to obtain or are not 
available for many proteins, which limits their 
scope. In addition, the performance of sequence
based feature prediction methods is often lower 
than that of methods that involve multiple fea
tures, and protein feature prediction can be 
timeconsuming. Recent advances in this field 
are associated with the development of machine 
learning, which shows great progress in solv
ing the problem of predicting protein functions. 
Today, however, most protein sequences have the 
status of «uncharacterized» or «putative».

The need to assess the accuracy of identi
fication of protein functions is an urgent task 
for machine learning approaches used to pre
dict protein functions. In this study, the perfor
mance of two popular function prediction algo
rithms (ProtCNN and BiLSTM) was assessed 
from two perspectives and the procedures for 
building these models were described. 

As a result of the study of Pfam families, 
ProtCNN achieves an accuracy rate of 0.988 % 
and bidirectional LSTM has an accuracy rate  
of 0.9506 %. The use of the Pfam dataset allowed 
increasing the classification accuracy due to the 
large training dataset. The quality of the pre
diction increases with a large amount of train
ing data.

The study demonstrated that machine learn
ing algorithms can be used as an effective tool for 
building protein function prediction models, in 
particular, the CNN network can be adapted as 
an accurate tool for annotating protein functions 
in the presence of large datasets
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1. Introduction

Proteins are long chains of amino acids that are formed 
from information received from DNA and then folded into 
three-dimensional shapes. The forms that protein molecules 
take are determined by the information embedded in DNA, 
and what form the DNA molecule itself folds into depends on 
the composition of the amino acids in the chain. In turn, the 
form in biology determines the function.

While techniques such as microarray analysis, RNA inter-
ference, and the yeast two-hybrid system can be used to ex-
perimentally demonstrate the function of a protein, advances 

in sequencing technologies have made the rate at which pro-
teins can be experimentally characterized much slower than 
the rate at which new sequences become available [1]. Thus, 
annotation of new sequences is mostly done by computation-
al prediction, as these types of annotations can often be done 
quickly and on many genes or proteins at the same time. The 
first such methods assumed function based on homologous 
proteins with known functions (homology-based function 
prediction). The development of context-based and struc-
ture-based methods has expanded the amount of information 
that can be predicted, and a combination of methods can now 
be used to derive a picture of complete cellular pathways 
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from sequence data [1]. The importance and prevalence of 
computer-aided prediction of gene function are highlighted 
by the analysis of the «evidence codes» used by the Gene 
Ontology (GO) database: 98 % of annotations were listed 
under an IEA code (derived from an electronic abstract), 
while only < 0.1 % of the more than 179 million proteins in 
UniProt were based on experimental data [2]. 

A rapidly growing area of research is the application of 
machine learning to protein classification. Neural networks 
are the most widely used machine learning tools applied to 
solve classification problems. Protein function prediction 
also can be viewed as a classification problem. 

Protein function prediction is a multi-label classification 
problem where we have a set of functions F = (F1, …, Fm).  
Given a protein set, P = (P1, …, Pn), where the first l proteins 
are labeled as y1,…,yl, each yi is a vector with yij = 1 in case  
the protein Pi is associated with the j-th function Fj, other-
wise yij = 0. The goal is to predict the labels y1+1,…,yn for the 
remaining unlabelled proteins P1+1, …, Pn.

Various approaches can be taken to solve classification 
problems with multiple labels, but the simplest method is to 
treat each GO term as an independent classification problem. 
The most suitable option for solving this problem is machine 
learning models with a better ratio of classification quality 
and calculation time. The huge advantage of machine learn-
ing is that model’s performance and accuracy have a stable 
growth with a large amount of training data. Considering the 
rapid increase in the number of protein sequences in open da-
tabases, this circumstance makes the use of machine learning 
to solve the problem of protein function prediction a relevant 
problem for research.

A huge number of neural networks have been developed 
to solve object classification problems. This opens great op-
portunities for their use for the problem of protein function 
prediction, which is considered as a classification problem. 
However, based on statistics demonstrating that the majority 
of protein sequences in databases have not yet received the 
status of characterized, it can be argued that the capabilities 
of neural networks are not well studied in terms of the func-
tional annotation of proteins. This leads to the expediency 
of studying these neural networks and testing them multiple 
times on different datasets, which will help determine their 
strengths and weaknesses for solving the above problem. 
Therefore, studies that are devoted to investigating machine 
learning models and assessing their accuracy to solve the prob-
lem of predicting protein functions are of scientific relevance.

2. Literature review and problem statement

Understanding protein function is important for the 
study of biological mechanisms of disease development and 
drug discovery. Many databases are updated daily to provide 
functional annotations from different perspectives such as: 
protein-protein interaction, biological network and many 
specific functional classes. However, the total number of 
detected protein sequences significantly exceeds the number 
of proteins characterized with a known function. In order to 
narrow the gap between the number of characterized and un-
characterized protein sequences, thousands of high-through-
put genomic projects are being explored, but only 1 % of the 
sequences found have been confirmed by experimental anno-
tation [3]. This created a great need for the development of 
theoretical methods for annotating protein functions. A wide 

range of methods have been developed and extensively used 
to discover protein functions. These include clustering of 
sequences, gene fusion, sequence similarity, evolution study, 
structural comparison, protein-protein interaction, function-
al classification via the sequence-derived and domain feature, 
omics profiling and integrated methods, which collectively 
consider multiple methods and data to promote the perfor-
mance of function prediction [4]. Except for methods using 
sequence similarities, the disadvantage of these methods is 
that they use the features of proteins that are difficult to 
obtain or are not available at all for many proteins, which 
greatly limits the scope of such methods.

Among the numerous methods, BLAST [5] has gained 
the most popularity, demonstrating great potential for re-
vealing protein functions. This is a program widely used in 
bioinformatics to search for homologs for a given protein 
sequence in various databases. The program receives a se-
quence in the FastA format as input, selects the database to 
be searched for, and the search algorithm. BLAST prediction 
is based on protein sequence similarity, while machine learn-
ing prediction is also based on sequences but without taking 
into account their similarity. This unique characteristic of 
machine learning makes it a good complement to BLAST and 
many other approaches to predict the functions of distantly 
relevant proteins and homologous proteins with different 
functions. However, BLAST has disadvantages such as slow 
execution and a relatively low level of data sensitivity.

In recent years, machine learning algorithms have been 
gaining popularity, and various online software tools based 
on machine learning have been developed as predictors 
without considering similarities in sequence or structure, 
including methods incorporating various lines of evidence 
as features for training classifiers and predicting GO terms. 

Support Vector Machine (SVM) classifiers have been 
widely used in a large number of studies in the field of bio-
informatics including areas of study of the structure and 
functions of proteins [6]. The main common disadvantage 
of SVM-based applications is the long training time for 
large datasets, moreover, it is difficult to understand and 
interpret the final model. For instance, FFPred [7] has been 
trained and tested on human annotated proteins in its first 
implementation, however, further showed generalization 
to other organisms (zebrafish, mouse, fly, worm and yeast). 
The new version of this tool, FFPred3, which is still based 
on SVM, has been extended to explore correlations between 
trait features extracted from sequences and structures within 
a vocabulary of 400 biological process terms (BP), 108 in 
the molecular function (MF) domain, and 89 in the cellular 
component (CC) domain [8]. The main disadvantage of [8] 
is that the performance of this tool has not been investiga ted 
when working with large datasets. Another example, a clas-
sifier called PoGO (Prediction of Gene Ontology terms) 
uses not only terms as characteristics, but also combines 
three sources (sequence similarity, biochemical properties, 
and protein tertiary structure) [9]. As in the previous study, 
there was no analysis of the effectiveness of the algorithm on 
a large dataset. 

The k-nearest neighbors (k-NN) algorithm [10–12] has 
also found wide application in functional annotation systems.  
The disadvantage is that this algorithm shows low effi-
ciency when working with large datasets, as well as with 
high-dimensional data. PANNZER2 [10] is a good annota-
tion tool, which demonstrates high processing speed, but 
does not surpass similar classification tools in accuracy. 
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DeepText2GO [11] integrates the text-based method with 
the sequence-based method, which improves its accuracy 
but requires more training data. The work [12] does not 
demonstrate a new idea in this field, however, NetGO shows 
high results and outperforms most of the tools using similar 
algorithms. The main disadvantage of NetGO is high compu-
tational complexity.

Convolutional Neural Network (CNN) was originally 
developed to process 2D images, however, today it is success-
fully used for processing genomic sequences. A CNN consists 
of different types of layers: convolutional layers, subsam-
pling layers and layers of a «normal» neural network – the 
perceptron. It should be noted that the models described 
in [13–17] were compared only with models built based on 
similar neural networks, or with classical tools like BLAST. 
Comparative analysis of different architectures is still rele-
vant for machine learning models. In particular, in [13], poor 
performance of DeepGO demonstrates the weakness of deep 
learning based methods that only work with a small number 
of GO terms. SDN2GO [14], DeepAdd [15], DeepGOA [16] 
and TailGnn’s [17] also show good but not outstanding re-
sults in annotating protein functions. Comparative analysis 
of these tools does not allow highlighting one tool as supe-
rior to others. They have a common disadvantage, which is 
computational complexity, moreover, to predict functions 
more accurately each of these tools requires a combination of 
different protein inputs, which is often not possible.

Recurrent neural networks (RNNs) are a type of neural 
networks specialized in sequence processing. Their feature is 
the transmission of signals from the output or hidden layer 
of the neural network to the input layer [18]. Like any other 
neural network, a recurrent neural network can consist of any 
number of layers. A neural network with a long short-term 
memory (LSTM network) is one of the varieties of recurrent 
neural networks [19]. The key component of an LSTM net-
work is the so-called cell state. The state of the cell is involved 
in several linear transformations. The state of the cell is re-
sponsible for the learning process, error backpropagation, and 
updating the weights. Although LSTM networks work well 
for some problems, there is a list of disadvantages: LSTMs 
take a lot of time and memory to train, they are easy to overfit 
and sensitive to different random weight initializations.

The success of machine learning methods is also due to 
the fact that the amount of accumulated data allows training 
the developed models with sufficient accuracy.

However, most protein sequences are still labeled as «pu-
tative», «uncharacterized», «unknown function», or «hypo-
thetical». Moreover, the identification accuracy of these ap-
proaches still needs further optimization and study [20, 21]. 
Thus, the need to assess the accuracy of protein function 
identification is still an urgent task for machine learning 
approaches used to predict protein functions.

3. The aim and objectives of the study

The aim of this work is to identify the most appropriate 
machine learning model and evaluate the performance (in 
terms of accuracy) of two popular machine learning algo-
rithms (bidirectional LSTM and CNN) commonly used for 
protein function prediction. This will make it possible to 
apply and improve a suitable machine learning model with 
high accuracy on large amounts of data, which will allow 
increasing the number of characterized proteins.

To achieve this aim, the following objectives are accom-
plished:

– to implement two machine learning models and train 
them using a random partition of the public Pfam dataset, 
which consists of three sets of data: train – 80 % (model train-
ing), val – 10 % (model validation) and test – 10 % (model 
performance evaluation);

– to evaluate the performance of the models using two 
metrics: accuracy and multi-class loss log. 

4. Materials and methods

4. 1. Dataset description
To compare different models with protein domain misalign-

ment annotation, the public database Pfam was used as the 
main data source. Pfam is a database of protein domain families. 
Each family in it is represented by a multiple alignment of pro-
tein sequence fragments and a hidden Markov model (HMM). 
77.2 % of ~137M sequences in UniprotKB have at least one 
Pfam family annotation [22]. As of November 2021, Pfam 
contained 19 632 entries (families) united into 657 clans [23]. 

This database contains five features:
– sequence: The amino acid sequence for the given domain.  

This sequence represents a domain, not a full protein;
– family_accession: Accession number;
– sequence_name: The name of the sequence;
– aligned_sequence: Contains one sequence from a multiple 

sequence alignment;
– family_id: One-word family name.
Table 1 shows some examples of data used.

Table	1
Examples	of	data

No. Field name Data

1

sequence: VLERKISTRQTREELIKKGVLIPD

family_accession PF02755.15

sequence_name I3IWL9_ORENI/33-56

aligned_sequence VLERKISTRQTREELIKKGVLIPD

family_id RPEL

2

sequence NPCTIDSCGPKGCVHIAMSCDDN

family_accession PF00526.18

sequence_name F0ZFD3_DICPU/581-603

aligned_sequence NPCTIDSC.GPK....G.CVHIAM.SCDDN

family_id Dicty_CTDC

3

sequence: KLNSLGGLVALNLGSIDNASASGTLV

family_accession PF07581.12

sequence_name: Q7WYX3_PSEAI/240-265

aligned_sequence KLNSLGGLVALNL..........GSIDNASASG.TLV

family_id Glug

We used the same dataset as [24]. The benchmark in-
cludes a random split of 17,929 Pfam families into a test train, 
where 80 % of the sequences are used for training, 10 % for 
model tuning, and 10 % as test sequences. Fig. 1 illustrates 
the total number of sequences in the dataset.

Thus, to build and train the model, three datasets were 
used: train dataset, val dataset, and test dataset, consisting 
of 1,086,741 sequences, 126,171 sequences, and 126,171 se-
quences, respectively.
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Fig.	1.	The	total	number	of	sequences	in	each	dataset

4. 2. Protein sequence coding
To code the protein sequences, we represented letter 

codes of amino acid sequences by the corresponding integer 
values in ascending order, which are further used for inte-
ger coding. We used the one-hot encoding method to code 
the protein sequences. This type of encoding 
creates a new binary feature for each possible 
category and assigns a value of 1 to the feature 
of each sample that corresponds to its original 
category. 

4. 3. Machine learning models
A common outline of machine learning 

solutions, the details of which may vary de-
pending on the method, is shown in Fig. 2 [25]. 

ProtCNN uses residual blocks inspired by 
the ResNet architecture, which also includes 
extended convolutions to provide a larger re-
ceptive field without increasing the number of 
model parameters. As an input signal, the one-
hot encoded unaligned amino acid sequence 
with zero padding is passed to the network. In 
the general case, the formation of the output 
feature map of the hidden layer l of the CNN 
architecture can be described as follows:

h f x k bj
l

i
l

j
l

j
l

i
= +( )−∑ 1 * ,  (1)

where f is the activation function; bj is the shift 
coefficient for the feature map; kj is the convolu-
tion kernel number j; xi

l −1  – map of features of 
the previous layer; * – convolution operation. 
Fig. 3 shows the architecture of the CNN model.

BiLSTM is one of the types of recurrent 
neural networks, which processes sequence data 
in both forward and backward directions with 
two separate hidden layers. BiLSTM is based on 

input, forget and output gates. The following formulae (2) are 
used to calculate the predicted values [26]:

input gate i W X R h bt g i t i t i( ) = + +( )−σ 1 ,

forget gate f W X R h bt g f t f t f( ) = + +( )−σ 1 ,

cell candidate c W X R h bt g c t c t c( ) = + +( )−σ 1 ,

output gate o W X R h bt g o t o t o( ) = + +( )−σ 1 ,  (2)

where σg is the gate activation function and Wi, Wf, Wc, and 
Wo are input weight matrices, while Ri, Rf, Rc, and Ro are the 
weight matrices connecting the previous cell output state to 
the three gates and the input cell state. Xt is the input, and 
ht–1 is the output at the previous time (t–1). bi, bf, bo and bc 
are bias vectors.
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Fig.	2.	General	algorithm	for	machine	learning	solutions		
to	predict	GO	terms	of	proteins
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At each time iteration t, the cell output state, Ct, and the 
layer output, ht, can be calculated as follows [27]:

C f C i Ct t t t t= +−* * ,1
  (3)

h o Ct t t= ( )* tanh .  (4)

The architecture of the bidirectional LSTM model is 
presented in Fig. 4.

Input

Output 

Backward 

Forward

Hidden 
layer 

 
Fig.	4.	BiLSTM	architecture

Using bidirectional LSTM runs inputs in two ways, 
allowing to preserve contextual information from past and 
future at any point of time.

4. 4. Assessing the identification accuracies of the 
studied models

To evaluate the performance of the different models for 
predicting protein properties, we used metrics of the classifi-
cation accuracy, defined respectively by (5):

Accuracy =
+

+ + +
TP TN

TP TN FP FN
, (5)

where TP, TN, FP, and FN represent true positive, true nega-
tive, false positive, and false negative.

In testing, accuracy reflects the classification accuracy 
of the learned classifier on the testing dataset, which has no 
overlap with the training dataset. It is generally accepted 

that the test accuracy serves as a good indicator of prediction 
performance [28].

The models were implemented in Python using the  
Num.py, TensorFlow and Keras libraries and run on the  
Colab cloud platform.

5. Results of studying machine learning models  
for protein function prediction

5. 1. Implementation of BiLSTM and ProtCNN neural 
networks 

During the implementation of the models, the following 
were used:

– Adam algorithm as an optimization algorithm [29];
– Accuracy indicator as an objective function;
– Binary-crossentropy function returning the classifica-

tion error as a logistic loss function Loss:

Loss
N

y y y yi i i i
i

N

= − ( )+ −( ) −( )
=
∑1

1 1
1

*log *log ,
  

 (6)

where yi is the true class label; 


yi  is the classifier’s re-
sponse (calculated class label) to the i-th object; N is the 
number of classes. Fig. 5, 6 show a part of the code of BiLSTM 
and ProtCNN, respectively.

The model architecture consists of an embedding layer 
for learning the vector representation for each code followed 
by BiLSTM. Dropout is added for regularization to prevent 
model overfitting. The output layer gives probability values 
for all the unique classes, and based on the biggest predicted 
probability, the model will classify amino acid sequences to 
one of its protein family accession.

The ProtCNN architecture starts with an initial convo-
lution operation applied to the input data with a kernel size  
of 1 to extract the main properties. Two residual blocks are 
used to capture complex patterns in the data, which help to 
train with more epochs and better model performance. After 
two residual blocks, max pooling is applied to reduce the 
spatial size of the representation. Dropout is added for regu-
larization to prevent model overfitting. 

5. 2. Evaluation of the performance of the models using 
two metrics: accuracy and multi-class loss log

Table 2 shows the results of testing the BiLSTM network 
obtained during the first 10 training epochs. 

Fig. 7 shows graphical representations of the training 
results of the LSTM network model for 25 epochs in terms of 
Accuracy and Loss, respectively.

 
Fig.	5.	A	fragment	of	the	program	code	for	the	BiLSTM	network	model	implementation
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Table	2
Learning	results	of	the	BiLSTM	network	model

Epoch Loss Accuracy Val_loss Val_accuracy

1 5.5302 0.1114 3.6586 0.3238

2 2.8557 0.4747 2.0003 0.6737

3 1.8840 0.6672 1.3561 0.7960

4 1.4464 0.7497 1.0806 0.8376

5 1.2164 0.7915 0.9047 0.8712

6 1.0732 0.8180 0.7718 0.8977

7 0.9671 0.8377 0.7293 0.9020

8 0.8970 0.8503 0.6265 0.9233

9 0.8420 0.8606 0.6085 0.9219

10 0.8020 0.8674 0.5973 0.9246

   
a b

Fig.	7.	The	results	of	the	BiLSTM	network		
model	training	according	to	the Accuracy	indicator:		

a	–	accuracy	value,	b	–	loss	function	value

Table 3 illustrates the results of testing the ProtCNN 
network obtained during the first 10 training epochs.

Fig. 8 shows graphical representations of the training 
results of the ProtCNN model for 10 epochs in terms of  
Accuracy and Loss, respectively.

Table	3
Learning	results	of	the	ProtCNN	model

Epoch Loss Accuracy Val_loss Val_accuracy

1 0.9027 0.9306 0.4603 0.9843

2 0.4362 0.9790 0.4435 0.9849

3 0.4296 0.9814 0.4326 0.9864

4 0.4216 0.9823 0.4394 0.9855

5 0.4131 0.9832 0.4263 0.9861

6 0.4051 0.9835 0.4281 0.9852

7 0.3967 0.9840 0.4088 0.9872

8 0.3907 0.9844 0.4124 0.9870

9 0.3865 0.9845 0.4034 0.9871

10 0.3787 0.9849 0.3954 0.9879

   
a b

Fig.	8.	The	results	of	ProtCNN	model	training		
according	to the	Accuracy	indicator:	a	–	accuracy	value,		

b	–	loss	function	value

The statistical differences in the accuracy of the ProtCNN 
and BiLSTM models are illustrated in Table 4. 

The comparison of the accuracy of ProtCNN and BiLSTM 
shows that a convolutional neural network predicts more accu-
rately than a bidirectional long short-term memory network. 

 
Fig.	6.	A	fragment	of	the	program	code	for	ProtCNN	implementation
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Table	4
Statistical	differences	in	the	accuracy		

of	ProtCNN	and	BiLSTM

No. Model
Train 

Accuracy 
Val  

Accuracy 
Test  

Accuracy 

1 Bidirectional LSTM 0.9571 0.9511 0.9506 

2 ProtCNN 0.9967 0.9877 0.9880 

6. Discussion of the results of the comparative  
analysis of two machine learning models

In this paper, we compare the performance of ProtCNN 
and the bidirectional LSTM network in the Pfam domain an-
notation task. Table 2 and Table 3 illustrate training results 
at each epoch and show the increase of accuracy after each 
step, which allows us to talk about good predictive results of 
both models. For the machine learning methods and model 
architectures used herein, the ProtCNN model has been 
found to generally outperform bidirectional LSTM across 
different protein types. These results represent a significant 
advance over previous deep learning efforts in terms of the 
number of families and the number of training sequences per 
family. Table 4 shows that on randomly split data, ProtCNN 
achieves an accuracy rate of 0.988 % and bidirectional LSTM 
has an accuracy rate of only 0.9506 %. The performance 
difference is significant over a wide range of similarities  
between the test sequences and the training set.

The obtained results are determined by two factors. The 
first one is the volume of datasets on which the models were 
trained. Given ~1.1 million training examples across 17,929 
output families of a wide variety of sizes, the studied models 
are highly accurate. Second, the use of extended convolu-
tions in ProtCNN helped the model learn more complex 
features better than BiLSTM, as extensions allow for larger 
receptive fields. Skipped connections helped the model 
retain important spatial information from previous layers.

When choosing between ProtCNN and bidirectional 
LSTM, there is a clear trade-off between speed and accuracy. 
However, the ability of the approaches to improve the ac-

curacy of a single model without additional computational 
overhead suggests that this trade-off is not necessary. Apply-
ing more sophisticated machine learning techniques can lead 
to further performance improvements.

As a limitation, this work didn’t cover other popular met-
rics such as sensitivity (SE), specificity (SP) and Matthews 
correlation coefficient (MCC).

In future work, we will experiment with more different 
neural networks using four metrics for assessing the identi-
fication accuracies, as well as using the new version of the 
Pfam database. 

7. Conclusions

1. In this study, two machine learning algorithms (BiLSTM 
and ProtCNN) were implemented and trained. The following 
instruments were applied during model implementation: Adam 
algorithm as an optimization algorithm, Accuracy indicator as 
an objective function and Binary-crossentropy function return-
ing the classification error as a logistic loss function Loss. The 
advantage of the selected tools is high efficiency with sufficient 
ease of implementation, although the learning process can take 
quite a long time. The prediction models were trained using 
the training set and evaluated on the test set. Using the full 
Pfam dataset allowed both models to be trained to a suffi-
ciently high level of accuracy without leading to overtraining.

2. The performance evaluation of the implemented mo-
dels demonstrated that the ProtCNN model was found to 
outperform the bidirectional LSTM model for different types 
of proteins. The best accuracy of ProtCNN is 0.9967 for the 
train set, 0.9877 for the val set and 0.9880 for the test set, 
while BiLSTM showed only 0.9571 for the train set, 0.9511 
for the val set and 0.9506 for the test set.

Conflict of interest

The authors declare that they have no conflict of inte-
rest in relation to this research, whether financial, personal,  
authorship or otherwise, that could affect the research and its 
results presented in this paper.

References

1. Gabaldon, T., Huynen, M. A. (2004). Prediction of protein function and pathways in the genome era. Cellular and Molecular Life 

Sciences (CMLS), 61 (7-8), 930–944. doi: https://doi.org/10.1007/s00018-003-3387-y 

2. du Plessis, L., Skunca, N., Dessimoz, C. (2011). The what, where, how and why of gene ontology--a primer for bioinformaticians. 

Briefings in Bioinformatics, 12 (6), 723–735. doi: https://doi.org/10.1093/bib/bbr002 

3. Barrell, D., Dimmer, E., Huntley, R. P., Binns, D., O’Donovan, C., Apweiler, R. (2009). The GOA database in 2009--an integrated 

Gene Ontology Annotation resource. Nucleic Acids Research, 37, D396–D403. doi: https://doi.org/10.1093/nar/gkn803 

4. Piovesan, D., Giollo, M., Leonardi, E., Ferrari, C., Tosatto, S. C. E. (2015). INGA: protein function prediction combining inter-

action networks, domain assignments and sequence similarity. Nucleic Acids Research, 43 (W1), W134–W140. doi: https:// 

doi.org/10.1093/nar/gkv523 

5. Boratyn, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N. et. al. (2013). BLAST: a more efficient report with  

usability improvements. Nucleic Acids Research, 41 (W1), W29–W33. doi: https://doi.org/10.1093/nar/gkt282 

6. Stephenson, N., Shane, E., Chase, J., Rowland, J., Ries, D., Justice, N. et. al. (2019). Survey of Machine Learning Techniques in Drug 

Discovery. Current Drug Metabolism, 20 (3), 185–193. doi: https://doi.org/10.2174/1389200219666180820112457 

7. Lobley, A. E., Nugent, T., Orengo, C. A., Jones, D. T. (2008). FFPred: an integrated feature-based function prediction server  

for vertebrate proteomes. Nucleic Acids Research, 36, W297–W302. doi: https://doi.org/10.1093/nar/gkn193 

8. Cozzetto, D., Minneci, F., Currant, H., Jones, D. T. (2016). FFPred 3: feature-based function prediction for all Gene Ontology  

domains. Scientific Reports, 6 (1). doi: https://doi.org/10.1038/srep31865 



Mathematics and Cybernetics – applied aspects 

49

9. Jung, J., Yi, G., Sukno, S. A., Thon, M. R. (2010). PoGO: Prediction of Gene Ontology terms for fungal proteins. BMC Bioinfor-

matics, 11 (1). doi: https://doi.org/10.1186/1471-2105-11-215 

10. Törönen, P., Medlar, A., Holm, L. (2018). PANNZER2: a rapid functional annotation web server. Nucleic Acids Research, 46 (W1), 

W84–W88. doi: https://doi.org/10.1093/nar/gky350 

11. You, R., Huang, X., Zhu, S. (2018). DeepText2GO: Improving large-scale protein function prediction with deep semantic text rep-

resentation. Methods, 145, 82–90. doi: https://doi.org/10.1016/j.ymeth.2018.05.026 

12. You, R., Yao, S., Xiong, Y., Huang, X., Sun, F., Mamitsuka, H., Zhu, S. (2019). NetGO: improving large-scale protein function predic-

tion with massive network information. Nucleic Acids Research, 47 (W1), W379–W387. doi: https://doi.org/10.1093/nar/gkz388 

13. Kulmanov, M., Khan, M. A., Hoehndorf, R. (2017). DeepGO: predicting protein functions from sequence and interactions using  

a deep ontology-aware classifier. Bioinformatics, 34 (4), 660–668. doi: https://doi.org/10.1093/bioinformatics/btx624 

14. Cai, Y., Wang, J., Deng, L. (2020). SDN2GO: An Integrated Deep Learning Model for Protein Function Prediction. Frontiers in 

Bioengineering and Biotechnology, 8. doi: https://doi.org/10.3389/fbioe.2020.00391 

15. Du, Z., He, Y., Li, J., Uversky, V. N. (2020). DeepAdd: Protein function prediction from k-mer embedding and additional features. 

Computational Biology and Chemistry, 89, 107379. doi: https://doi.org/10.1016/j.compbiolchem.2020.107379 

16. Zhang, F., Song, H., Zeng, M., Wu, F.-X., Li, Y., Pan, Y., Li, M. (2021). A Deep Learning Framework for Gene Ontology Annotations 

With Sequence- and Network-Based Information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18 (6), 

2208–2217. doi: https://doi.org/10.1109/tcbb.2020.2968882 

17. Spalević, S., Veličković, P., Kovačević, J., Nikolić, M. (2020). Hierarchical Protein Function Prediction with Tail-GNNs. arXiv.  

doi: https://doi.org/10.48550/arXiv.2007.12804

18. LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature, 521 (7553), 436–444. doi: https://doi.org/10.1038/nature14539 

19. Cao, R., Freitas, C., Chan, L., Sun, M., Jiang, H., Chen, Z. (2017). ProLanGO: Protein Function Prediction Using Neural Machine 

Translation Based on a Recurrent Neural Network. Molecules, 22 (10), 1732. doi: https://doi.org/10.3390/molecules22101732 

20. Jiang, Y., Oron, T. R., Clark, W. T., Bankapur, A. R., D’Andrea, D., Lepore, R. et. al. (2016). An expanded evaluation of protein function 

prediction methods shows an improvement in accuracy. Genome Biology, 17 (1). doi: https://doi.org/10.1186/s13059-016-1037-6 

21. Pearson, W. R. (2015). Protein Function Prediction: Problems and Pitfalls. Current Protocols in Bioinformatics, 51 (1).  

doi: https://doi.org/10.1002/0471250953.bi0412s51 

22. UniProt: the universal protein knowledgebase (2016). Nucleic Acids Research, 45 (D1), D158–D169. doi: https://doi.org/ 

10.1093/nar/gkw1099 

23. Pfam 35.0 is released. Xfam Blog. Available at: https://xfam.wordpress.com/2021/11/19/pfam-35-0-is-released/

24. Bileschi, M. L., Belanger, D., Bryant, D., Sanderson, T., Carter, B., Sculley, D. et. al. (2019). Using Deep Learning to Annotate  

the Protein Universe. bioRxiv. doi: https://doi.org/10.1101/626507 

25. Vu, T. T. D., Jung, J. (2021). Protein function prediction with gene ontology: from traditional to deep learning models. PeerJ,  

9, e12019. doi: https://doi.org/10.7717/peerj.12019 

26. Abduljabbar, R. L., Dia, H., Tsai, P.-W. (2021). Unidirectional and Bidirectional LSTM Models for Short-Term Traffic Prediction. 

Journal of Advanced Transportation, 2021, 1–16. doi: https://doi.org/10.1155/2021/5589075 

27. Kurtukova, A. V., Romanov, A. S. (2019). Modeling the neural network architecture to identify the author of the source code. 

Proceedings of Tomsk State University of Control Systems and Radioelectronics, 22 (3), 37–42. doi: https://doi.org/10.21293/ 

1818-0442-2019-22-3-37-42 

28. Deen, A., Gayanchandani, M. (2019). Protein Function Prediction using SVM Kernel Approach. International Journal of Scien-

tific & Engineering Research, 10 (7), 1995–2000. Available at: https://www.ijser.org/researchpaper/Protein-Function-Predic-

tion-using-SVM-Kernel-Approach.pdf

29. Kingma, D. P., Ba, J. (2014). Adam: A Method for Stochastic Optimization. 3rd International Conference for Learning Repre-

sentations. San Diego. doi: https://doi.org/10.48550/arXiv.1412.6980


