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1. Introduction 

When solving many tasks related to mine workings, rock 
pressure management, development systems, support struc-
tures, the issues of strength and stability of rocks become 
relevant.

The volume of geomechanics literature on these topics 
has increased rapidly over the past five years. This indicates 
a sharp increase in this field of research: determining the 
stressed-strained state of rocks based on research methods 
of the theory of elasticity, plasticity, destruction, dynamic 
theory of elasticity.

In the process of solving applied problems, difficulties often 
arise related to meeting boundary conditions. To obtain the 
desired result, the problem is simplified. Thus, in the problem 
of loading the wedge with a concentrated force solved by the 
method of stress functions, the boundary condition that there 

are no tangential stresses on the side surfaces of the wedge 
is met by disregarding it at all. At the same time, tangential 
stresses play a significant role in the mechanics of soils, espe-
cially in matters of stability and strength of arrays. In addition, 
the presence of tangential stresses in the solution is a determin-
ing element in assessing the adequacy of the result for normal 
stresses. There is a need for a theoretical and technical justifica-
tion for the use of this factor to solve the problem of the theory 
of elasticity when loading a half-space of different geometries.

Research into development of new methods for solving 
applied problems of geomechanics is relevant.

2. Literature review and problem statement

Paper [1] reports the results of studies into the stressed 
state of the soils. The stability of outcrops of side rocks, the 
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When solving many tasks related to mine 
workings, rock pressure management, develop-
ment systems, support structures, the issues of 
strength and stability of rocks become relevant. 
Limitations and gaps are identified, emphasizing 
the need for further research and development of 
new methods for solving applied problems of elas-
ticity theory.

It is of theoretical and practical interest to 
determine the influence of half-space geometry 
on the stressed state of the medium and to assess 
whether it would suffice, in this case, to confine 
oneself to radial stress when characterizing the 
stressed state. To build a mathematical model of 
the stressed state of the array, a complex vari-
able function argument method was used. Based 
on the developed complex variable function argu-
ment method, the applied problem of mechanics 
on loading the wedge with a concentrated force in 
polar coordinates was solved.

A feature of the proposed approach is the 
introduction of tangential stresses with the need 
to meet boundary conditions along inclined faces. 
The introduction to the consideration of tangential 
stress shows that it cannot be neglected at a cer-
tain stage of the search for a solution. First of all, 
this is due to the half-space geometry, the angle at 
the apex, and the depth of the array. When chang-
ing the angle of the wedge, the interface surface 
changes fundamentally and can pass from a con-
vex shape to a concave one. Simplification of the 
proposed expressions leads to a complete coinci-
dence with the solutions by other authors obtained 
by the stress method, which indicates the reliabili-
ty of the result reported here. This method may be 
advanced by complicating the half-space geome-
try, as well as loading, and by building a math-
ematical model for assessing the effect of tangent 
stresses on the strength and stability of soils
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strength of the roof and soil are among the most important 
factors taken into account when choosing a development 
system, a technique for controlling mountain pressure, and 
support structures [2, 3]. It is noted that insufficient atten-
tion is paid to theoretical and practical developments that 
take into account the influence of half-space geometry on the 
distribution of internal loads, the effect of loads that cause 
the emergence of tangential stresses inside arrays.

Classical solutions to the elastic problem of loading a 
wedge with a concentrated force using the method of stress 
functions in Cartesian coordinates are known [4]. Paper [5] 
reports a solution to the problem of elasticity theory in 
Cartesian coordinates using a complex variable function 
argument method. The problem of elasticity theory using 
the complex variable function argument method in polar 
coordinates has been solved in [6].

In applied problems of soil mechanics, tangential stresses 
are given a leading place in determining the critical load on 
the soil, the exhaustive bearing capacity associated with the 
limit equilibrium [7].

The stressed state of the arrays can be estimated by lines 
of identical vertical stresses, horizontal and tangent, called 
isobars, spacers, and shifts, from which stresses can be deter-
mined depending on the width of the load [8].

The issues of anisotropy and heterogeneity of loading are 
considered in [9]. The stressed state in the soils is closely 
related to deformations in the soils [10]. In work [11], numer-
ical modeling is performed using the method of two-dimen-
sional discrete elements. The numerical model is calibrated 
to correspond to the results of the experiment on the de-
pendence of stress-strain and permeability-deformation. The 
results of the simulation show that clusters of contact force 
chains occur near the shear band of the sample, and in the 
surrounding regions zones of sparse force circuits are found.

In work [12], in the study of the distribution of stresses 
and the concentration of deformation energy during the 
development of long faces near the dam, three-dimensional 
numerical modeling was carried out.

Although the researchers have proposed several hypoth-
eses based, for example, on the stiffness of the system or the 
strength of the rock, the actual mechanisms are still debated. 
Until now, there is no universal acceptable method or cri-
terion for predicting the stressed state, the concentration of 
deformation energy near the main geostructures; only mixed 
results have been achieved.

Work [13] considers the development of a closed solution 
to the stressed state around the wellbore drilled in aniso-
tropic permeable rocks, taking into account the non-station-
ary action of the fluid flow. However, a simplified method of 
solving the equation of anisotropic hydraulic diffusion was 
adopted to this end.

In mechanics, problem statement equations in partial 
derivatives are often used, acceptable information about 
which is given in works [14, 15]. Their classification is 
presented, generalizing solutions to different types of 
equations are given, including one of the most common 
methods, the method of separating variables. It is a prod-
uct of functions, each of which is a variable from one of the 
coordinates. It is often necessary to represent a solution 
by the product or sum of functions from several variables 
(as presented in D’Alembert’s solutions). However, such 
solutions are of a particular simple nature, without a 
theoretical justification for their development and gener-
alization.

In the mechanics of the continuous medium, num-
erical methods for solving problems have become wide-
spread [16, 17]. One of them is the method of finite differ-
ences and the method based on the variational principles of 
mechanics, a finite-element method [18–20]. This is a mod-
ern trend in science that makes it possible to solve applied 
and fundamental problems of engineering and theoretical 
physics. However, there are difficulties with the possibility 
of using it, associated with the speed of the mathematical 
model to derive a result, the limited visibility of the method, 
and the development of great skills in organizing cycles and 
working out programs. In addition, each applied problem re-
quires a lot of time to bring it to the capabilities of software.

New approaches to solving problems of continuum mech-
anics are proposed. The very fact of using differential rela-
tions in the theory of elasticity, but not applicable to these 
approaches, is shown in [21].

Paper [22] discusses an R-function that can be inter-
preted as an additional function that makes it possible to 
close a problem. It is a good example of how the introduction 
of additional functions, in the form of a function argument, 
can close the problem.

Study [23] proposes a method of the complex variable 
function but it is not applicable in this approach due to dif-
ferent boundary conditions. An example of solving a contact 
problem for an orthotropic half-space under given boundary 
conditions, but without the use of additional functions that 
can close the problem, is reported in [24]. The level of the 
problems under consideration is both fundamental and ap-
plied in nature [25, 26].

An option for overcoming the relevant difficulties at 
this stage, a more effective approach, may be to find not the 
solution itself but the conditions of its existence through the 
determining differential, integral relations. This approach is 
used in [27] when solving the dynamic problem of elasticity 
theory. The same approach is used in solving the problems 
of elasticity theory in Cartesian [28] and polar coordin-
ates [29]. With the help of this approach, the closed problem 
of the theory of plasticity [30] was solved, which enhances 
the reliability of the method and its use in the problems of 
continuum mechanics.

Our literature review shows the approaches that can be 
used in solving the applied problem of the theory of elas-
ticity; in this case, in geomechanics in relation to the angular 
half-space of different geometry. There is a contradiction: on 
the one hand, it is necessary to meet the boundary conditions 
on the side surface of the wedge (in the form of the absence of 
loading), and, on the other hand, to introduce into consider-
ation the tangential stresses that determine the stability of 
the soil and its strength characteristics. In this regard, the 
complex variable function argument method is well suited. 
There are possibilities here in the form of Cauchy-Riemann 
relations, which correspond in the simplest version of the 
D’Alembert solution. There is a set of functions that can 
close the solution to the problem. It only remains, given this 
set, if there is a solution with tangential stresses, to deter-
mine the argument functions corresponding to the boundary 
conditions. With this approach, there is a real opportunity 
to diversify the influence of the geometry of the half-space 
on the stressed state of the soils, in which tangential stresses 
play a significant role. As a result of research and analysis, 
it becomes possible to evaluate, to show this influence not 
only from the point of view of the effect of normal but also 
tangential stresses in relation to polar coordinates.
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3. The aim and objectives of the study

The purpose of this study is to determine the stressed 
state of ground massifs by the method of argument func-
tion of a complex variable, taking into account the influ-
ence of the geometry of the half-space in polar coordinates 
and the acting tangent stresses. This will make it possible 
to predict the result of the solution in relation to polar 
coordinates.

To accomplish the aim, the following tasks have been set:
– based on the method of argument functions, to devise 

and develop new approaches to solving the problems of elas-
tic half-space for determining the stressed state of ground 
massifs;

– to demonstrate the reliability of the proposed approach 
in comparison with the solutions of the classical theory of 
elasticity and geomechanics;

– to construct mathematical models for calculating 
the stressed state of soil arrays of different shapes in polar 
coordinates, taking into account the action of tangent 
stresses;

– to determine the stressed state of arrays of different 
geometry of the surface half-space;

– to determine the influence of the geometry of the half-
space on the force parameters of the ground massifs.

4. The study materials and methods

The object of this study is the stressed state of the angu-
lar semi-infinite space of the soils under the influence of 
concentrated force.

The hypothesis of the study assumes that the intro-
duction of the tangential stress when meeting boundary 
conditions on the side faces will improve the accuracy of pre-
dicting the stressed state of the angular semi-infinite space 
of the soils described in polar coordinates.

Assumptions are made that the problem has been com-
plicated by the introduction of tangential stresses in the 
absence of tangential stresses on the side faces.

For theoretical analysis, the approaches of the theory 
of elasticity are used, in which the methods of stress func-
tions and methods of variational principles (a finite-element 
method) are most widely applied [2, 4−6]. The priority of the 
solution belongs to Mitchell:

cos
,k

rr
θ

σ = − ⋅  0.rθ θσ = τ = 			   (1)

The equality of zero of the last two stresses is dictated by 
the boundary conditions on the lateral surface of the wedge, 
although this is not always justified within space. Similar ap-
proaches are used in soil mechanics [7]. Separately, the flat 
problem of stress distribution under embankments, retaining 
walls is considered:

( )sin sin 2 ,z

P
σ = α + α ⋅ β

π
 

( )sin sin 2 ,z

P
σ = α − α ⋅ β

π
 

( )sin sin 2 .
P

τ = α ⋅ β
π

Of interest is the distribution of stresses depending on 
natural weight, the magnitude of which increases according 
to a linear law and, at depth z from the surface, will be:

( )d ,
z

z
o

z zσ = γ∫  .x y o zσ = σ = ξ ⋅σ

There are three phases of soil deformations: soil com-
paction; occurrence of shifts; bulging of the soil associated 
with the immersion of the loading surface. Noteworthy is 
the assessment of deformations - deformations of shifts and, 
consequently, tangential stresses. However, according to 
solution (1), there are no tangential stresses in the array.

The beginning of the occurrence of shifts at this point 
corresponds to the state of limiting equilibrium. From the 
resistance of soils to shear, it is known that the tangential 
stresses for loose soils are:

tg ,shτ = σ⋅ φ

for cohesive soils:

tg ,sh Cτ = σ⋅ φ +

where σ, φ is the normal stress and the angle of maximum 
friction.

Thus, in the applied problems of soil mechanics, when 
determining the critical load on the soil, tangential stresses 
are given a leading place.

With regard to the mechanics of soils, it is necessary 
to consider the problem of loading the angular elastic half-
space with a concentrated force, Fig. 1.

By adjusting the value of the angle α at the top, it is pos-
sible to achieve a change in the surface of the half-space from 
a wedge-like shape to a concave one, at the bottom of which 
a load P is applied. In this case, it becomes possible to accept 
the problem of loading the soil inside the array.

5. Results of investigating the use of the complex variable 
function argument method for solving problems of the 

theory of elasticity

5. 1. Solving the problems of elastic half-space for 
determining the stressed state of soil arrays

There is a known solution to the flat problem of continu-
um mechanics using the complex variable function argument 
method [27, 28]:

Fig. 1. Loading the elastic half-space with concentrated force
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( ) ( ) ( )1 2 0exp exp cos ,C C fr σ σ σ = θ − −θ ΑΦ + σ + φ 

( ) ( ) ( )1 2 0exp exp cos ,C C fφ σ σ σ = − θ − −θ ΑΦ + σ + r  	 (2)

( ) ( )1 2exp exp sin ,C Crφ σ σ τ = θ + −θ ΑΦ 

( ) ( )0 1 2exp exp cos ,C Cσ σ σ = ± θ − −θ ΑΦ 

at 

,r φrθ = ΑΦ
 

,φ rθ = ±rΑΦ

2 0,rr r φφr θ + rθ + θ =
 

2 0,rr r φφr ΑΦ + rΑΦ + ΑΦ =

where АФ, θ is the argument of the coordinate function; 
σ0 is the average normal stress; f(φ), f(ρ), Cσ1, Cσ2 are the 
functions and integration constants that determine the 
stresses of different boundary conditions.

Works [4−6] consider solutions for loading the angu-
lar half-space (applying to the soils) with concentrated 
force (1), Fig. 1. The acceptance of the tangential stress 
as zero in solution (1) is caused by the need to meet the 
boundary conditions on the lateral surface of the wedge. 
At the same time, tangential stresses in soils affect their 
ultimate equilibrium, significantly changing the stressed 
state.

Solution (1) greatly simplifies the problem. The value of 
k is determined by the equilibrium condition between the 
external and internal forces of the wedge:

d cos .P
α

r
−α

σ r θ θ =∫

After substituting the appropriate expression:

,
1

sin 2
2

P
k =

α + α

in (1), and integration,  one can obtain:

cos
.

1
sin 2

2

P
r

θ
σ = − ⋅

rα + α
			   (3)

The simplified version in solution (3) makes it pos-
sible to use the result in applied problems. Basically, it 
correctly characterizes the distribution of stresses in the 
rock massif [7].

5. 2. Comparing the results of solution with the clas-
sical theory of elasticity

It is of interest to compare the results of solving prob-
lems by different methods, i.e., the method of stress func-
tions (1) and the method of argument functions (2). Then 
it is possible to prove the legitimacy and reliability of the 
devised approach for solving applied, more complex prob-
lems. Let’s show it.

Using the conditions for the existence of a solution to 
the problem, in the form of Cauchy-Riemann relations and 
Laplace equations, the argument functions АФ and θ are 
determined. These are harmonic functions, of which there 
can be many. Consider some of them. As a result of solving 
the Laplace equations and meeting the Cauchy-Riemann 

relations, we have a number of dependences, including the 
coordinate functions below:

1.  1 ,ΑΦ = φ  1 ln .θ = − r

2.  2 6 ln ,ΑΦ = ΑΑ φ r  
2 2

2 6

ln
.

2 2

 r φ
θ = −ΑΑ −  

,	 (4)

where ΑΑ6 are integration constants.
Consider the first option (4). Using expressions (1) and 

boundary conditions of the following form:

,φ = α  1,r = r  1,ΑΦ = ΑΦ  1,θ = θ  0,φσ =

12 ,kr φσ − σ = −  ( ) ( ) 0,f fφ = r =  2 0,Cσ = 		  (5)

we obtain expressions for stresses:

1 1 1 12 2
exp ln cos cos ,

cos cos
k k

r

 r r
σ = − φ = − ⋅ ⋅ φ α r α r 

0,φσ = 					     (6)

1 1 1 1exp ln sin sin ,
cos cos

k k
rφ

 r r
τ = − φ = − φ α r α r 

where АФ1, θ1 are the values of argument functions on the 
side surface of the wedge at ρ=ρ1, ρ1 is the fixed value of the 
current coordinate ρ relative to which the initial reference is 
made; k1 is a fixed value of the difference of normal stresses 
on the lateral surface of the wedge at the minimum value of 
the radial coordinate.

One can see from (6) that at ρ→∞, σρ and τρφ→0.
The value of the constant value k1 is obtained from the 

equilibrium condition of the wedge, at ρ=ρ1. Let’s build an 
equilibrium equation for the upper cut off part of the wedge, 
as is done in [4−6]. After integration into parts, we can write:

1

1

cos
,

1
2 sin 2

2

P
k

α
=

 r α + α  

				    (7)

Substituting the value k1 (7) in (6), we have:

1
cos ,

1
sin 2

2

P
rσ = − φ

r α + α  

1
sin .

1
2 sin 2

2

P
rφτ = − φ

r α + α  

			   (8)

Comparing the normal stresses in formulas (3) and (8) 
we are convinced of their identity. However, the problem, 
due to tangential stresses, does not meet the boundary 
conditions (1). Let’s continue the discussion and apply a 
more general approach that echoes work [28]. To achieve the 
result, we shall apply formulas (2), at f(φ)=f(ρ)=0. Next, we 
shall use boundary conditions (5), then:

( ){ }
( ) ( ){ }

1

2 1 1

1 2

2

1 exp 2 cos

exp 1 exp 2 cos ,

k
rσ = − ×

 + θ − θ ΑΦ 

 × θ − θ + θ − θ ΑΦ 
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0,φσ = 					     (9)

( ){ }
( ) ( ){ }

1

2 1 1

1 2

1 exp 2 cos

exp 1 exp 2 sin .

k
rφτ = − ×

 + θ − θ ΑΦ 

 × θ − θ − θ − θ ΑΦ 

If θ=θ2=θ1, АФ=АФ1 we obtain:

12 ,krσ = −
 

0,φσ =
 

0.rφτ =

Substituting the first option (4) of the argument function 
for the exponent, we obtain:

2

1 1
2

2
1

1
2

2
1 cos ,

1 cos

k
r

   r r σ = − + ΑΦ   r r       r   + ΑΦ r   

0,φσ = 					     (10)

2

1 1
2

2
1

1
2

1 sin .

1 cos

k
rφ

   r r τ = − − ΑΦ   r r       r   + ΑΦ r   

If a given surface within a half-space is considered, then 
there is an equality ρ=ρ2, therefore, (10) is transformed to 
the following form:

1 1
2

2
1

1
2

4 cos ,

1 cos

k
r

 r
σ = − ΑΦ r    r + ΑΦ r   

 

0,φσ =  0.rφτ = 	 (11)

When considering the surface ρ2=ρ1, we obtain an ex-
pression that can be used in the equilibrium condition and 
determine the value of k1 that coincides with the value (7). 
Then (11) takes the form:

1
cos ,

1
sin 2

2

P
r

 
σ = − φ r   α + α  

 0,φσ =  0.rφτ = 	 (12)

This completely corresponds to boundary conditions. 
The fundamental difference between the solution on argu-
ment functions is that the tangential stresses are not 
initially taken to be zero. In the proposed solution, expres-
sions for determining the tangent stress (10) are obtained 
but the conditions for these functions under which the 
tangents meet the boundary conditions of the problem are 
shown.

5. 3. Constructing a mathematical model of the 
stressed state of an array with a different geometry of the 
angular surface

The absence of tangential stresses in the solution narrows 
the possibilities of the resulting solution in polar coordinates. 
To build a mathematical model of the stressed state of the 
array, we use the method of argument functions, and a more 
complex version (10), (option 2). This enhances the solution 

to the problem for a half-space in the presence of tangent 
stresses.

Consider the second variant of solution (10). The initial 
expressions in the solution to the problem are the depend-
ences for the components of stress tensor (9), taking into 
account the argument functions shown.

In this case, the problem becomes more complicated 
because argument functions are no longer linear coordin-
ate functions of one variable. This makes it possible to get 
additional argument changes to the argument functions on 
the side of the array and inside it. Let’s use the same scheme 
for determining the operating parameters of formula (9) as 
in the previous case for expressions (10).

It is necessary to determine the constant values θ1, θ2 at 
the given values of the argument functions and boundary 
conditions. Boundary conditions are defined on the axis of 
symmetry of the wedge and on its lateral surface, i.e.:

0,φ =
 1,r = r

 1 0,ΑΦ = ΑΦ =
 1,θ = θ

,φ = ±α  2,r = r
 2,ΑΦ = ΑΦ  2.θ = θ 		  (13)

Using boundary conditions of the following form

,φ = ±α  2,r = r  1 2 ,ΑΦ = ΑΦ = α 			   (14)

we define the constant AA6. Using boundary condi-
tions (13), (14) and substituting the obtained values 
into (9), we write:

( )

( )

( ) ( )

1

2 2 2
2 1

2

2 2 2
1

2

2 2 2 2
2

2

2

2

1
1 exp ln ln

ln

1
exp ln ln

2ln

1
1 exp ln ln

ln

1
cos ln ,

ln

k
rσ = − ×

  + − r − r − α  r 
  × − r − r − φ ×  r 

  × + − r − r − α − φ ×  r 
 

× φ r r 

0,φσ = 	 (15)

( )

( )

( ) ( )

1

2 2 2
2 1

2

2 2 2
1

2

2 2 2 2
2

2

2

1
1 exp ln ln

ln

1
exp ln ln

2ln

1
1 exp ln ln

ln

1
sin ln .

ln

k
rφτ = − ×

  + − r − r − α  r 
  × − r − r − φ ×  r 

  × − − − r − r − α − φ ×  r 
 

× φ r r 
	 (16)

Let’s analyze to what extent the boundary conditions are 
met, i.e., provided that

0,φ =  1 2,r = r = r  12 ,krσ = −  0,rφτ =

on the lateral surface of the wedge, at φ=±α, ρ=ρ2:
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( )

( ) ( )

1

2 2 2
2 1

2

2 2 2
2 1

2

4
1

1 exp ln ln
ln

1
exp ln ln cos ,

2ln

k
rσ = − ×
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  × − r − r − α ⋅ α  r 

0,φσ =
 

0.rφτ =

With the new argument functions, the boundary condi-
tions are met in the same way as (11), (12).

Let’s define the parameter k1 for the new values of the 
argument function. To do this, we take a fixed value of the 
radial coordinate, ρ=ρ2=ρ1, then, from the equilibrium con-
dition, we have:

1
1

2 .
P

k
I

=
r ⋅

					     (19)

Substituting (19) into (15) and (16), we obtain expressions 
that correspond to a certain extent to (12). In expressions (15), 
(16), we can proceed to relative stress values, for example:
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= − ×
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  × − r − r − φ ×  r 
  × + − r − r − α − φ ×  r 

 
× φ r r 
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rφτ

= − ×
  + − r − r − α  r 

  × − r − r − φ ×  r 
  × − − r − r − α − φ ×  r 

 
× φ r r 

	 (21)

In calculations, it is more convenient to use relative val-
ues (20), (21), which simplifies the analysis. In the final formu-
las for determining the stressed state, we have the expression of 
tangential stresses. Comparing (2) and (3), we are convinced 
that a more complex dependence for tangential stresses in the 
second variant of the argument functions (10) has greater possi-
bilities for taking into account boundary conditions.

5. 4. Determining the stressed state of soils, a differ-
ent geometry of the surface half-space

To assess the stressed state of the array, expressions (20), 
(21) were used. The plots also indicate in relative quantities, 

where σρ/2k1 is the relative normal stress; τρφ/k1 is the rela-
tive tangential stress; φ/α – relative current angle; α/π is the 
relative angle at the apex of the wedge; ρ/R=−0.1...0.5; 0.8 
are the relative values of the depression in the half-space. 
The following angle values are selected: α, (α/π); (π/6), (1/6); 
(π/4), (1/4); (π/3), (1/3); (π/2), (1/2); (2π/3), (2/3); (3π/4), 
(3/4); (5π/6), (5/6); π.Results of calculations according to 
formulas (20), (21), for angles α=π/3; π/2; 2π/3; π are shown 
in Fig. 2–5. For small angles, α=π/6, at the top of the wedge, 
there is a heterogeneity of the stressed state - minimal 
with the parameter (σmax−σmin)/2k1=0.082, which indicates, 
when reformatting, a slight increase in normal stresses to 
the middle of the wedge (−1.082). A tangent stress diagram 
is shown, which demonstrates the equality to zero of the tan-
gential stresses on the side faces of the wedge. Their values at 
a given angle at the apex are insignificant and are within the 
relative values of 0.0002...0.012. Stresses in the half-space 
environment decrease when deepening into the array. With 
an increase in the angle of α to π/4, π/3, the unevenness 
of the stressed state of the medium increases, respectively, 
to 0.199 and 0.383, which leads to an increase in normal 
and tangential stresses. After reformatting, the maximum 
normal stresses take values of 1.199...–1.383. Tangential 
stresses are in the ranges, respectively, of 0.0007...0.035 and 
0.003...0.095 (Fig. 2).

Noteworthy is the case illustrated in Fig. 3 (α=π/2). The 
geometry of the half-space division has changed fundamen-
tally. At the same time, the normal stresses on the faces have 
zero values, the unevenness of the stressed state is maximum 
and reaches 

max min

1

1.
2k

σ − σ
=

Fig. 2. Stress distribution depending on the angular 
coordinate and depth of development (α=π/3): 	

a – distribution of normal stresses; 	
b – tangent stress distribution
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In this case, after reformatting, the stress on the axis 
takes a value equal to −2. Tangential stresses have increased 
and are within 0.0064...0,299.

In Fig. 4, 5, with the transition to the concave interface 
of the half-space, the stressed state of the elastic medium 
changes qualitatively and quantitatively.

The emergence of tensile stresses in layers of space ex-
ceeding the height of the position of the external force is 
observed. The change in the stressed state in the soils of the 
array led to an increase in tangential stresses in magnitude, 
within 0.033...0.583 and 0.051...0,713.

Fig. 5 shows the actually complete opening of the angles 
at the top of the wedge: we have a trench with a loaded bot-
tom. There is an increase in the value, the zone of action of 
tensile stresses and the unevenness of the stressed state.

The maximum relative values of normal tensile stresses 
at α=5π/6 and α=π are 1.648 and 1.973.

Tangential stresses in both cases are maximum and are, 
respectively, within 0.044...0.756 and 0.067...0.913.

5. 5. Influence of half-space geometry on the force 
parameters of soil massifs

In all cases, there are general patterns of attenuation of 
the internal load with an increase in the depth of the array, 
which largely confirms the Saint-Venant principle. With 
a decrease in the magnitude of stresses, their unevenness 
decreases sharply, both in tensile zones and in compression 
zones. At the same time, the very nature of the force attenua-
tion is different. Fig. 6 shows the change in the stressed state 
of the array from the angle at the apex and the depth of its 
occurrence.

The change in radial stress in the central zone at differ-
ent values of the wedge angle is shown. Fig. 6 illustrates the 
influence on the stressed state of the half-space of the angle 
of the vertex of the wedge, that is, its geometry. Moreover, 
the effect is significant for normal and, most importantly, 
for tangential stresses. This is also evident from Fig. 2−5. 
Tangential stresses at small wedge angles are minimal, they 
can be neglected. This can explain the absence of tangential 
stresses in classical solutions to the problem for angular 

Fig. 3. Stress distribution depending on the angular coordinate 
and depth of development (α=π/2): a – distribution of normal 

stresses; b – tangent stress distribution
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Fig. 4. Stress distribution depending on the angular coordinate 
and depth of development (α=2π/3): a – distribution of 

normal stresses; b – tangent stress distribution
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Fig. 5. Stress distribution depending on the angular 
coordinate and depth of development (α=π): a – distribution 

of normal stresses; b – tangent stress distribution
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half-space by the method of stress functions [5]. However, a 
further increase in the angle leads to a significant increase in 
tangential stresses, especially for the internal location in the 
array of concentrated force. The change in relative tangential 
stress for a given range of angles is within 0.. (0.207...0.878). 
The change in relative normal stress for this range of angles 
is within (0.098...0.465)...(0.237...0.921). In the region of 
surface tensile stresses, normal and tangential stresses reach 
their maximum value. An increase in tangential stresses 
in the hanging layers of the half-space can adversely affect 
the exhaustive bearing capacity of the soils [7], which con-
tributes to the emergence of lines of their maximum values, 
hence landslides.

6. Discussion of using the complex variable function 
argument method for solving problems of elasticity theory

Based on the developed complex variable function 
argument method, the applied problem of mechanics on 
loading the wedge with a concentrated force has been 
solved. New approaches have made it possible to use the 
result in the study of the stressed state of the half-space of 
different geometries. Such objects are formulas (15), (16), 
(20), (21), Fig. 2−6.

A feature of the proposed approach is the introduction of 
tangential stresses (16) to (21) into consideration with the 
need to meet boundary conditions along the inclined faces. 
Simplification of the proposed expressions leads to a com-
plete coincidence of the result with the solutions by other 
authors [4−6], obtained by the stress method.

The problem of loading the wedge with concentrated 
force has been expanded. At the same time, the boundary 
conditions on the side surfaces are locally met. However, 
the loading of the half-space is more complex. For example, 
the action of the moment at the top of the wedge, or the 
joint action of the moment and the concentrated force. The 
proposed solution within the framework of the function 
argument method is limited to the application of the load in 
question since in other cases the stressed state of the half-
space changes significantly.

The limitations of this study include the lack of assess-
ment of the effect of tangential stresses in the angular zones 

of the half-space. In which, when loading soils along the 
trajectory of maximum tangential stresses, landslides (sta-
bility) occur.

This method may be advanced by complicating the 
geometry of half-space, loading, and the construction of 
a mathematical model for assessing the effect of tangent 
stresses on the strength and stability of soils.

7. Conclusions 

1. A method has been proposed for solving problems of 
elastic half-space, a method of argument functions of a com-
plex variable, for determining the stressed state of soil arrays 
with different geometry of half-space. The use of the inverse 
exponential function in the model has made it possible to 
abandon the simplification of the boundary conditions of the 
problem, to introduce tangential stresses into consideration 
with ensuring meeting them on the side faces.

2. The reliability of the proposed approach in compari-
son with the solutions of the classical theory of elasticity 
is shown. A particular solution to the proposed problem 
in comparison with the studies by other authors using the 
method of stress function showed their coincidence.

3. A mathematical model for calculating the stressed 
state of soil arrays of different shapes in polar coordinates, 
taking into account the current tangent stresses, has been 
built. This makes it possible to analyze and take into account 
the effect of tangent stresses on the loading parameters of 
soils, including their strength characteristics.

4. The stressed state of arrays of different geometries has 
been determined. When the angle of the wedge changes at 
the vertex relative to the point of application of the load, the 
stressed state of the half-space is characterized by a change 
in the sign (transition from compression to stress). The zone 
of stretching and action of the maximum tangential stresses 
is represented as the distance from the point of application of 
the force to the boundary of the half-space within the angle 
change at the apex from 90° to 180°.

5. It has been established that with a change in the geom-
etry of the half-space, the stressed state of the soil massifs 
changes qualitatively and quantitatively. An analytical de-
pendence makes it possible to identify the tensile stress zones 
that are most dangerous in the upper layers of the develop-
ment, as well as a significant increase in tangent stresses in 
the hanging layers of the arrays within the angle change at 
the apex from 90° to 180°.
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Fig. 6. Distribution of normal stresses depending on the 
angle at the apex and depth of development
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