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1. Introduction

Fibrous composite materials are widely used in machine 
and aircraft building, space industry and construction. Op-
timization in the use of materials and designs in these areas 
is essential. Therefore, when designing, it is important to 
have the most accurate and efficient method for determin-
ing the stress-strain state of such complex materials under 
the action of various kinds of loads.

Fibrous composite materials are a layer (or several in-
terlayers) having longitudinal reinforcement in the form of 
cylindrical inclusions.

Steel, glass, basalt, monocrystalline or polymer fibers 
are used as reinforcement. There is also reinforcement with 
fibers of carbon, boron, and even cellulose [1]. This allows 

to give the composite new special physical and mechanical 
characteristics.

The branched application of fibrous composites re-
quires the improvement of methods for calculating the 
stress-strain state of such materials in terms of accuracy 
and optimality. In practice, direct studies of the stress-
strain state of the layer, elements of its reinforcement 
and conjugation are also relevant. This is due to the fact 
that when developing a design scheme, it is necessary to 
predict the initial geometric characteristics of the future 
composite.

Thus, it is important to create an effective high-pre-
cision method for calculating a layer with longitudinal 
cylindrical cavities and to analyze the stress-strain state 
for such a body.
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An analytical-numerical solution of the spatial 
problem of elasticity theory for a composite in the form 
of a layer with two longitudinal endless continuous 
cylindrical inclusions is proposed. Homogeneous, iso-
tropic materials of the layer and inclusions differ from 
each other in the modulus of elasticity and Poisson’s 
ratio. Normal stresses are set on the upper and lower 
boundaries of the layer. The object of study is the 
stress state of such a composite. The problem is the 
lack of a high-precision method for calculating multi-
ply connected bodies of this type. The solution of the 
problem is based on the generalized Fourier method for 
the Lame equations in various coordinate systems. The 
problem is reduced to an infinite system of linear alge-
braic equations, which is solved by the reduction meth-
od. In a numerical study, the stress state was obtained 
inside the composite bodies, within their conjugations, 
and on the isthmus between inclusions. It has been 
established that extreme stresses σρ=–0.9306 MPa, 
σf=–0.5595 MPa, τρf=–0.315 MPa occur on the mat-
ing face. Analysis of the stress state indicates the need 
to take into account the normal stresses on the mating 
surface. This is due to the presence of a binder, which 
may differ in physical characteristics from the main 
components of the composite. The results have logical 
physical correctness and, in simplified versions, are 
fully consistent with the results of similar problems 
from other approved sources. In the work, the tran-
sition formulas in the basic solutions between differ-
ent coordinate systems, the conjugation conditions for 
different bodies, and the strict fulfillment of the equi-
librium conditions for given boundary functions are 
simultaneously applied. This made it possible to obtain 
a high-precision solution of a new problem in the the-
ory of elasticity for a layer with cylindrical inclusions 
and given only stresses on the boundary surfaces. The 
proposed method of calculation can be applied in the 
design of structures made of fibrous composites in the 
aircraft industry and construction
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2. Literature review and problem statement

If to consider the composite as a solid material, then the 
simplest way to determine its physical and mechanical char-
acteristics is laboratory tests [2] with subsequent use of the 
data obtained in the design of structures. But it should be 
taken into account that when the geometrical features of this 
composite change, the physical and mechanical characteris-
tics change, as a result of which the need for new tests arises.

Therefore, the most common calculation of a composite 
(as an integral material) is by methods of mechanics of a de-
formable solid body. But in this case, its nonlinear mechan-
ical behavior should be taken into account and approximate 
methods for predicting the stress-strain state should be 
applied [3, 4]. Thus, in [5], a model of deformation of com-
posite materials reinforced with unidirectional spheroidal 
inclusions is considered. In the given example, the matrix is 
isotropic and deforms nonlinearly, while the inclusions are 
linearly elastic and have a transversely isotropic symmetry 
of physical and mechanical properties. In [6], the depen-
dence on velocity, tension-compression asymmetry, viscos-
ity, unloading characteristics, interaction between stress 
components, and the influence of environmental factors 
on the mechanical properties of the polymer composite are 
considered. In [7], an analysis was made of the fracture of 
woven glass/epoxy composite laminates with a notch under 
tensile load. In [8], for different models with different con-
figurations, an analysis was made of the influence of material 
nonlinearity on the stress distribution and stress concentra-
tion factors in unidirectional and layered composite materi-
als. In [9], a complex numerical analysis was carried out to 
assess the accuracy of the Tan model for obtaining the stress 
concentration factor for a composite of finite dimensions 
containing an open hole. The influence of the plate length on 
the stress distribution around the hole is studied. However, it 
should be noted that the approximate methods used in these 
works [5–9] do not provide confidence in the calculation 
when a highly accurate result is required.

For a more accurate calculation, a combination of ex-
perimental and numerical methods is used. Thus, in [10], a 
theoretical and experimental approach to the analysis of the 
response of a layered composite to an impact load was proposed. 
Theoretical modeling is based on power series expansion of the 
displacement vector component in each layer for the transverse 
coordinate. The maximum deflections of composite specimens 
upon impact of an indenter were experimentally investigated. 
In [11], the strength of laminated windows of an aircraft cabin 
under the influence of a bird strike was calculated. The method 
is based on embedding the original non-canonical shell into 
an auxiliary canonical plan form with limiting conditions 
that allow solving a simple analytical problem in the form of a 
trigonometric series. An experimental model was developed to 
simulate the process of bird bruising against a rigid target [12]. 
In [13], a model of multilayer glazing is presented, where the 
first-order theories are improved taking into account trans-
verse shear deformations, thickness reduction and normal 
rotational inertia of the elements of each layer. On the basis 
of experimental studies, a mathematical model of the pressure 
impulse is based. The works cited [10–13] effectively determine 
the strength of multilayer composites, but do not allow one to 
obtain the stress state of a separate layer body and its reinforce-
ment, which is important in design.

In [14], a multilayer composite with a stress concentra-
tor in the form of a cylindrical hole located perpendicular 

to the boundary surfaces of the layer is considered. The 
study was carried out analytically, numerically and ex-
perimentally. A numerical study was carried out by the 
finite element method, an analytical study was carried 
out by developing a point stress criterion. In [15], a plate 
with a cylindrical hole is considered. To solve the prob-
lem, metaheuristic optimization algorithms (evolutionary, 
physics-based and swarm intelligence algorithms) around 
voltage concentrators were used. In [16], a semi-analytical 
polynomial method was used for a plate with a cylindrical 
hole. In particular, non-linear partial differential equations 
were transformed into a system of non-linear algebraic 
equations and solved using the Newton-Raphson method. 
In [17], the complex potential method was applied to study 
the bending of end rectangular isotropic plates with a 
round notch. The methods described in [14–17] effectively 
solve the problem with a perpendicularly located stress 
concentrator, but are not applicable to longitudinal inho-
mogeneities.

Analytical or analytic-numerical methods are highly 
accurate. Given the nonlinearity of the composite material, 
when using these methods, it is necessary to separate the 
composite into its components. That is, consider the layer 
and the inclusion as separate bodies interconnected by con-
jugation conditions. A classic in mechanics in this direction 
is the expansion in Fourier series. Yes, this method is used 
in [18] to study stationary problems of wave diffraction 
in a plate and a layer. In [19], wave diffractions in space, 
half-space, an infinite layer, and a cylinder with a cavity 
or an inclusion are determined. The stress for a layer with 
a cylindrical cavity or an inclusion is considered in [20]. In 
[21], using image methods, a two-dimensional boundary 
value problem of diffraction of symmetric normal longitu-
dinal shear waves for a layer with a cylindrical cavity or 
an inclusion was solved. These approaches make it possible 
to obtain a highly accurate result of stress distribution or 
wave diffraction for problems in a plane setting. But these 
methods cannot be applied to a spatial problem and a prob-
lem with many boundary surfaces.

For spatial models with more than three boundary sur-
faces and high accuracy in determining the stress state, the 
most powerful is the analytical-numerical generalized Fouri-
er method [22]. The work [23] provides a justification for the 
addition theorems of the generalized Fourier method for the 
main solutions of the Lame equation with respect to a half-
space and a cylinder, written in Cartesian and cylindrical 
coordinate systems, respectively.

On the basis of the generalized Fourier method, a number 
of problems of the theory of elasticity for a cylinder with cy-
lindrical cavities or inclusions are solved. Thus, in [24], the 
problem was solved for a cylindrical body with four cylindri-
cal cavities. The problem for a cylinder with N cylindrical 
cavities is considered in [25]. The problem for a cylinder 
with cylindrical cavities forming a hexagonal structure is 
considered in [26] and a cylinder with 16 cylindrical inclu-
sions in [27]. In these papers [24–27], addition theorems 
of the generalized Fourier method were applied for several 
cylindrical systems. But they do not take into account the 
addition formulas for solving the Lame equation between 
Cartesian and cylindrical coordinate systems. This does not 
allow the calculation methods given there to be applied to 
the layer.

Such justification was taken into account in the problem 
of elasticity theory for a half-space with cylindrical cavities 
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in displacements in [28] and for a mixed type in [29]. But 
in [28, 29], only a half-space is considered and there is no 
connection with another boundary surface to create a layer. 
This limit is taken into account in [30], where the problem 
is solved for a layer with one cylindrical cavity in displace-
ments. A similar stress problem is considered in [31] and of a 
mixed type in [32]. A two-layer composite with a cylindrical 
stress cavity is considered in [33]. However, the methods 
proposed in [28–33] do not allow one to take into account 
longitudinal inclusions.

Taking into account the conjugation conditions of cy-
lindrical surfaces made it possible to solve problems for a 
layer with one continuous inclusion [34] and a pipe [35]. But 
in [34, 35], the connection between the shifted cylindrical 
coordinate system and the layer surfaces is not taken into 
account, which does not allow solving the problem with 
several inclusions.

Therefore, the problem for a fibrous composite (a layer 
with several cylindrical inclusions) can be solved with high 
accuracy using the analytical-numerical generalized Fourier 
method. However, unlike existing works, it is necessary to 
take into account several conditions at the same time. These 
are: transition functions in basic solutions between cylindri-
cal coordinate systems, between cylindrical and Cartesian 
for both layer boundaries, conjugation conditions between 
cylindrical surfaces and taking into account the equilibrium 
equation. The last condition concerns only problems of the 
theory of elasticity in stresses.

There are a large number of publications on the topic of 
calculating a layer with stress concentrators. An analysis 
of these publications allows to state that the solution of the 
problem of the theory of elasticity for a layer with cylin-
drical inclusions and given only stresses within the layer 
remains an unsolved part of the problem. For the practical 
application of the calculation method, it is also important 
to analyze the stress state of such a composite body.

3. The aim and objectives of the study

The aim of the study is to create a high-precision method 
for solving a new problem in the theory of elasticity and to 
analyze the stress-strain state of a layer with two longitudi-
nal cylindrical inclusions under the action of a constant load. 
When determining the stress, special attention is paid to the 
place where the layer interfaces with one of the inclusions 
and checking this interface for strength. This makes it possi-
ble to obtain an analysis of the stress state of the composite 
components.

To achieve the aim, the following objectives are solved:
– create and solve a system of equations connecting the 

equations for the layer, the equations for each inclusion, 
boundary conditions and conjugation conditions;

– determine and analyze the stress state of the compo-
nents of the composite.

4. Method for studying the stress state of a layer with 
two longitudinal cylindrical inclusions

4. 1. The object of study
The object of study is the stress-strain state of an elastic 

homogeneous layer with two circular cylindrical inclusions 
and only stresses specified at the layer boundaries (Fig. 1).

The inclusions have radii R1 and R2, they are uncommon 
between themselves and the layer limits and are considered 
in local cylindrical coordinate systems (ρp, φp, z). The layer 
is considered in the Cartesian coordinate system (x, y, z), 
equally oriented and connected to the inclusion coordinate 
system p=1. The distance to the upper limit of the layer y=h, 
to the lower limit .y h= −   It is necessary to find a solution 
to the Lame equation, provided that stresses are given at the 
layer boundaries:

( ) ( )0, , ,hy h
FU x z F x z

=
=

 
 ( ) ( )0, , ,

hy h
FU x z F x z

=−
= 

 

where

( ) ( ) ( ) ( )0 ,  ,  h h h
h yx x y y yz zF x z e e e= τ + σ + τ
   

( ) ( ) ( ) ( )0 ,  
h h h

yx x y y yz zh
F x z e e e= τ + σ + τ

  



   
		  (1)

are known features.

4. 2. Main research hypotheses
Based on the conditions of statics, with only stresses 

specified at the layer boundaries, the equilibrium equations 
should be satisfied [31]

( )
( )

d 0,F M
σ

σ =∫∫


 ( )
( )

d 0,r F M
σ

× σ =∫∫


		  (2)

where σ={σ1+σ2}, σ1 – the plane on y=h, σ2 – the plane 
on ,y h= − 

( ) ( )
( )

0
1

0
2

, on ,

, on .

h

h

F x z
F M

F x z

 σ= 
σ 





 

r


– the radius of the point vector M.
On the limits of the inclusions with the layer, the conju-

gation conditions are set [31]

( ) ( )0 , , ,
p p pp

p p pR R
U z U z

ρ = ρ =
ϕ = ϕ

 
 			   (3)

( ) ( )0 , , ,
p p p p

p p pR R
FU z FU z

ρ = ρ =
ϕ = ϕ

 
		  (4)

where 

Fig. 1. Layer with cylindrical inclusions
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( )1
2 div rot

1 2 2
FU G n U U n U

n
σ ∂ = ⋅ ⋅ ⋅ + + × − ⋅σ ∂ 

      

– the stress operator.
All given vectors and functions are considered to rapidly 

decrease to zero at long distances from the origin along the 
coordinate axes x and z.

Let’s choose the basic solutions of the Lame equation in 
the form [22]

( ) ( ) ( ), , ; , ;d i z x y
k ku x y z N e λ +µ ±γ± λ µ =


			   (5)

( ) ( ) ( ) ( )
, , , ; ;p i z m

k m k mR z N I e λ + ϕρ ϕ λ = λρ


( ) ( ) ( ) ( ) ( )
, , , ; sign ;

mp i z m
k m k mS z N K e λ + ϕ ρ ϕ λ = λ λ ρ ⋅ 


1, 2, 3;k =

( )
1

1
;dN = ∇

λ
 ( ) ( ) ( ) ( )1

2 2

4 1
1 ;dN e y= σ − + ∇ ⋅

λ λ
  

( ) ( )( )1
3 3rot ;d i

N e= ⋅
λ

  ( )
1

1
;pN = ∇

λ
 

( ) ( ) ( )2
2 3

1
4 1 ;pN e

z

  ∂ ∂ = ∇ ρ + σ − ∇ −     λ ∂ρ ∂  

  

( ) ( )( )2
3 3rot ;p i

N e= ⋅
λ



2 2 ,γ = λ + µ , ,−∞ < λ µ < ∞

where σ – Poisson’s ratio; Im(x), Km(x) – modified Bessel 
functions , ,, ,k m k mR S

 

 , ,, ,k m k mR S
 

 k=1, 2, 3 – respectively, the internal and 
external solutions of the Lame equation for the cylinder; 

( ),ku −  ( )
ku +  – solutions of the Lame equation for the layer.

For the transition of basic solutions between coordinate 
systems, formulas [22] are used:

– for transition from solutions ,k mS


 
of the cylindrical 

coordinate system to solutions of the layer ( )
ku −  (for y>0) and

( )
ku +  (for y<0)

( )
( ) ( )

, , , ;

d
,

2
p p

k m p p

m
i x ym

k

S z

i
e u

∞
− µ ±γ

−∞
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− µ
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




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2
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4 1
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pm
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− µ ±γ∞

−∞

−
ρ ϕ λ = ×
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∫




 






 


where 

2 2 ,γ = λ + µ  ( ), ,
µ γ

ω λ µ =
λ


 0, 1, 2, ;m = ± ±   

– for transition from interchanges ( )
ku +  and ( )

ku −  a layer to 
solutions ,k mR


 of a cylindrical coordinate system

( ) ( ) ( ) ( ),, , , 1, 3 ;p p
mi x y

k k m
m

u x y z e i R k
∞

µ ±γ±

=−∞

= ⋅ ⋅ω =∑ 


	 (7)
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∞
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where ( ) ( )
, , , ;pi m z

k m k m pR b e
ϕ +λ= ρ λ ⋅



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ρ λ = ⋅ λρ + ⋅ λρ ⋅ +′  λρ 
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,eρ


 ,eϕ


 ze


 are the unit vectors of the cylindrical coordinate 
system;

– to move from the interchanges of the cylinder with 
number p to the interchanges of the cylinder with num-
ber q

( ) ( ) ( )
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n

S z b e
∞
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where αpq – the angle between the xp axis and the segment ℓpq; 

( ) ( )( ) ( )sign .
m

m mK x x K x= ⋅

5. Results of the study of the stress state of the 
constituent elements of the composite

5. 1. Creation and solution of a system of equations
In the elastic homogeneous isotropic layer, parallel to its 

surfaces, there are two continuous inclusions (Fig. 1).
Layer material – plastic, Poisson’s ratio σ=0.38, modulus 

of elasticity E=1.7·103 MPa. The material of both inclusions 
is steel σ2=0.25, E2=2·105 MPa.

Geometric parameters: 

h=27 mm, R1=R2=7 mm, ℓ12=17 mm.

Stresses are set on the upper and lower surfaces of the 
layer (Fig. 1)

( ) ( ) ( ) ( ) ( ) ( )2 28 2 2 2 2, , 10 10 10 ,
hh

y yx z x z z x
− −

σ = σ = − ⋅ + ⋅ +

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( ) ( ) ( ) ( ) 0.
h hh h

yx yz yx yzτ = τ = τ = τ =
 

The solution of the problem is presented in the form
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 
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where 0U


 – displacement in the body of the layer; pU


 – displace-
ment in the inclusion body p; 

( ), , , ; ,k m p pS zρ φ λ


 ( ), , , ; ,k m p pR zρ φ λ


 ( ) ( ), , ; ,ku x y z+ λ µ


 and ( ) ( ), , ; ,ku x y z− λ µ


 – the basic solutions giv-
en by formulas (5), while the unknown functions Hk (λ, μ), 

( ), ,kH λ µ  ( ) ( ),
p

k mA λ  and ( ) ( ),
p

k mB λ  must be found from the bound-
ary conditions (1) and conjugation conditions (3), (4).

To fulfill the boundary conditions at the layer boundar-
ies, let’s rewrite the vectors ,k mS



 
in (9), using the transition 

formulas (6), in the Cartesian coordinate system through 
the basic solutions ( )

ku −
 at y=h, and ( )

ku +  at given y h= −  in 
terms of the double Fourier integral.

The system of 6 equations has a determinant coinciding 
with [31].

From these equations let’s find the functions ( ),kH λ µ  and 
( ),kH λ µ  through ( ) ( ), .p

k mB λ
The next step is the fulfillment of conjugation condi-

tions (3) of each inclusion p with the layer. To do this, the 
right side of (9), using the transition formulas (7) and (8), 
let’s rewrite in the local cylindrical coordinate system of this 
inclusion through the basic solutions , ,k mR


 , .k mS


If to apply the stress operator to the obtained equations, 
let’s obtain three more equations for the conjugation condi-
tions (4).

The system determinant for each cylinder p coincides 
with [29].

These systems can be solved by the cutting method and 
convergence of approximate solutions to the exact one.

From the resulting system of equations, let’s elimi-
nate the previously found functions ( ),kH λ µ  and ( ),kH λ µ  
through ( ) ( ), .p

k mB λ
Freed from series in m and integrals in λ, let’s obtain a 

set of 12 infinite systems of linear algebraic equations for 
determining the unknowns ( ) ( ),

p
k mB λ  and ( ) ( ), .p

k mA λ
Let’s substitute the functions ( ) ( ),

p
k mB λ  found from 

the infinite system of equations into the expressions for 
Hk (λ, μ) and ( ), .kH λ µ  This will determine all unknown 
problems.

5. 2. Analysis of the stress-strain state of the body
To obtain numerical results, the mathematical software 

package Maple 16 was used. The calculation of integrals for 
functions without oscillations was performed using Simson’s 
quadrature formulas, for functions with oscillations, using 
Philo’s quadrature formulas.

The infinite system has been truncated to m=8. The ac-
curacy of fulfilling the boundary conditions for the indicated 
values of m and geometric parameters was 10-4 for stress 
values from 0 to 1.

Fig. 2 shows the stresses at the upper boundary of the 
layer along the x axis, at z=0.

In accordance with the given stresses σy (Fig. 2, line 1), 
maximum stresses σz=–0.3359 MPa arise on the surface 
of the layer at x=0 (Fig. 2, line 3). Maximum stresses 
σx=–0.2846 MPa at x=6 mm (Fig. 2, line 2) and maximum 
stresses τxy=0.0966 MPa at x=4 mm (Fig. 2, line 4).

Fig. 3 shows the stresses along the z-axis, at x=0.

At given unit compressive stresses (Fig. 3, line 1) along 
the z axis, maximum stresses σρ=–0.9306 MPa appear on 
the interface between the layer and the inclusion. (Fig. 3, 
line 2). Such an insignificant decrease in stress (relative to 
the given ones) arises due to the proximity of the limiting 
surfaces 1 / 0.7.R h =  The stress σz almost coincides with the 
stresses σϕ (Fig. 3, line 3).

Fig. 4 shows the stressed state along the limit of the 
interface between the layer and the lower inclusion (p=1) 
at z=0.

The stress σz on the mating surface in the body of the 
layer almost coincides with the stresses σϕ, therefore they 
are shown in Fig. 4 only along line 2. The same applies to 
the stresses on the reinforcement surface σz (incl.), which 
almost coincide with the stresses σϕ (incl.) (Fig. 4, line 4). 
The stress σρ (incl.) and τρϕ (incl.) are equal to σρ and τρϕ on 

Fig. 2. Stress along the x-axis at z=0
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the layer surface, respectively (Fig. 4), which corresponds 
to conjugation conditions (3) and (4). Maximum values 
σϕ (incl.)=–0.39672 MPa, τρϕ (incl.)=±0.31501 MPa.

On the isthmus (Fig. 5), with appropriate geometric 
characteristics ((R1+R2)/ℓ12=0.82), some stresses increase, 
but not significantly.

At the isthmus, the stresses σρ increase, σϕ and σz de-
crease. Maximum values σρ=–0.5059 MPa.

Thus, the extreme stresses arising in the conjugation are 
normal σρ=–0.9306 MPa and adjoining τρϕ=–0.315 MPa.

6. Discussion of the results of studying the stress-strain 
state of a layer with two cylindrical inclusions

Using the generalized Fourier method, a connection was 
created between the basic solutions of the Lame equation 
in different coordinate systems. Taking into account the 
conjugation conditions for cylindrical fields (3), (4), it was 
possible to write the entire system of equations (9), (10) in 
one local coordinate system. After representing the limiting 
conditions in terms of the double Fourier integral, an infinite 
system of linear algebraic equations was obtained to deter-
mine the unknowns.

Solutions (9), (10) were used to obtain the stress state. 
Thanks to the transition formulas (6)–(8), it became pos-
sible to write these solutions in one coordinate system and 
obtain a numerical result.

The high accuracy of the fulfillment of the boundary 
conditions, indicated in Section 5. 2, indicates the high ac-
curacy of the obtained stress-strain state (the error is always 
higher on the boundary surfaces) and the efficiency of the 
applied method as a whole. This indicator can be improved 
by increasing the parameter m.

As a result, a solution to the problem was obtained, in con-
trast to [14–17], which makes it possible to analyze the stress-
strain state for bodies with longitudinal inhomogeneities.

The proposed analytic-numerical solution method uses 
the generalized Fourier method. This allows

– to obtain high-precision results, which prefers the ac-
curacy of calculations over works [5–9];

– to analyze the stress state of the layer body separately 
and its reinforcement separately, which cannot be done by 
some other methods [10–13];

– to solve the problem in a spatial formulation and with 
a larger number of boundary surfaces than the traditional 
expansion into Fourier series used in [18–21].

In contrast to the works [24–35], which also use the gen-
eralized Fourier method with separate addition theorems, 
in this work a number of tools were applied simultaneously. 
These are transition functions in basic interchanges between 

cylindrical coordinate systems, transition functions between 
cylindrical (including shifted) and Cartesian coordinate 
systems for both layer boundaries. The conditions of con-
jugation between cylindrical surfaces are also applied, the 
equilibrium equations are taken into account. This made it 
possible to obtain a solution to this problem.

The proposed solution method makes it possible to carry 
out a high-precision calculation of the strength of fibrous 
composite materials, which are used in machine and aircraft 
building, the space industry and construction. The above 
analysis of the stress state allows predicting the geometric 
parameters of structures or their composite elements. The 
effect of applying the proposed method can be to optimize 
the use of materials at the design stage.

In the numerical determination of the stress state, lim-
itations should be taken into account: the method does not 
allow solving problems when the boundaries of the bodies 
intersect. Also, some functions cannot be represented due to 
the double Fourier integral.

Among the disadvantages, it should be noted that with a 
decrease in the distance between the limits of the bodies, the 
accuracy of the calculation decreases. To restore accuracy, it 
is necessary to increase the order of the system of equations 
m, which entails a significant increase in the time for calcu-
lating the integrals of matrix elements.

Further development of this direction is possible for a 
similar problem under other boundary conditions, including 
the contact type between the inclusions and the layer. Such 
conditions in a real structure can arise when the conditions 
of rigid coupling are lost.

7. Conclusions

1. A new problem in the theory of elasticity for a layer 
with two longitudinal circular cylindrical inclusions is 
solved for stresses specified on the boundary surfaces. The 
solution of the problem is based on the analytic-numerical 
generalized Fourier method, the conditions of conjugation 
between cylindrical surfaces are additionally applied and the 
equilibrium equations are taken into account. The problem is 
reduced to an infinite system of linear algebraic equations, 
to which the reduction method is applied. This allows to get 
a result with a given accuracy.

2. The performed analysis of the stress state indicates the 
need to take into account the normal stresses on the mating 
face when assessing the strength of the composite material, in 
particular, on the mating surface. It has been established that 
all maximum stresses are concentrated in the lower part of 
the interface (closer to the load source) and have negative val-
ues (except for τρϕ). If the given load instead of a single one is 
equal to the ultimate strength of the plastic ([σ]=26 MPa), the 
stresses in the interface will get the value σρ=–2424.2 MPa. 
Such stress values may exceed the tensile strength of this in-
terface (for example, for VK-5 glue, [σ]=22 MPa). As for shear 
stresses, there is still a significant margin of safety.
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Fig. 5. Stress state on the isthmus between inclusions at z=0
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