-0

УДК 537; 541

ВЗАИМОДЕЙСТВИЕ МАЛЫХ ЧАСТИЦ В РАСТВОРЕ ЭЛЕКТРОЛИТА

С. В. Шостак

Кандидат фізико-математических наук Национальный университет биоресурсов и природопользования Украины ул. Героев Обороны, 15, г. Киев, Украина, 03141 E-mail: shostakserg@ukr.net

Н.Г.Шкода Кандидат фізико-математических наук Институт химии поверхности им. А. А. Чуйко НАН Украины ул. Генерала Наумова, 17, г. Киев, Украина, 03164 E-mail: n_shkoda@ukr.net

Побудовано розв'язок рівнянь Дебая-Х'юкеля для системи сферичних частинок з довільними радіусами і поверхневими зарядами або потенціалами, що знаходяться в електроліті. Розроблено загальний теоретичний метод розрахунку взаємодії частинок в таких системах. Детально розглянуто важливий на практиці випадок взаємодії двох частинок. Із загальних співвідношень у нульовому наближенні отримані аналітичні формули для знаходження енергії взаємодії двох сферичних частинок з постійними зарядами або потенціалами

п-

Ключові слова: теорія Дерягіна-Ландау-Фервея-Овербека, рівняння Дебая-Х'юкеля, малі частинки, енергія взаємодії

Построено решение уравнений Дебая-Хьюккеля для системы сферических частиц с произвольными радиусами и поверхностными зарядами или потенциалами, находящимися в электролите. Разработан общий теоретический метод расчета взаимодействия частиц в таких системах. Подробно рассмотрен практически важный случай двух частиц. Из общих соотношений в нулевом приближении получены аналитические формулы для нахождения энергии взаимодействия двух сферических частиц с постоянными зарядами или потенциалами

Ключевые слова: теория Дерягина-Ландау-Фервея-Овербэка, уравнение Дебая-Хьюккеля, малые частицы, энергия взаимодействия

1. Введение

Основной задачей при изучении ион-электростатического взаимодействия в системах малых частиц в растворах электролитов является расчет энергии и сил взаимодействия, которые возникают между частицами. Этой проблеме уделяется большое внимание исследователей и она тесно связана с задачей нахождения поверхностной энергии двойных слоев при взаимодействии частиц в таких средах. Причем и до настоящего времени задача расчета энергии и сил взаимодействия между частицами в системе является актуальной. Повышенный интерес к исследованию ион-электростатического взаимодействия в системах малых частиц в растворах электролитов объясняется и тем, что такие же математические модели могут быть использованы при рассмотрении взаимодействия малых неорганических частиц с биологическими клетками или микроорганизмами.

2. Анализ литературных данных

При изучении ион-электростатического взаимодействия в системах малых частиц в растворах электролитов основной задачей является расчет энергии и сил взаимодействия, которые возникают между частицами. Эта задача тесно связана с задачей нахождения поверхностной энергии двойных слоев при взаимодействии частиц в таких средах. Начиная с работ Б. В. Дерягина [1] этой проблеме уделяется большое внимание [2, 3, 5], Детальный обзор разных методов расчета ион-электростатического взаимодействия между частицами можно найти в [6, 7]. Взаимодействие диффузных двойных поверхностных слоев, возникающих вокруг частиц, обычно вычисляется на основе метода зон Б.В. Дерягина [1].

Но использование такого приближения может привести к неверным результатам, как справедливо отмечалось в [2, 4].

Поэтому исследование ион-электростатического взаимодействия между частицами является актуальным и в нашей работе рассматривается практически важный случай для двух сферических частиц. Из общих формул в нулевом приближении получены конечные формулы для вычисления энергии взаимодействия частиц, как с разными постоянными поверхностными зарядами, так и с постоянными поверхностными потенциалами. Из этих формул, как частный случай, следуют соотношения теории Дерягина-Ландау-Фервея-Овербека [1, 2].

3. Цель и задачи исследования

Целью данной работы является разработка общего теоретического метода расчета взаимодействия частиц в растворах электролита. Подробно рассматривается

D.

практически важный случай двух частиц. Из общих соотношений в нулевом приближении выводятся аналитические формулы для нахождения энергии взаимодействия двух сферических частиц с постоянными зарядами или потенциалами.

Рассматривается система, состоящая из N сферических частиц, помещенных в раствор электролита с диэлектрической проницаемостью ε_m . Радиусы частиц – a_k , диэлектрическая проницаемость частиц – ε_k , где k = 1, 2, ..., j, ..., N. Свяжем локальные сферические координаты (r_k , θ_k , ϕ_k) с центрами частиц (r_k – полярный радиус, θ_k – азимутальный угол, ϕ_k – полярный угол). Расположение двух произвольных частиц из ансамбля с индексами k, j показано на рис. 1. Глобальные координаты (x,y,z) точки наблюдения P определяются векторами \mathbf{r}_k , \mathbf{r}_j в локальных системах координат, и расстояние между центрами шаров будет $\mathbf{R}_{ki} = |\mathbf{R}_{ki}|$, где $\mathbf{R}_k = \mathbf{r}_k - \mathbf{r}_i$.

Рис. 1. Связь между локальными системами координат

Потенциалы, соответствующие внутренним и внешним областям относительно сферических поверхностей частиц, обозначим верхними индексами "<" и ">" соответственно. При отсутствии внешнего поля во внешней области потенциал $\phi^>$ представляет собой сумму потенциалов $\phi_k^> = \phi_k^> (r_k, \theta_k, \phi_k)$, создаваемых ка-

ждой частицей, т. е. $\phi^{\scriptscriptstyle >} = \sum_{k=1}^N \phi_k^{\scriptscriptstyle >}$. В электростатическом

приближении каждый потенциал $\phi_k^>$ (k = 1, 2, ..., N) является решением уравнения Дебая-Хюккеля (1), а потенциалы внутри сфер $\phi_k^< = \phi_k^<(r_k, \theta_k, \phi_k)$ будут решениями уравнения Лапласа (2) соответственно

$$\Delta \phi_k^> - \kappa^2 \phi_k^> = 0 , \qquad (1)$$

$$\Delta \phi_k^{<} = 0 . \tag{2}$$

Граничные условия на поверхности k-ой сферы при $r_k = a_k$ могут быть сформулированы различным образом.

Мы рассмотрим случай, когда заданы плотности распределения поверхностных зарядов. Тогда граничные условия можно записать в виде

$$\phi_{k}^{<} = \phi^{>}, \quad \varepsilon_{k} \frac{\partial \phi_{k}^{<}}{\partial r_{k}} - \varepsilon_{m} \frac{\partial \phi^{>}}{\partial r_{k}} = 4\pi\sigma_{k}.$$
 (3)

Как обычно, к этим условиям следует добавить предельные условия для потенциалов:

$$\phi_k^{\scriptscriptstyle >} \! \to \! 0 \text{ при } r_k^{\scriptscriptstyle >} \! \to \! \infty \text{ и } \phi_k^{\scriptscriptstyle <} \! < \! \infty \text{ при } r_k^{\scriptscriptstyle >} \! \to \! 0 \,. \tag{4}$$

Граничные условия (3) отражают непрерывность потенциалов и нормальной компоненты вектора электрической индукции на поверхности частиц, и, в общем случае, плотности распределения поверхностных зарядов могут быть функциями поверхностных координат, т. е. $\sigma_k = \sigma_k(\theta_k, \varphi_k)$.

4. Решение для системы п-сфер

Для решения сформулированной выше граничной задачи будем использовать разложения решений в ряды по сферическим функциям $Y_{lm}(\theta_k, \phi_k)$, l = 0, 1, 2, ..., m = -l, -l+1, ..., 0, 1, 2, ..., l. При этом предполагается, что система сферических функций ортонормированная. Внутри и вне сфер будем иметь разложения:

$$\boldsymbol{\varphi}_{k}^{<} = \sum_{lm} A_{lm}^{(k)} r_{k}^{l} Y_{lm}(\boldsymbol{\theta}_{k}, \boldsymbol{\phi}_{k}), \qquad (5)$$

$$\boldsymbol{\varphi}_{k}^{>} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} B_{lm}^{(k)} k_{l}(\boldsymbol{\kappa} \mathbf{r}_{k}) Y_{lm}(\boldsymbol{\theta}_{k}, \boldsymbol{\varphi}_{k}) .$$
(6)

При записи разложений (6) использованы модифицированные функции Бесселя третьего рода k₁(z) [8]. Общий потенциал в среде может быть записан следующим образом:

$$\begin{split} \phi^{>} &= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} B_{lm}^{(k)} [k_{l} (\kappa r_{k})] Y_{lm} (\theta_{k}, \phi_{k}) + \\ &+ \sum_{j=1}^{N} \left[\sum_{l_{j}=0}^{\infty} \sum_{m_{j}=-l_{j}}^{l_{j}} B_{l_{j}m_{j}}^{(j)} [k_{l_{j}} (\kappa r_{j})] Y_{l_{j}m_{j}} (\theta_{j}, \phi_{j}) \right], \end{split}$$
(7)

где штрих возле суммы означает, что в ней опущено слагаемое с индексом j = k. Использование двойных индексов l_j, m_j подчеркивает тот факт, что они могут изменяться независимо от индексов l, m, которые соответствуют k-ой сфере.

Задача состоит в нахождении неизвестных коэффициентов $A_{\rm lm}^{(k)},\ B_{\rm lm}^{(k)}$ в разложениях потенциалов (5), (6) из граничных условий (3). Для записи граничных условий для потенциалов и их производных необходимы выражения в других локальных координатах. С этой целью используем теорему сложения [10]. При этом мы преобразуем произведение сферической функции Бесселя на скалярную сферическую гармонику на произведение модифицированной функции Бесселя на скалярную сферическую гармонику. Кроме того, мы учтем свойства 3-ј символов Вигнера, а также выполним переход к коэффициентам Клебша-Гордона С¹"" [9, 10]. В результате мы получим следующую формулу преобразования произведения $k_{l}(\kappa r_{i})Y_{lm}(\theta_{i},\phi_{i})$ при условии, что $\mathbf{r}_k < |\mathbf{r}_i - \mathbf{r}_k|,$

$$k_{l} (\kappa r_{j}) Y_{lm} (\theta_{j}, \phi_{j}) =$$

$$= \sum_{l=0}^{\infty} \sum_{m'=-l'}^{l'} (-1)^{l'-m'} Y_{l'm'} (\theta_{k}, \phi_{k}) i_{l'} (\kappa r_{k}) \times$$

$$\times \sum_{l'=|l-l'|}^{l+l'} Y_{l'',m-m'} (\theta_{jk}, \phi_{jk}) k_{l''} (\kappa R_{jk}) \phi_{m-m'm-m'}^{l'l'l''}, \qquad (8)$$

где

$$\varphi_{m-m'm-m'}^{l'\,l''} = \left[4\pi(2l+1)(2l'+1)/(2l''+1)\right]^{1/2} C_{l0l'0}^{l''0} C_{lml'-m'}^{l''0}(9)$$

и величины θ_{jk} , ϕ_{jk} , \mathbf{R}_{jk} показаны на рис. 1. В формуле (8) появляются модифицированные функции Бесселя первого рода $i_1(z)$ [8].

Выпишем выражение для суммарного потенциала с использованием теоремы сложения (8) в локальных координатах, связанных с k-ой сферой

$$\begin{split} \phi^{>} &= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} B_{lm}^{(k)} k_{l}(\kappa r_{k}) Y_{lm}(\theta_{k}, \phi_{k}) + \\ &+ \sum_{j=1}^{N} \sum_{l_{j}=0}^{\infty} \sum_{m_{j}=-l_{j}}^{l_{j}} B_{l_{j}m_{j}}^{(j)} \sum_{l_{j}'=0}^{\infty} \sum_{m_{j}'=-l_{j}'}^{l_{j}'} (-1)^{l_{j}'-m_{j}'} Y_{l_{j}'m_{j}'}(\theta_{k}, \phi_{k}) i_{l_{j}'}(\kappa r_{k}) \times \\ &\times \left\{ \sum_{l_{j}''} Y_{l_{j}'',m_{j}-m_{j}'}(\theta_{jk}, \phi_{jk}) k_{l_{j}''}(\kappa R_{jk}) \phi_{m_{j}'-m_{j}'m_{j}-m_{j}'}^{l_{j}'l_{j}''} \right\}, \tag{10}$$

и, поскольку переменные сведены к одному центру, мы можем найти производные по радиальной координате непосредственно из (10), и вычислить ее значение на поверхности k-ой сферы. Полученные выражения для потенциалов и их частных производных подставляются в граничные условия. В результате мы получим систему 2N функциональных уравнений. Помножим полученные уравнения на комплексно-сопряженные функции $Y_{im}^*(\theta_k, \phi_k)$ и проинтегрируем по поверхности сферы. Это приведет к семейству бесконечных систем алгебраических линейных уравнений. Так как сферические гармоники ортогональны, и мы предполагали, что они ортонормированы, для интегралов будем иметь выражения (δ_{ij} – это символ Кроннекера):

$$\int_{0}^{2\pi} d\phi \int_{0}^{\pi} Y_{lm}^{*}(\theta,\phi) Y_{l'm'}(\theta,\phi) \sin \theta d\theta = \delta_{ll'} \delta_{mm'}.$$

При суммировании по индексам $l_j{\,}',\,m_j{\,}'$ остаются только слагаемые с индексами $l_j{\,}'=l,\,m_j{\,}'=m$, поэтому получаем следующую систему

$$\begin{aligned} & a_{k}^{l}A_{lm}^{(k)} = B_{lm}^{(k)}k_{1}(\kappa a_{k}) + (-1)^{l-m}i_{1}(\kappa a_{k})\sum_{j=1}^{N}\sum_{l_{j}=0}^{\infty}\sum_{m_{j}=-l_{j}}^{l_{j}}B_{l_{j}m_{j}}^{(j)} \times \\ & \times \left\{\sum_{l_{j}^{*}}Y_{l_{j}^{*},m_{j}-m_{j}^{*}}^{*}(\theta_{jk},\phi_{jk})k_{l'}(\kappa R_{jk})\phi_{m_{j}^{*},m_{j}^{*},m_{j}^{*}-m_{j}^{*}}^{l_{j}^{*},l_{j}^{*}}\right\}, \end{aligned}$$
(11)

$$\begin{split} B_{lm}^{(k)} + \alpha_{lm}^{(k)} (-1)^{l-m} \sum_{j=l}^{N} \sum_{l_{j}=0}^{\infty} \sum_{m_{j}=-l_{j}}^{l_{j}} B_{l_{j}m_{j}}^{(j)} \times \\ \times \left\{ \sum_{l_{j}^{\prime}} Y_{l_{j}^{\prime\prime},m_{j}-m_{j}^{\prime}}(\theta_{jk},\phi_{jk}) k_{l_{j}^{\prime\prime}} (\kappa R_{jk}) \phi_{m_{j}-m_{j}^{\prime},m_{j}-m_{j}^{\prime}}^{l_{j}l_{j}^{\prime\prime}l_{j}^{\prime\prime}} \right\} = = f_{lm}^{(k)}, \quad (12)$$

где $\sigma_{lm}^{(k)}$ – коэффициент разложения поверхностной плотности заряда по сферическим функциям и дополнительно введены обозначения

$$\alpha_{lm}^{(k)} = \frac{\varepsilon_k li_1(\kappa a_k) - \varepsilon_m \kappa a_k i'_1(\kappa a_k)}{\varepsilon_k lk_1(\kappa a_k) - \varepsilon_m \kappa a_k k'_1(\kappa a_k)},$$

$$f_{lm}^{(k)} = \frac{4\pi a_k \sigma_{lm}^{(m)}}{\varepsilon_k l k_l (\kappa a_k) - \varepsilon_m \kappa a_k k'_l (\kappa a_k)}.$$
 (13)

Штрих обозначает дифференцирование функции по своему аргументу. Следует отметить, что при постоянной плотности распределения поверхностного заряда будет $\sigma_{lm}^{(k)} = \sqrt{4\pi\sigma_k} \delta_{l0} \delta_{m0}$. Таким образом, после решения системы (12) коэффициенты разложений внутренних потенциалов определяются суммированием соответствующих рядов.

В результате получена связанная N раз бесконечная система линейных алгебраических уравнений. Система содержит только неизвестные коэффициенты $B_{lm}^{(k)}$ разложений внешних потенциалов, и задача определения потенциалов в любой точке пространства при взаимодействии N сферических частиц решена.

5. Ион-әлектростатическая энергия взаимодействия двух частиц

Сейчас мы рассмотрим взаимодействие двух шаров более подробно, используя полученные выше общие соотношения. Будем считать, что ось z проходит через центры шаров. Кратчайшее расстояние между поверхностями сфер обозначим через H, а расстояние между центрами частиц будет $d = H + a_1 + a_2$. В модели ДЛФО энергия двойного слоя $F = F_{ij}$ парного взаимодействия i-ой и j-ой сфер при известных плотностях поверхностных зарядов может быть найдена с помощью известных формул [3, 4]:

.

$$F = \frac{1}{2} \left[\int_{s_i} \sigma_i(P_i) \phi_i(P_i) dS_i + \int_{s_j} \sigma_j(P_j) \phi_i(P_i) dS_j \right],$$

(i, j = 1,2; i \neq j). (14)

Потенциальная энергия взаимодействия V двойных слоев определяется выражением V = F – F₀ [5], где F₀ – свободная энергия двух отдельных частиц и, если плотности распределения зарядов σ_1 и σ_2 постоянны, то

$$F_{0} = \frac{8\pi^{2}a_{1}^{3}\sigma_{1}^{2}}{\varepsilon_{m}(1 + \kappa a_{1})} + \frac{8\pi^{2}a_{2}^{3}\sigma_{2}^{2}}{\varepsilon_{m}(1 + \kappa a_{2})}.$$
 (15)

Интегрирование в (14) выполняется по соответствующим поверхностям. Поскольку потенциалы внутри и снаружи сфер должны быть равны, можно использовать любое разложение потенциалов. В случае постоянных поверхностных зарядов интегрирование сводится к вычислению интегралов от сферических функций по поверхностям сфер. В результате будет:

$$\int_{S_j} Y_{\rm lm} dS_j = (a_j^2 \sqrt{4\pi}) \delta_{l0} \delta_{m0} , \qquad (16)$$

и, учитывая (15), получаем следующее простое выражение для свободной энергии

$$F = \sqrt{\pi} [\sigma_{i} a_{i}^{2} A_{00}^{(i)} + \sigma_{j} a_{j}^{2} A_{00}^{(j)}].$$
(17)

Как видно, для нахождения свободной энергии парного взаимодействия необходимы только первые коэффициенты разложений $A_{00}^{(k)}, B_{00}^{(k)}$. В общем случае они находятся из бесконечных систем приведенных ниже алгебраических уравнений.

В случае двух частиц задача будет осесимметричной, и система для нахождения коэффициентов разложений потенциалов принимает вид

$$\begin{aligned} A_{00}^{(i)} &= B_{00}^{(i)} k_0(\kappa a_i) + i_0(\kappa a_i) \sum_{l'} B_{l'0}^{(j)} (-1)^{l'} (2l'+1)^{1/2} k_{l'}(\kappa d) ,\\ i, j &= 1, 2; i \neq j , \end{aligned}$$
(18)

$$B_{00}^{(i)} + \alpha_0^{(i)} \sum_{l'} B_{l'0}^{(j)} (2l'+1)^{1/2} k_{l'}(\kappa d) = f_0^{(i)}, \qquad (19)$$

$$B_{l0}^{(i)} + \alpha_{l}^{(i)} (-1)^{l} (2l+1)^{1/2} \times \times \sum_{\Gamma_{i}, \Gamma''} B_{\Gamma_{0}}^{(j)} (2l'+1)^{1/2} (-1)^{\Gamma''} k_{\Gamma''} (\kappa d) (C_{\Gamma_{0} 0 0}^{\Gamma_{0} 0})^{2} = 0.$$
(20)

При этом учтено, что сферы размещены на оси и в (11), (12) функции $Y_{lm}(\theta, \phi)$ при $\theta = \pi$ принимают значения $Y_{lm}(\pi, \phi) = \delta_{m0}(-1)^l \sqrt{(2l+1)/(4\pi)}$ [13].

Полученные системы допускают дальнейшее упрощение, так как существует возможность разделить коэффициенты $B_{10}^{(k)}$, $B_{10}^{(j)}$ и получить независимые системы для каждого шара. При этом только правые части систем определяют связь между частицами.

6. Нулевое приближение для двух сфер

Простейший случай имеет место, если учитывается только один член в разложениях потенциалов, т. е. если l'=m'=0 (нулевое приближение). Если членами высшего порядка малости по сравнению с величиной $k_0^2(\kappa d)$ пренебречь, то для потенциальной энергии взаимодействия V(d) можно получить формулу

$$V(H) = F - F_{0} = \frac{8\pi^{2}a_{1}^{3}}{1 + \kappa a_{1}} \frac{\sigma_{1}\sigma_{2}}{\varepsilon_{m}} \frac{k_{0}(\kappa d)}{z_{1}^{2}k_{0}(\kappa a_{1})k_{1}(\kappa a_{2})} \times \\ \times \Big[(\kappa a_{2})^{2}i_{0}(\kappa a_{2})k_{1}(\kappa a_{2}) + (\kappa a_{1})^{2}i_{1}(\kappa a_{1})k_{0}(\kappa a_{1}) \Big] + \\ + \frac{8\pi^{2}a_{2}^{3}}{1 + \kappa a_{2}} \frac{\sigma_{1}\sigma_{2}}{\varepsilon_{m}} \frac{k_{0}(\kappa d)}{(\kappa a_{2})^{2}k_{0}(\kappa a_{2})k_{1}(\kappa a_{1})} \times \\ \times \Big[(\kappa a_{1})^{2}i_{0}(\kappa a_{1})k_{1}(\kappa a_{1}) + (\kappa a_{2})^{2}i_{1}(\kappa a_{2})k_{0}(\kappa a_{2}) \Big].$$
(21)

В формуле (21) использованы модифицированные функции Бесселя первого рода $k_1(z) = -k_0'(z)$, $i_1(z) = i_0'(z)$ ($k_0(z) = (\pi/2)\exp(-z)/z$, $i_0(z) = shz/z$) [17].

В случае большого расстояния между частицами, т. е. когда $d \rightarrow \infty$ и $k_0(\kappa d) \rightarrow 0$, общие соотношения упрощаются, и мы получаем формулу (15).

Рассмотрим случай шаров с одинаковыми радиусами $a_1 = a_2 = a$, но разными зарядами $\sigma_1 \neq \sigma_2$. В этом случае из (21) имеем

$$V(H) = \frac{16\pi^2 a^3 \sigma_1 \sigma_2}{\epsilon_m (1 + \kappa a)^2} \frac{a}{H + 2a} e^{-\kappa H} + \frac{4\pi^2 a^3 (\sigma_1^2 + \sigma_2^2)}{\epsilon_m (1 + \kappa a)^3} \Big[(\kappa a - 1) + (\kappa a + 1) e^{-2\kappa a} \Big] \Big(\frac{a}{H + 2a} \Big)^2 e^{-2\kappa H} . (22)$$

Для сравнения приведем формулу, приведенную H. Oshima в [5], которая была получена в приближении больших радиусов по сравнению с расстоянием между частицами. В случае $a_1 = a_2 = a$ соответствующая формула может быть записана в виде:

$$V_{\rm HO}(\rm H) = \frac{4\pi^2 a}{\epsilon_{\rm m} \kappa^2} \frac{\rm H + a}{\rm H + 2a} \times \\ \times \left[-(\sigma_1^2 + \sigma_2^2) \ln(1 - \rm A^2) + 2\sigma_1 \sigma_2 \ln \frac{1 + \rm A}{1 - \rm A} \right], \qquad (23)$$

где $A = (a/(a+H))exp(-\kappa H)$. При $\sigma_1 = \sigma_2 = \sigma$, из (23) следует

$$V_{HO}(H) = -F_0 \frac{(1+\kappa a)}{(\kappa a)^2} \cdot \frac{H+a}{H+2a} \ln\left(1 - \frac{a}{H+a}e^{-\kappa H}\right), \quad (24)$$

и в данном случае $F_0 = 16\pi^2 a^3 \sigma^2 / [\epsilon_m (1 + \kappa a)]$.

Метод Дерягина [1] в этом приближении дает еще более простое выражение

$$V_{\rm D} = -F_0 \frac{(1+\kappa a)}{(\kappa a)^2} \ln(1-e^{-\kappa H}).$$
⁽²⁵⁾

Если пренебречь вторым членом в (22), то будем иметь

$$V(H) = F_0 \frac{1}{1 + \kappa a} \frac{a}{H + 2a} e^{-\kappa H}.$$
 (26)

Нетрудно заметить, что если $\kappa H \rightarrow 0$, энергия $V_D \rightarrow \infty$. Это означает, что формула (25) может давать неверные значения энергии при малых значениях κH . Аналогичная ситуация имеет место и для формулы (24). Если $\kappa H >> 1$ и $\kappa a >> 1$, после разложения логарифма в ряд при удержании первых членов в разложениях из формул (24), (26) получаются одинаковые выражения.

7. Численные результаты для двух одинаковых шаров с постоянными зарядами

Выше получены замкнутые формулы, которые в предельных случаях совпадают с формулами других авторов, обобщают их, и могут быть уточнены при использовании высших приближений. Некоторые результаты выполненных расчетов представлены на рис. 2, 3. Мы рассмотрим случай заданных поверхностных зарядов. Мы определим зависимость безразмерной энергии взаимодействия $V^* = V/V_0$, где $V_0 = 16\pi^2 a^3 \sigma^2 / (\varepsilon_m (1+\kappa a))$, для двух одинаковых шаров с постоянными и равными зарядами от параметра кН при $\kappa a = 1$ (рис. 2) и при $\kappa a = 4$ (рис. 3).

Рис. 2. Энергия взаимодействия $V^* = V / V_0$ двух одинаковых шаров с постоянными зарядами от κH при $\kappa a = 1$; 1 — приближение Дерягина; 2 — приближение H. Oshima; 3 — наше нулевое приближение;

Рис. 3. Энергия взаимодействия $V^* = V / V_0$ двух одинаковых шаров с постоянными зарядами от кН при ка = 4; 1 — приближение Дерягина; 2 — приближение H. Oshima; 3 — наше нулевое приближение; 4 — наше улучшенное приближение

Из приведенных результатов следует, что при кH>3 формула H. Oshima (24) и наши формулы для нулевого приближения (простейшая (26) и уточненная (23)) дают близкие значения, однако формула Дерягина дает сильно завышенные значения для энергии. Вместе с тем все формулы дают практически совпадающие результаты при больших значениях параметра кH, когда кH>5. Если значения кH<1, наши результаты сильно отличаются от результатов H. Oshima и Дерягина, особенно при малых значениях кH, так как и $V_D \rightarrow \infty$ и $V_{HO} \rightarrow \infty$, когда кH \rightarrow 0.

8. Выводы

В работе построено точное решение задачи взаимодействия системы малых сферических частиц в электролите при заданных на поверхности частиц зарядах. На основе решения уравнений Дебая-Хьюккеля получены замкнутые выражения для нахождения ион-электростатической составляющей энергии взаимодействия двух шаров. Полученные результаты согласуются с результатами других авторов в простейших случаях и уточняют их в области малых значений параметра ка.

Отметим, что формулы для вычисления энергии взаимодействия между частицами работают для случаев, как с разными постоянными поверхностными зарядами, так и с постоянными поверхностными потенциалами.

Литература

- Дерягин, Б. В. Поверхностные силы [Текст] / Б. В. Дерягин, Н. В. Чураев, В. М. Муллер. М.: Наука, 1985. – 400 с.
- Bell, G. M. Approximate method of determining the Double-layer F.ree Energy of Interaction between Two Charged Colloidal Spheres [Text] / G.M. Bell, S. Levine, J. McCartney // Of Colloid and Interface Science. 1970. Vol. 33, Issue 3. P. 335–359. doi: 10.1016/0021-9797(70)90228-6
- Verner, E. J. W. Theory of the Stability of Lyophobic Cjlloids [Text] / E. J. W. Verner, J. Th. G. Overbeek. – Elsevier: Amsterdam. – 1948.
- Ohshima, H. Diffuse double layer interaction between two spherical particles with constant surface charge density in an electrolyte solution [Text] / H. Ohshima // Colloid & Polymer Sci. – 1975. – Vol. 253, Issue 2. – P. 158–163. doi: 10.1007/bf01775682
- McCartney, L. N. An improvement on Derjaguin's Expression at Small potentials for the Double Layer Interactions Energy of Two Spherical Colloidal Particles [Text] / L. N. McCartney, S. Levine // J. of Colloid an Interface Sci. 1969. Vol. 30, Issue 3. P. 345–354. doi: 10.1016/0021-9797(69)90401-9
- Дудник, В. В. Неоднородность распределения заряда вдоль клеточной мембраны как возможная причина избирательной агрегации минеральных частиц микроорганизмами [Текст] / В. В. Дудник // Коллоидный журнал. – 1992. – Т. 46, № 3. – С. 38–43.
- Hsu, J.-P. Electrical Interaction between Two planar, Parallel Dissimilar Surfaces in a General Electrolytic Solution [Text] / J.-P. Hsu, S.-H. Lin // Langmuir. – 2003. – Vol. 19, Issue 25. – P. 10610–10616. doi: 10.1021/la0349572
- Lerman, L. B. Interaction of Nanoparticles with Surface of Biomembranes [Text] / L. B. Lerman, L. G. Grechko, N. G. Shkoda, O. Ya. Pokotylo, A. A. Chuiko, K. W. Wites// Nato advanced research worksop. – Pure and Applied Surface Chemistry and Nanomaterials for Human Life and Environmental Protection. – Book of abstracts. – Kyiv, Ukraine, 2005. – 37 p.
- Гречко, Л. Г. Взаємодія малих кульових частинок в електроліті [Текст] / Гречко Л. Г., Лерман Л. Б., Покотило О. Я, Шкода Н. Г. // Вісник Київського ун-ту. Сер. Фіз.-мат. науки. – 2005. – Вип. 3. – С. 483–490.
- Chew, W. C. Waves and Fields in Inhomogeneous Media [Text] / W. C. Chew. – App. D. – New York: IEEE Press, 1995. – P. 591-596.