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The statistical control chart is considered one of the super-
lative tools in quality control. Currently, control charts are 
being widely used in various areas, one of them being manu-
facturing processes. They are essential instruments that can 
impart crucial insights to quality controllers for maintaining 
productivity. The quality of a product or process can be cha-
racterized by a relationship between two or more variables, 
which is typically referred to as a profile. Also, public health 
surveillance is considered another important area that wide-
ly used control charts. In this regard, they are very useful and 
reliable tools for detecting outbreaks of infectious diseases. On 
the other hand, the gamma regression model (GRM) is a po pu-
lar model considered in medical and other fields. It is applied 
when the response variable is continuous and positively skewed 
and well fitted to the gamma distribution. This paper presents  
a scheme for monitoring the profile. Based upon the generalized 
linear model (GLM) in the case of two link functions: identity 
and log link function. Exponentially weighted moving average 
control charts (EWMA) are proposed using deviance residuals 
and Pearson residuals for detecting any disturbance in the con-
trol variable of the gamma regression model. A detailed simu-
lation study is designed to scrutinize and evaluate the perfor-
mance of the control charts in phase I analysis and in phase II 
under parametric maximum likelihood estimation (MLE) using 
the average run length (ARL) measure. It turns out that using 
deviance residuals under the identity link function seems more 
suitable than Pearson residuals. Also, with increasing the 
sample size, the percentages of out-of-control (OC) samples 
increased which is theoretically acceptable
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1. Introduction

One of the most powerful tools in statistical process con-
trol (SPC) is the statistical control charts, the idea of graphi-
cal summary of information for monitoring and controlling 
of the production process [1] presented the term of «profile» 
as refer to the relationship between the response and one or 
more explanatory variable(s). [2] proposed the fundamental 
objective of profile monitoring is to check the stability of 
the functional relationship between the response and the 
explanatory variable(s) over time. Many studies have been 
done by researchers for monitoring different types of profiles 
such as: gamma profiles, Poisson profile and so on. In prac-
tice, control chart analyses are carried out either in phase I 
or phase II. In phase I, it is often interested in checking the 
stability of a process and identifying possible out-of-control 
samples. But, in phase II it is often interested in detecting an 
out-of-control condition fast. Average run length and prob-
ability of signal are the common criteria to evaluate perfor-
mance of the control schemes in phases I and II, respectively. 
[3] provided a unified framework for phase I analysis control 
of generalized linear profiles. Besides the generalized linear 
models (GLMs), other types of models have also been used 
to represent profiles, such as simple linear regression, [4] and 
multiple regression, [5].

For detecting any disturbance in the control variable of 
the gamma regression model exponentially weighted moving 
average control charts (EWMA) are proposed. This metho-
dology, EWMA, was first introduced by [6] who evaluated 
its properties and showed that the EWMA is an effective 
alternative to the traditional Shewhart control chart when 
small shifts in the process parameters are monitored. [7] also 
reached the same results. Various modification and supple-
mental criteria have also suggested that control charts based 
on moving average is also an effective chart in detecting 
small process change [8]. [9] stated that the Shewhart charts 
are slow in detecting small shifts as they use only the infor-
mation contained in the last sampling point. The EWMA 
and cumulative sum (CUSUM) charts are time weighted 
control charts that were suggested as superior alternatives 
to the Shewhart chart when the detection of small shifts 
was desired. [10] studied the monitoring of EWMA control 
charts to obtain accurate average run length (ARL) values of 
( x , s2) and EWMA control charts. [11] stated that Shewhart 
control charts are used to detect large shifts in a process, 
whereas the CUSUM chart and the EWMA chart are more 
efficient to detect shifts from small to moderate in a process. 
[12] defined EWMA chart as a time weighted and a power-
ful tool for detecting small shifts in a parameter of a process 
more rapidly than Shewhart chart with an equal sample size. 
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Therefore, in practice, gamma distribution can be used with 
great flexibility in the analysis of positive random variables. 
Thus, gamma regression models (GRM) are applied in a wide 
range of empirical applications, such as in the process of rate 
setting in the framework of heterogeneous insurance portfo-
lios, which is the most important function of insurers, and in 
hospital admissions for rare diseases, [13, 14]. [15] proposed 
the use of GLMs – based control charts for monitoring gam-
ma distributed response variables. The procedure was only 
based on the deviance residual, which is a likelihood ratio 
statistic for detecting a mean shift when the shape parameter 
is assumed to be unchanged, and the input and output vari-
ables were related in a certain manner.

The statistical control chart is considered as they are es-
sential instruments that can impart crucial insights to quality 
controllers for maintaining productivity. Also, public health 
surveillance is considered another important area that widely 
used control charts. In this regard, they are very useful and 
reliable tools for detecting outbreaks of infectious diseases. 
Therefore, research on monitoring the profile of different 
types of residuals in phase I and phase II analysis for very im-
portant regression model such as GRM which is considered 
one of GLM is relevant.

2. Literary analysis and statement of the problem

The importance of the study comes in relation to the sub-
ject of SPC research, charts are essential tools that are used 
to monitor process quality. Based on these charts, operators 
may immediately spot changes in quality characteristics 
and pursue high-quality production or service. Traditional 
control chart research typically assumes that quality char-
acteristics follow a normal distribution, but, non-normal 
response outcomes can occasionally occur in processes, such 
as discrete count data. Traditional control charts cannot pro-
cess non-normal data due to the distributional assumption 
constraint; thus statistical profile monitoring of non-normal 
response outcomes is desirable.

For this purpose, it is aimed to analyse the usage of resid-
ual control charts in conjunction with forecasting models to 
evaluate the features of production processes. The primary 
goal is to assess the effectiveness of exponentially weighted 
moving average (EWMA) and control charts for individual 
observations (CCIO) charts when applied to residuals of 
models to identify outliers in auto correlated processes.

[16] designed and studied the performance of the EWMA 
control charts that monitor the rate of road crashes. They 
observed that EWMA control chart scheme is sensitive in 
detecting small shift in the process and it detects shift quick-
ly for this type of dataset. And [17] proposed two types of 
residuals for gamma regression model; for which many link 
functions can be used, so they chose the identity and log link 
for their evaluation. As it is known, the residual analysis pur-
sues to specify outliers and/or model misspecification. And 
it can be based on ordinary residuals, standardized variants, 
or deviance residuals. i.e., most residuals are based on the 
differences between the observed responses and the fitted 
conditional mean. In this regard the authors constructed 
more reliable goodness of fit measures and measures of ex-
plained variation for gamma regression models. [18] and [19] 
evaluated EWMA control chart based on the residuals for 
autocorrelated observations. Because they can have a signifi-
cant effect on the control chart performance.

[20] focused on monitoring a process that is measured by 
a linear function and proposed to monitor the average of the 
residuals for the samples with EWMA and R-chart. [21] used 
EWMA control charts to monitor a drilling process to detect 
chatter vibration and to secure production with high quality. 
These control charts used the residuals obtained from an 
approximated autoregressive model [22] compared the effec-
tiveness of the Shewhart x , EWMA, and geometric moving 
average (GMA) residual control charts for auto-correlation 
observations. They showed that the performance of EWMA 
charts was superior to the Shewhart x , and GMA residual 
charts for small shifts, however the performance of Shewhart 
x  residual chart was superior to EWMA and GMA residual 
charts for large shifts.

[23] designed EWMA chart of Pearson residuals of a nega-
tive binomial regression. They founded that their proposed 
charts present better performances over EWMA charts for 
deviance residuals, with a remarkable advantage of the Pearson 
residuals, which are much easier to interpret and calculate. 
[24] applied three well-known count data models; Poisson, 
negative binomial, and Conway-Maxwell-Poisson to identify 
the best fit model for the number of crashes. Conway-Max-
well-Poisson was identified as the best fit model, GLM-based 
EWMA and CUSUM control charts were proposed using the 
randomized quantile residuals and deviance residuals. Their 
simulation study was designed for predictive performance 
evaluation of the proposed control charts with Shewhart 
charts. Their study results showed that the EWMA type 
control charts have better detection ability compared with the  
CUSUM type and Shewhart control charts under small and/or 
moderate shift sizes. [25] proposed GLM – based control charts 
for inverse Gaussian response variable. Deviance and Pearson 
residuals of the IG regression were considered as plotting sta-
tistics. An example related to the yarn manufacturing industry 
and a simulation study was designed and the performance of 
the proposed methods was compared with existing counter-
parts in terms of the run length properties. Moreover, run-rules 
were implemented to gain the efficiency of the Shewhart type 
GLM-based control charts under small-to-moderate shifts.

Most of the reviewed studies assessed EWMA perfor-
mance of residuals for types of variables/models that differ 
from the gamma variable/model such as count variable or time 
series model [16, 18–25].

So, it is proposed to supplement the work of [17] via 
designing EWMA charts of residuals of a gamma regression 
model. Also, it is proposed to design EWMA chart of Pear-
son residuals such as [23] and [25] because of the aforemen-
tioned advantages, to evaluate its performance in relation to 
EWMA charts for deviance residuals.

All this suggests that it is advisable when conducting  
a study on the control variable of two different gamma re-
gression models to depend on exponentially weighted mov-
ing average control charts (EWMA) for some different kinds 
of residuals such as deviance and Pearson residuals to detect 
any disturbance in that variable since EWMA is superior 
to any existing counterparts, especially when it is desired 
to detect small and moderate shifts using the average run 
length (ARL) or RARL measures.

3. The aim and objectives of the study

The aim of this study is to determine which of the pro-
posed charts is an efficient chart than its existing competitive 
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control charts for detecting out-of-control process quickly. 
The gamma distribution has been used to model, for example, 
the time between events, the size of insurance claims and 
rainfalls, and failure times of machine parts.

To achieve this aim, the following objectives are accom-
plished:

– to investigate the performance of the two different 
types of residuals via EWMA charts by using RARL measure 
for first gamma model with the identity link function;

– to investigate the performance of the two different 
types of residuals via EWMA charts by using RARL measure 
for second gamma model with the log link function;

– to compare the performance of the two different gamma 
models with three different sample sizes: four, five, and ten 
via EWMA charts by using RARL measure;

– to compare the performance of the two different gamma 
models with three different numbers of samples: twenty-five, 
thirty, and thirty-five via EWMA charts by using RARL 
measure.

4. Materials and methods of the study

4. 1. Object and hypothesis of the study
Simulation modeling was carried out to compare between 

performances of two residuals control charts: deviance resi-
duals control charts and Pearson residuals control charts for 
two gamma regression models. To evaluate their performance 
under parametric estimation method maximum likelihood 
estimation (MLE) by using two types of control charts 
designs: x-bar/s charts in phase I analysis and the EWMA 
control charts in phase II analysis using the average run 
length (ARL) measure. According to the simulation study 
data, it is generated by fitting two different gamma regres-
sion model using the maximum likelihood estimation (MLE) 
as a parametric regression estimation method in case of two 
different link functions; identity and log link functions. 
Then, extract two types of residuals: Pearson residuals and 
deviance residuals. After that, the exponentially weighted 
moving average control chart is design to monitor residual 
types by using x-bar/s chart in phase I analysis and using 
EWMA chart in phase II analysis. Then the ARL and RARL 
are computed for EWMA control charts.

4. 2. Generalized linear models
Generalized linear model term was introduced by [26] 

who extend the scoring method to maximum likelihood es-
timation in exponential families. [27] proposed GLMs model 
as a class of regression models appropriate for application 
in the case of non-normally distributed response variables. 
These models based on probability distributions with an un-
known location parameter j, if it belongs to the exponential 
family. The probability density function of the exponential 
family is most seen, as in (1):

f y y b a c y; , exp[( ( ) ( )) / ( ) ( , )].∅( ) = ∅ − ∅ +j j j  (1)

For some specific functions a(.), b(.), and c(.). If j is known, 
then the family is termed the linear exponential family and 
j is the natural or canonical parameter. From (1) there are 
E(y) = b′(j) where b′(j) = db(j)/dj, and var(y) = a(j)b′′(j).

GLMs models are structured around three components.
a) the systematic component: this specifies the expla-

natory variables as a set of linear predictors. The linear pre-

dictor, denoted by η is the non-random component which 
given by:

η = β0+β1Xi1+β2Xi2+…+βkXik,

or can be written in matrix notation η = Xβ.
b) the random component: this identifies the probability 

distribution of the response variable in which y  belongs 
to the exponential family as independent random variables 
having the same form of distribution. Apart from the normal, 
other distributions such as binomial, Poisson, and Gamma 
can be handled;

c) the link function: this specifies the relationship bet-
ween the systematic component and value expected of 
random component. It says how the expected value of the re-
sponse relates to the linear predictor of explanatory variables. 
The link function can be expressed as:

µ η β β β β= = + + + +0 1 1 2 2X X Xi i k ik ,  (2)

where β′s are unknown coefficients and k′s are control vari-
ables, the application of the GLMs for modelling data process 
allows for better precision of estimates, nonlinear relation-
ship between the variables and predicting their behaviour.  
The systematic component that makes up the regression 
model is the structure of control variables as a linear sum 
η and the relationship between variables in a GLMs can be 
expressed by a known function g(.), called the link function, 
which g(.) denotes a fixed link function between the mean 
of the response variable and the linear combination of the 
explanatory variables (the linear predictor η).

4. 3. Gamma regression models
[28] studied the gamma distribution that can be used for 

regression models with more flexibility than other models, 
such as the exponential and Poisson, and proposed GRM 
assumed that the pendent variable is gamma distributed 
and that it’s mean is related to a set of regressors can be 
identity, the inverse, or the logarithm function. The model 
also includes a shape parameter, which may be constant or 
dependent on a set of regressors through a link function, and 
they considered GRM in with both mean and shape parame-
ters are allowed to depend on covariates, in which these two 
parameters follow regression structures, are proposed in [29] 
under both classic and Bayesian approaches. 

The Gamma distribution can be viewed as a generaliza-
tion of the exponential distribution with mean 1/ψ, ψ>0. 
An exponential random variable with mean 1/ψ represents 
the waiting time until the first event to occur, where events 
are generated by Poisson process with mean ψ, while the 
gamma random variable y represents the waiting time until 
the ith event to occur. The probability density function of y 
is given by: 

f y y e I yyθ ψ ψ θθ θ ψ, , ,( ) = ( )( ) ∞( )( )( )− −1 0Γ  (3)

where θ, ψ>0, Γ(·) denotes the gamma function, and I(·) is the  
indicator function.

4. 4. Gamma Regression Residuals
Most residuals are based on the differences between the 

observed responses and fitted conditional mean. [30] men-
tioned that the analysis of residuals plays a major role in pre-
dictive model formation. When numerical-valued functions  
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are fitted to sample data, all the information about lack of fit 
is contained in the residuals which can be used to provide 
necessary feedback on the modelling process. These residuals 
from a fitted model can be plotted to help detect unequal 
variances, relationships over time. There are several referen-
ces to residual analysis can be found in [31].

Residuals may be employed as measure for model se-
lection, play a significant role in model diagnostics and 
assessment of its fitting and used for testing the validity of 
the assumptions of statistical models. For example, residu-
als are used to verify homoscedasticity, linearity of effects, 
normality, and independence of the error. In classical linear 
models, residuals are usually standardized so that they be-
come scale free and have the same precision, and this makes 
it more convenient to compare residuals at various locations 
in the region of experimentation. There are different types of 
residuals such as classical residuals, Pearson residuals, and 
deviance residuals.

4. 4. 1. Pearson Residuals
Residuals in GLMs were first discussed by [32], though 

ostensibly concerned with logistic regression models. Pear-
son residuals are the most used measures of overall fit for 
GLMs, which can be used to check the model for each obser-
vation, [33] Defined Pearson Residuals in GRM as follows:

r y

y n n i

i
p

i i i

i i i i i i

= −( ) ( )( ) =

= −( ) −( )( ) =

 

  

µ µ

µ µ µ

/ var

/ / , , ,.1 2 ..., ,n  (4)

where 
µ i  is the fitted mean value and the denominator 

follows from the fact that yi = niπi(1–πi) the fitted variance 
function of yi.

4. 4. 2. Deviance residuals
[17] defined alternative residual that was based on the 

deviance or likelihood ratio, which for GRM is given by:

r y yi
d

i ii

n

i i i= − ( ) − −( )( )=∑2
1
log / ) / ,

  µ µ µ  (5)

where 




µ βi ig x= ′( )−1 .
Two statistics used to assess the goodness of fit of the GLMs 

are the deviance and the Pearson chi squared statistic χ2.  
Linear models use raw residuals for testing and model diag-
nostic, whereas the GLMs provide several structures for 
residuals such as the Pearson, deviance, and likelihood. The 
two common types of residuals are then the components of 
these statistics. Other definitions for residuals in GLMs have 
been proposed in [34].

5. Results of the study profile monitoring of residual 
control charts under gamma regression model

5. 1. Generating the data
To conduct the simulation study, the observations Xi, 

i = 1, 2, 3 were generated such that, the values of X1, X2, 
and X3 were generated from a uniform distribution on the 
intervals (0, 30), (0, 15), and (10, 20), respectively. Gamma 
regression model was built. This model has two different link 
functions: identity link function and log link function [17]. 
Different sample sizes ranges from moderate to large were 
chosen such as 125, 150, 175, 250, 300, and 350. The follow-
ing are the steps by more details.

First Step: Mean Structure Function with Identity Link 
Function:

a) the gamma regression model with mean and shape struc-
tures given by formulas (6) and (7), respectively, is considered:

µ ϑi ix= ′ ,  (6)

log ,θi iZ y( ) = ′  (7)

where (6) describes the variable of interest Y and the regres-
sors X of the mean structure. And (7) describes the regres-
sors Z for the shape structure, with log-link function. 

b) the values Yi  were generated from a gamma distribu-
tion with mean and shape parameters given μi = 15+2x2i+3x3i, 
and θi = exp(0.2+0.1x2i+0.3x3i).

Second Step: Mean Structure Function with Log Link 
Function:

a) the gamma regression model with mean and shape 
structures given by (7), (8), respectively, is considered:

log .µ ϑi ix( ) = ′  (8)

b) the values yi were generated from a gamma distribu-
tion with mean and shape parameters given by:

µ i i ix x= − + −( )exp . .5 0 2 0 032 3

and

θi i ix x= + +( )exp . . . ,0 2 0 1 0 32 3

where –5, 0.2, and –0.03 are the value of the θ0, θ1, and θ2 
coefficients respectively.

5. 2. Design of the exponentially weighted moving ave
rage control chart (Phase II analysis)

To construct an EWMA chart, the design parameters of 
it are l and λ, the multiple of σzi used in the control limits  
and the weighting or smoothing constant, respectively.

The following are steps to conduct the EWMA chart:
a) compute the values of parameters form historical 

data through X-bar/S-chart such as the target mean, or 
process mean (μ0) and the estimated sigma 

σ( ) by using the  
S-bar method;

b) calculate the EWMA statistic (Zi) and calculate the 
control limits (UCL, LCL) with the combination of (l = 2.962, 
λ = 0.2) for each sample(i) [8];

c) plot the statistic (Zi) for each sample, with the control 
limits in place;

d) declare the process to be in-control if LCL(i) ≤ Zi ≤ UCL(i); 
otherwise, declare the process to be OC.

If the process is declared OC, count the number of 
subgroups as the run length, i.e., the process remains in-con-
trol (IC) before it is declared to be OC. Then the ARL for 
EWMA control charts is computed.

5. 3. Exponentially weighted moving average control 
charts results

5. 3. 1. Number of samples equals twentyfive
The following Figures from Fig. 1–4 showed the EWMA 

values for the 25 samples for identity link function under 
deviance residuals (ID) and under Pearson residuals (IP), 
and for log link function under deviance residuals (LD) and 
under Pearson residuals (LP) respectively.
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pEWMA X-bar: -0.00181 (-0.0009); Sigma: 0.07419 (0.0221); n: 5;
 Lambda: 0.2

5 10 15 20 25

-0.0106581608307407

-0.0009

0.00885816083074071

 
Fig.	1.	Exponentially	weighted	moving	average values	for	

25	samples	for	identity	link	function	under	deviance	residualspEWMA X-bar: -0.16E-7 (0); Sigma: 0.07372 (0.0221); n: 5;
 Lambda: 0.2

5 10 15 20 25

-0.00975816083074071

0

0.00975816083074071

 
Fig.	2.	Exponentially	weighted	moving	average	values	for	

25	samples	for	identity	link	function	under	Pearson	residuals
pEWMA X-bar: -0.00165 (-0.0044); Sigma: 0.0703 (0.0251); n: 5;

 Lambda: 0.2

5 10 15 20 25

-0.0154827980475833

-0.0044

0.00668279804758334

 
Fig.	3.	Exponentially	weighted	moving	average	values		

for	25	samples	for	log	link	function	under	deviance	residuals
pEWMA X-bar: -0.56E-7 (-0.0033); Sigma: 0.07028 (0.025); n: 5;

 Lambda: 0.2

5 10 15 20 25

-0.0143386434736886

-0.0033

0.00773864347368858

 
Fig.	4.	Exponentially	weighted	moving	average	values		

for	25	samples	for	log	link	function	under	Pearson	residuals

Under identity link function, Fig. 1 showed that (16 %) 
OC lower and (4 %) OC upper and Fig. 2 gave the same re-
sult as Fig. 1. But under log link function, Fig. 3 showed that 
for deviance 4 % of samples became OC (upper) and Fig. 4 
showed that for Pearson 8 % of samples became OC (upper).

5. 3. 2. Number of Samples Equals Thirty
The following charts from Fig. 5–8 showed the EWMA 

values for the 30 samples under ID, IP, LD, and LP res pectively.
Under identity link function, Fig. 5 showed that (7 %) 

OC lower and (3 %) OC upper for all samples and Fig. 6 gave 
the same result as Fig. 5. But under log link function, Fig. 7 
showed that for deviance (7 %) of samples became OC lower 
and (10 %) of samples became OC upper. And Fig. 8 gave the 
same result as Fig. 7.pEWMA X-bar: -0.00102 (-0.00132); Sigma: 0.05364 (0.02735); n: 5;

 Lambda: 0.2

5 10 15 20 25 30

-0.0133963528868337

-0.00132

0.0107563528868337

 
Fig.	5.	Exponentially	weighted	moving	average	values	for	

30	samples	for	identity	link	function	under	deviance	residuals
pEWMA X-bar: -0.13E-7 (0); Sigma: 0.05372 (0.02747); n: 5;

 Lambda: 0.2

5 10 15 20 25 30

-0.0121293387130282

0

0.0121293387130282

 
Fig.	6.	Exponentially	weighted	moving	average	values	for	

30	samples	for	identity	link	function	under	Pearson	residuals
pEWMA X-bar: -0.00169 (-0.00109); Sigma: 0.06479 (0.02496); n: 5;

 Lambda: 0.2

5 10 15 20 25 30

-0.0121110518484596

-0.00109

0.00993105184845957

 
Fig.	7.	Exponentially	weighted	moving	average	values	for	
30	samples	for	log	link	function	under	deviance	residuals
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pEWMA X-bar: -0.1E-17 (0); Sigma: 0.0655 (0.025); n: 5;
 Lambda: 0.2

5 10 15 20 25 30

-0.0110387137905244

0

0.0110387137905244

 
Fig.	8.	Exponentially	weighted	moving	average	values	for	
30	samples	for	log	link	function	under	Pearson	residuals

5. 3. 3. Number of samples equals thirtyfive
The following charts from Fig. 9–12 showed the EWMA 

values for the 35 samples under ID, IP, LD, and LP respectively.pEWMA X-bar: -0.00116 (-0.0045); Sigma: 0.05633 (0.0279); n: 5;
 Lambda: 0.2

5 10 15 20 25 30 35

-0.016819213016233

-0.0045

0.00781921301623296

 
Fig.	9.	Exponentially	weighted	moving	average	values	for	

35	samples	for	identity	link	function	under	deviance	residualspEWMA X-bar: 0.23E-7 (-0.0031); Sigma: 0.05633 (0.0274); n: 5;
 Lambda: 0.2

5 10 15 20 25 30 35

-0.0151984385894188

-0.0031

0.00899843858941875

 
Fig.	10.	Exponentially	weighted	moving	average	values	for	

35	samples	for	identity	link	function	under	Pearson	residualspEWMA X-bar: -0.10E-2 (-0.0039); Sigma: 0.05407 (0.0272); n: 5;
 Lambda: 0.2

5 10 15 20 25 30 35

-0.0159101288186931

-0.0039

0.00811012881869307

 
Fig.	11.	Exponentially	weighted	moving	average	values	for	
35	samples	for	log	link	function	under	deviance	residuals

pEWMA X-bar: -0.17E-7 (-0.0025); Sigma: 0.05395 (0.0272); n: 5;
 Lambda: 0.2

5 10 15 20 25 30 35

-0.0145101288186931

-0.0025

0.00951012881869307

 
Fig.	12.	Exponentially	weighted	moving	average	values	for	

35	samples	for	log	link	function	under	Pearson	residuals

Under identity link function, Fig. 9 showed that (31 %) 
OC (upper) of all samples and Fig. 10 gave the same result  
as Fig. 9. But under log link function, Fig. 11 showed that 
6 % of samples became OC (upper) and Fig. 12 gave the same 
result as Fig. 11.

5. 4. Performance of exponentially weighted moving 
average charts

The following tables, Tables 1, 2, contain the results of 
two measures of performance for the charts: ARL and the 
relative ARL (RARL) for gamma regression models. Three 
different sample sizes were selected, four, five, and ten.

Table	1
Average	run	length	results

Sample 
size (n)

Number 
of sample 

(m)

Identity Link Func-
tion

Log Link Function

Deviance 
Residuals

Pearson 
Residuals

Deviance 
Residuals

Pearson 
Residuals

n = 4

25 488.9827 488.967 495.7826 495.7935

30 495.7225 495.7935 495.7232 495.792

35 495.7127 495.7929 495.7502 495.7935

n = 5

25 495.7381 495.7935 495.7469 495.793

30 495.7756 495.7935 495.7451 495.7935

35 495.7695 495.7931 495.7757 495.7932

n = 10

25 495.7789 495.7935 495.7465 493.7935

30 495.7526 495.7935 495.7934 494.7935

35 495.7545 495.7935 495.7654 495.7935

To facilitate the comparison between different methods of 
estimating the ARL, let’s use the following formula for RARL.

RARL = Proposed estimate value/Deviance residuals un-
der identity link function.

The following Table 2 showed the relative performance of 
ARL for all ID, IP, LD, and LP values relative to ID value.

As depicted by Table 2, and by comparing the RARL 
va lues for deviance and Pearson residuals under the two 
kinds of the link functions. It can be observed that, when 
using identity link function, the ARL of deviance residual is 
slightly less than the Pearson residual with various choices 
of sample sizes; 4 or 5 or 10. Also, it is observed that the 
lar gest (worst) value of ARL was for Pearson residuals, spe-
cifically with n = 4 or 5 and for both kinds of link function.  
And the smallest (best) values of ARL was for Pearson resi-
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duals (6 %) from all ARL values under identity link function 
and approximately (11 %) from all ARL values under log 
link function. But most of the smallest ARL values have 
been executed under deviance residual (94 %) of ARL values 
under identity function and (89 %) of ARL values under log 
link function.

Table	2
Relative	average	run	length	results

Sample 
size (n)

Number 
of sample 

(m)

Identity link function Log link function

Deviance 
residuals

Pearson 
residuals

Deviance 
residuals

Pearson 
residuals

n = 4

25 1 0.999968 1.013906 1.013929

30 1 1.000143 1.000001 1.00014

35 1 1.000162 1.000076 1.000163

n = 5

25 1 1.000112 1.000018 1.000111

30 1 1.000036 0.999938 1.000036

35 1 1.000048 1.000013 1.000048

n = 10

25 1 1.000029 0.999935 0.995995

30 1 1.000083 1.000082 0.998065

35 1 1.000079 1.000022 1.000079

For more clarification, the relative average run length 
values have been shown graphically by Fig. 13–16.

From Fig. 13, it can be concluded that, at m = 25 there 
were the worst values for EWMA of log link function for 
both deviance and Pearson residuals. And from Fig. 14, it 
can be concluded that, at m = 30 there were the best values 
of EWMA for log link functions and for deviance residuals.
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Fig.	13.	Relative	average	run	length	of	exponentially	
weighted	moving	average	values	at	n = 4	of	identity	and	log	

link	functions	for	both	deviance	and	Pearson	residuals
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Fig.	14.	Relative	average	run	length	of	exponentially	
weighted	moving	average	values	at	n = 5	of	identity	and	log	

link	functions	for	both	deviance	and	Pearson	residuals
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Fig.	15.	Relative	average	run	length	of	exponentially	
weighted	moving	average	values	at	n = 10	of	identity	and	log	

link	functions	for	both	deviance	and	Pearson	residuals
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Fig.	16.	Overall	relative	average	run	length	values	for	all	link	
functions	under	different	types	of	residuals

From Fig. 15 it can be concluded that, at m = 25 there 
were the best values of EWMA for Pearson residuals under 
log link functions, then at m = 30 became the second-best va-
lues of EWMA for Pearson residuals under log link function.

From Fig. 16 it can be concluded that, at m = 25 there 
were the best values of EWMA for Pearson residuals under 
log link functions, then at m = 30 became the worst values of 
EWMA for Pearson residuals under log link function.

6. Discussion of the results of profile monitoring of 
residuals control charts under gamma regression models

The control chart monitors the average, or the cantering 
of the distribution of data from the process. The bottom chart 
mo nitors the range, or the width of the distribution. Control 
charts for attribute data are used singly. To facilitate the 
comparison between different methods of estimating, let’s 
use RARL, Table 2 showed the relative performance of ARL 
for all ID, IP, LD, and LP values relative to ID value. It’s 
also the performance of the residual control charts was also 
monitored by figures.

From Fig. 14, it can be concluded that, at m = 30 there 
were the best values of EWMA for log link functions and for 
deviance residuals.

From Fig. 15 it can be concluded that, at m = 25 there 
were the best values of EWMA for Pearson residuals under 
log link functions, then at m = 30 became the second-best va-
lues of EWMA for Pearson residuals under log link function.

From Fig. 16 it can be concluded that, at m = 25 there 
were the best values of EWMA for Pearson residuals under 
log link functions, then at m = 30 became the worst values of 
EWMA for Pearson residuals under log link function.
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The EWMA chart is a suitable alternative to other charts 
for detecting inaccuracy, especially where minor shifts are of 
concern. It gives a flexible tool for depicting imprecision and 
inaccuracy. However, detecting imprecision using EWMA 
charts need for specialized adjustment. [22] compared the 
effectiveness of the Shewhart x  EWMA, residual control 
charts for auto-correlation observations, and the comparison 
of the control charts was based on the ARL also.

One of the limitations inherent in the specific research is 
its application to large sample sizes. Most previous research 
confirmed that profile monitoring control charts give the best 
results for a sample of size four or five. An intense comparison 
could have been carried out by examining the performance 
of other types of residuals such as standardized residuals and 
working residuals and by using various measures of performance 
for evaluation as average time to signal and average number of 
units sampled until signal under other fitting methods such as 
Bayesian approach and weighted least square method. 

Some results were unsatisfactory with identity and log 
link functions used in the case of a large sample size, so it can 
be suggested to find a new link function, but it may be diffi-
cult mathematically. Also, the bootstrap method that is sci-
entifically proven to improve the results of the performance 
estimators may be proposed to use.

Generally, and from Table 2 it can be concluded that the 
deviance residuals results are more accurate than the Pearson 
residuals results. Also, the different between the two gamma 
regression models emphasize that EWMA is an effective 
alternative to the traditional Shewhart control chart when 
small shifts in the process parameters are monitored which is 
compatible with [6] and [7] results. 

It is worth mentioning regarding the use of GLMs – 
based control charts for monitoring gamma distributed re-
sponse variables and considered as one of the advantages of 
this study is the use of two types of residuals unlike [15] that 
proposed to monitor only the deviance residuals comparing 
with the original observations using the classical Shewhart 
chart. Another advantage of this study is the residuals mo-
nitoring using EWMA chart which is more efficient (more 
rapidly) to detect small and moderate shifts in a process with 
an equal sample size than Shewhart chart [11, 12, 18, 19].

In our view, the main drawback to this study as previ-
ously mentioned is some unsatisfactory results when using  
a sample size greater than 5. So, it is maybe suitable to recom-
mend proposing a new joint EWMA chart or monitoring 
other types of residuals to try to overcome this disadvantage.

7. Conclusions

1. For the first gamma model, from the simulation result 
with the identity function, it can be generally concluded 

that the EWMA results for deviance residuals gave same 
percentages for OC (lower or upper) samples such as EWMA 
results for Pearson in most of cases. But at the other cases, 
specifically, at (n = 10 & m = 30) OC samples increased by one 
sample (lower) for deviance residuals. This is probably due 
to the greater efficiency of the deviance residuals over the 
Pearson residuals with the identity link function.

2. For the second gamma model, from this study results, 
with the log function, EWMA results for deviance residuals 
were identical with EWMA results for Pearson in approxi-
mately 50 % of cases. At the other 50 % of cases number of 
OC samples increases sometimes with deviance residuals and 
sometimes with Pearson residuals.

3. At sample size five, the identity link function gave OC 
samples more than the log link function. And at sample size 
ten, the identity link function gave OC samples more than 
the log link function. This may give an indication that using 
log link function instead of identity link function gives more 
accurate results with small and large sample sizes.

4. At any number of samples and by increasing the sample 
size, the percentages of OC samples increased with identity 
link function. This didn’t satisfy with log link function. This 
also may give an indication that using log link function in-
stead of identity link function gives more accurate results 
with any number of samples. Accordingly, it can be said that 
both flexibility and usefulness are achieved with using the log 
link function. Usually, the choice of link function is depend-
ing on the problem and the data at hand.
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