
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 ( 119 ) 2022

42

1. Introduction

The state of Indonesia has 149,056 km2 of peatland 
located on three islands such as Kalimantan, Sumatra and 
Papua [1]. Peatlands in Indonesia are the second largest of 
all peatlands in the world [2]. The land provides many im-
portant services to local communities, including maintain-
ing air and water quality, and supporting fish populations. 
But apart from this, the rate of forest loss in Indonesia is 
very large [3]. This is due to agricultural expansion such as 
oil palm, pulpwood, as well as timber harvesting, mining and 
fires. Whether deliberate or not, human action is the main 
cause of fires on peatlands and caused many operations to 
be disrupted in Indonesia as well as nearby nations [4, 5]. 
Additionally, the characteristics of the current drought have 
an impact on the circumstances that allow peatland fires to 
start [6].

Drought index can be calculated using the Keetch and 
Byram Drought Index models, which are based on ground 

water level and vegetation cover [7, 8]. Numerous researchers 
have concentrated on quantifying vegetation density; their 
measurements are based on wetlands [9], peatlands [10], 
and common land regions [11]. Nearly all of this research 
uses machine learning techniques that combine statistical 
features, NDVI’s temporal features, near-infrared (B8) and 
red (B4) bands, and spatial data from the NDVI, where 
NVDI is abbreviation of Normalized Difference Vegetation 
Index, is a most well-known index to detect vegetation and 
their condition in an area by using bands of remote sensing 
data. However, it is challenging to get data from satellites.

Therefore, this research proposes a novel method that 
uses camera sensors flown by drones to cover the needed 
area to close this research gap. By using deep learning-based 
computer vision technology to segment the image. Deep 
learning uses data from automatically extracted images and 
does not require particular features; instead, the program 
learns from its errors. With the convolution neural net-
work (CNN) technique, researchers have used hyper- and 
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The dryness of peatlands is influenced by the 
density of vegetation. If peatlands are dry, they 
become vulnerable to a fire risk. To calculate the 
drought index, professionals must conduct a 
vegetation density analysis. However, field analysis 
requires vast amounts of resources. Moreover, the 
accuracy of the analysis based on satellite data is not 
adequate. Therefore, this research presents drone-
captured two-dimensional image data. The object 
of this research is The Liang Anggang Protection 
Forest Block I in Banjarbaru, South Kalimantan, 
Indonesia. It is surveyed for information on its 
vegetation cover. Afterwards, There are 300 images 
of vegetation cover collected and utilized in total. The 
method of deep learning with semantic segmentation 
will be used to compare the results of determining 
methods with expert results as ground truth. The 
contribution of this study is to determine the optimal 
performance of deep learning model used for 
classifying vegetation density into three categories: 
bare/ungrazed, lightly grazed, and heavily grazed. 
Performance is evaluated based on correctness and 
intersection over union (IoU). Obtaining the proper 
parameters for the classification model using deep 
learning techniques and comparing the results of 
the best segmentation model are the objectives of 
the following contribution. From experimental studies 
conducted, the optimal momentum parameter value 
for MobileNetV2, Xception, and Inception-ResNet-v2 
is 0.9, and the optimal accuracy performance is 82.69 
percent on average. The most appropriate momentum 
for ResNet 18 architecture is 0.1. The result of 
semantic segmentation using the DeepLabV3 model 
with Inception-ResNet-v2 architecture is the optimal 
model for estimating vegetation density compared to 
U-Net model
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to categorize changes in the time of data retrieval, this study 
uses the geographical properties of satellite images based 
on times series. Multi-resolution-based segmentation based 
on the classification decision tree is utilized to accomplish the 
same task [18]. This approach is used to get change detection 
and land cover categorization. This research tracks yearly 
variations in land cover; however, it doesn’t describe how the 
methodology performed. The same thing was investigated 
in [13] using radiometric correlation, atmospheric correlation, 
and RPC orthorectification. The pre-processing results were 
sampled, and optimization was carried out using the Z matrix 
coefficient and combining it with the LRR method to create the 
proposed feature. A spectral spatial based kernel filter was used 
to classify the collected data according to nonlinearity. Despite 
a performance improvement of 5.33 % over earlier research, it 
was concluded from this investigation that the categorization 
for highways was quite poor. The entire study discusses data 
from the wetlands area using satellite data [9, 16–19].

Paper [14] conducted a study on peatlands utilizing 
4 types derived from Landsat data and categorized using 
the Random Forest classification approach. The strategy is 
coupled to give the performance that improves accuracy by 
6 to 9 %. Paper [20] classified the data using unsupervised 
K-Means cluster analysis, a single polarization-based land 
cover model, and Sentinel-1 data. High accuracy and kappa 
value performance are shown in the results. With a non-met-
ric multidimensional scaling ordination axis and cluster 
based on k-medoid fuzzy, previous research tracking plant 
functional kinds using satellite data and the Random Forest 
Regression approach [21]. Based on all of the studies done 
in the peatland region with using satellite data [10, 20, 21].

Similar studies were conducted using satellite data, the 
convolution neural network (CNN) technique, and the re-
current neural network (RNN) technique [12, 13]. However, 
they used this technique to classify single image and time 
series data. It’s just that nearly all of this research uses ma-
chine learning techniques that combine statistical features, 
NDVI’s temporal features, near-infrared (B8) and red (B4) 
bands, and spatial data from the NDVI. However, the draw-
back of this research is getting data from satellites. This 
problem was reportedly resolved in [22], who is research-
ing the vegetation of wetlands. This work contrasts SVM, 
CMER, and SCG-MLP with other classification methods. 

However, they do not categorize pictures based on CNN-
based segmentation of the image region; rather, they do it 
based on the characteristics of the features they extract 
from the image. Therefore, let’s suggest deep learning-based 
picture segmentation to set our study proposal apart from 
previous investigations. The deep learning approach to 
semantic picture segmentation is examined in this work. 
DeepLabv3+ is one method that may be applied. A variety 
of designs are available for DeepLabv3+, which is based on 
the CNN architecture and offers competitive performance.

3. The aim and objectives of the study

The aim of the study is developing a deep learning-based 
semantic segmentation approach in order to increase the 
quality of image segmentation and calculate vegetation den-
sity levels using 2-dimensional images. 

To achieve this aim, the following objectives are accom-
plished:

multispectral images to identify satellite image data [12]. 
Also carried out in [13], which applies a deep learning meth-
od for time series classification that is based on the recurrent 
neural network (RNN) architectural model Long Short-
Term Memory (LSTM), where LSTM is a type of recurrent 
neural network capable of learning order dependence in 
sequence prediction problems. 

Due to technological advancements that enable elec-
tronic devices to monitor environmental conditions, this re-
search is primarily necessary for modern states. As a result, 
this research can be used to issue early warnings in regions 
with dry characteristics to prevent fires from occurring in 
peatlands. Therefore, developing and implementing deep 
learning-based semantic segmentation of vegetation density 
in 2-dimensional images are relevant.

2. Literature review and problem statement

Prior studies on the classification of general land areas, 
wetlands, and peatlands have been conducted. Supervised 
classification is appropriate in all circumstances, in the 
form of a study of the post-classification change detection 
approach employing the supervised maximum likelihood 
classifier (MLC) [11].

Paper [14] adopted the supervised classification strat-
egy in their research, according to [11]. They employed 
dual temporal (planting and non-growing seasons) from 
Landsat image data and an acceptable index for topography 
and geomorphology. The median color of each super pixel 
region serves as a feature for the classification method’s 
input throughout the data segmentation process utilizing a 
multi-resolution segmentation methodology. This research 
used techniques like random forest, support vector ma-
chine (SVM), decision trees, and artificial neural network 
(ANN) in the interim for training and classification. The 
results show that RF produced the overall best accurate 
maps. Similar to this, after evaluating several researches, 
Paper [15] concluded that the majority of them employ 
supervised classification techniques in this work. Previous 
researchers looked at information about common plain areas 
using satellite data from several of these studies [11, 14, 15]. 
According to [14], the proposed classification method neces-
sitates a feature extraction step. In this study, the features 
were obtained using a combination of bands 1 to band 7 
and band 9, which include the beach, blue, green, red, near 
infrared (NIR), short wave infrared 1 (SWIR 1), SWIR 2, 
and cirrus bands. Researches [11, 15] are the outcomes of a 
survey of other studies that also make use of satellite data.

Research using Landsat data was done in [9]. They 
used the clustering approach based on the incorrect colour 
composition to discriminate between binary categories of 
wetland and non-wetland. Paper [16] used Landsat data 
from numerous years combined with the MLP classification 
algorithm. The classification results were computed based 
on the segmentation approach, and the Markov chain was 
used to examine them. Paper [17] also completed the work. 
Tuning is done to get the best performance utilizing Land-
sat data that has been categorized using the random forest 
approach. The characteristics are determined by the colors 
present in the data. By employing the Matthew’s correla-
tion coefficient (MCC) evaluation and the classification 
approach in this study applies color characteristics. In order 
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− to segment the vege-
tation density level based 
on 2-dimensional images;

− to choose the ap-
propriate parameters to 
achieve the best perfor-
mance results in the clas-
sification model based on 
deep learning technique 
with inception resnetv2 
architecture;

− to compare the out-
comes of the best segmen-
tation model to determine 
vegetation density.

4. Materials and methods

4. 1. Object and hy�
pothesis of the study

The deep learning 
technique for semantic 
image segmentation is 
tested in this work. Dee-
pLabv3+ is a method that 
may be applied. Based on 
the CNN architecture, DeepLabv3+ features a variety of 
designs that enable it to perform competitively.

The object of this research is the Liang Anggang 
Protected Forest area, Banjarbaru City block 1 area with 
targeted data collection for a month. The location of the 
research object on map can is shown in Fig. 1. The selec-
tion of this research location was based on observations 
and survey of the block 1 area which in the landuse pat-
tern of the block 1 area based on the South Kalimantan 
Provincial Forestry Service in 2017, an area of 479 hect-
ares of block 1 area which is filled with land such as agri-
culture, plantations, roads and settlements and an area of 
494 hectares full of weeds. In addition, the location is also 
categorized as peat land. The research location, especially 
in block 1, fulfills the characteristics and suitability of 
the need for data collection for land cover classification in 
terms of the type of vegetation density (bare, medium and 
high) that can be seen with the human eye during obser-
vations and surveys. 

In contrast to prior research that used classifica-
tion-based approaches, this study offered a segmentation 
method for calculating land density. The study approach was 
carried out in line with Fig. 2, as the theoretical method em-
ployed according to the description produced. The suggested 
model’s experimental design is provided in the experimental 
design portion.

Fig. 2 displays the processes of data collection, image 
processing, segmentation, and assessment, with the stages 
and supporting theories provided concurrently as shown 
below. In order to ensure the success of this research, the 
following tools are used:

– hardware: Computer using Intel® Core™ i9-10980XE 
CPU @ 3.00 GHz, 31Gb, with GPU using RTX 3090;

– software: Windows 10, MATLAB R2022a Student 
Version;

– data collection using the DJI Mavic Pro Drone.

4. 2. Data collection 
The dataset utilized was created from 2-dimensional 

imagery captured by a drone in July during a clear midday 
period between 10:00 and 14:00 Eastern Indonesian Time. 
The drone hovers between 20 and 25 meters in the air. The 
drone is positioned 20 meters away from the object’s outer 
surface. The drone camera angle setting is combined with 
the height setting. Fig. 3 depicts an illustration of the drone’s 

Fig. 1. Research object location on map

Fig. 2. Proposed method
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images capturing angle. The drone’s image capture angle is 
set at 600 to 900 degrees. 

Fig. 3. An example of a drone’s shooting angle

300 images total, with three different densities-high 
density (heavily grazed), medium density (softly grazed), 
and low density (bare/un-grazed) ‒ make up the quantity of 
data used in this study. There are different qualities for each 
density. Bare/un-grazed typically consists of dry shrubs, 
soil, water, and settlements, while heavily grazed typically 
consists of vegetation that has a density between 15 and 
30 meters. Meanwhile, softly grazed typically consists of 
shrubs that are 5 to 6 meters apart and fresh shrubs up 
to a maximum of 3 meters. According to Fig. 3, an expert 
performs the initial segmentation manually and uses it as a 
guide for classifying the image per pixel.

As seen in Table 1, each image has multiple labels and cat-
egories. Unlike gently grazed, which has two groups, bushes 
and shrubs with RGB color compositions of [255 0 102] and 
[102 0 102], extensively grazed only has one, the vegetative 
category, which is identified by an RGB colon composition 
of [255 0 0].

Table 1

Preview image original and image label

Labels Image Original Image Label

 Bare/un-grazed

 Heavily grazed

 Softly grazed

At low concentrations, the “bare” category comprises 
the dry bush, soil, water, and settlement categories. This 
category includes the RGB values [255 102 0], [102 51 0], 
[1 110 192], and [255 255 0].

4. 3. Image Processing
At this point, the data is changed to the same size, 

256×256, in accordance with the layer›s thickness. Addi-
tionally, translation and rotation are widely used in image 

processing to retrieve data attributes. For shifts in different 
directions, the translation range is calculated using a value 
of 10 pixels for the x and y coordinates. When in rotation, 
multiples of 10 until 40 are used.

4. 4. DeepLabv3+ model
One of the best models for semantic segmentation is the 

DeepLabv3+ network, but it has certain drawbacks [23]. 
After removing the network with hollow convolutional fea-
tures, DeepLabv3+ connects to the Atrous Spatial Pyramid 
Pooling (ASPP) structure to improve the ability to segment 
multi-scale targets. Deeplabv3+ upgraded resNet101 to 
Xception and reconfigured the primary network on the 
original base [24]. As seen in Fig. 4, the structure comprises 
global average pooling operations and 3×3 hole convolutions 
with expansion ratios of 1, 6, 12, and 18, respectively. The 
target characteristics of the image edge cannot be accurately 
extracted at a high expansion rate. 

There is a hole phenomenon in the segmentation of the 
large-scale target because it cannot fully replicate the rela-
tionship between the local elements of the large-scale target. 
These findings decreased the large-scale targets and the Dee-
pLabv3+ network segmentation accuracy of remote sensing 
image edge targets. To overcome this problem, a model is 
proposed by utilizing the inceptionresnetv2 architecture to 
upgrade the Xception architecture so that performance can be 
more reliable and has lower computational complexity.

Atrous convolution is potent technique generalizes the 
ordinary convolution operation and enables to explicitly 
regulate the resolution of features calculated by deep con-
volutional neural networks as well as the field-of-view of the 
filter to collect multi-scale information.

Significantly reducing processing complexity is depth-
wise separable convolution, which factors a conventional 
convolution into a depthwise convolution followed by a 
pointwise convolution (i. e., 1×1 convolution). In particular, 
the pointwise convolution is used to aggregate the output 
from the depthwise convolution, which conducts a spatial 
convolution individually for each input channel.

In order to retrieve the features calculated by deep con-
volutional neural networks at any resolution, DeepLabv3 uses 
Atrous convolution as its encoder. When comparing the final 
output resolution to the spatial resolution of the input image, 
the output stride is used (before global pooling or fully-con-
nected layer). The output stride for the image classification task 
is 32 since the final feature maps’ spatial resolution is typically 
32 times lower than the resolution of the input images. By re-
moving the striding in the final one (or two) blocks and applying 
the appropriate Atrous convolution, one can use output stride 
of 16 (or 8) for denser feature extraction when performing se-
mantic segmentation (for example, let’s apply rate of 2 and rate 
of 4 to the final two blocks, respectively for output stride of 8).

The encoder features from DeepLabv3 are usually com-
puted with output stride of 16. The features are bilinearly 
upsampled by a factor of 16, which could be considered a 
naive decoder module. However, this naive decoder module 
may not successfully recover object segmentation details. 

Based on that, the encoder features are first bilinearly 
upsampled by a factor of 4 and then concatenated with the 
corresponding low-level features from the network backbone 
with the same spatial resolution, which uses the ResNet-101 
architecture. Let’s propose a model using inceptionres-
netv2 architecture to replace Xception architecture which 
is more reliable and has a lower computational complexity.
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4. 5. Inception�ResNet�v2
In order to accommodate the entire model in memory, older In-

ception models used to be trained in a partitioned manner, where 
each replica was divided into a number of sub-networks [25]. 
The number of filters in the various layers may, however, be 
changed in a variety of ways with the Inception design without 
affecting the effectiveness of the fully trained network. The 
extraneous baggage has been removed in inceptionv4, and the 
inception blocks have been uniformly chosen for each grid size.

The less expensive inception blocks than the original Incep-
tion are used for the residual versions of the Inception networks. 
A filter-expansion layer (1×1 convolution without activation) is 
used to scale up the dimensionality of the filter bank before the 
addition to match the depth of the input after each Inception 
block to match the depth of the information. This is essential 
to compensate for the dimensionality loss brought on by the 
Inception block.

Only two of the various leftover forms of inception are 
described here. The computational cost of the first one, incep-
tionresnetv1, is comparable to that of inceptionv3. Inception-
resnetv2 is comparable in terms of raw cost to the recently 
released inceptionv4 network. However, in fact, the step time 
for inceptionv4 turned out to be far slower, most likely as a re-
sult of the higher number of layers. The overall schematic of the 
inceptionresnetv2 architecture is shown in Fig. 5. 

The scheme’s specifics are depicted in Fig. 6 through 11. 
The stem scheme, which is the second stage of the Inception-
resnetv2 architecture, is shown in Fig. 6. 

The Inceptionresnetv2 front module is a stem layer 
that uses five 3×3 convolutions, one 3×3 max set, and 
one 1×1 convolution from 299×299×3 image inputs to 
produce a 35×35×256 feature map. Stem layers are includ-
ed in the inceptionresnetv2 architecture to enhance the 
performance of the original neural network. Afterwards, 
there are three inception modules used to extract the im-
age features namely, inceptionresnetA, inceptionresnetB, 
and inceptionresnetC schemas as shown in Fig. 7−9, re-
spectively. Each inception module functions as a num-
ber of convolution filters, such as the 1×1 and 3×3 filters, 
which are intended for effective extraction of visual 
features.

Fig. 4. DeepLabv3+Model

Fig. 5. Overall schema of the Inceptionresnetv2 network Fig. 6. The schema for stem



Information technology

47

Fig. 7. Inception-resnet-A block schema

Fig. 8. Inception-resnet-B block schema

Fig. 9. Inception-resnet-C block schema
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While Fig. 10, 11 depict the reduction technique. The 
35×35×256 feature map is reduced by the reduction-A 
module to a 17×17×896 feature map, and by the reduction-B 
module to an 8×8×1792 feature map. The characteristics 
from the previous layer are passed to the subsequent layer by 
these two modules, which minimize their size.

As seen in Fig. 10, the reduction technique used parallel 
convolutional model. As for the reduction module A, Relu 
activation function is used as the base start. Then, the first 
parallel model used 3×3 Max Pool (Stride 2 V), the sec-
ond parallel model used 3×3 Conv (n Stride 2 V) and the 
third parallel model used 1×1 Conv (k), 3×3 Conv (l) and 
3×3 Conv (m Stride 2 V). 

In Fig. 11, the reduction module B used Filter con-
cat as the base function. Then, the data processed into 
four parallel model. These parallel models used for both 
reduction technique so that a deep neural network can 
be trained on less powerful GPUs. Also, Parallel convo-
lutions model seem to be learning better representations 
of the data. Essentially, the correlation between kernel 
filters of different filter groups is usually quite less, which 
implies that, each filter group is learning a unique repre-
sentation of the data [26].

4. 6. Training Methodology
The deep learning network is then trained using a ma-

chine learning system on the GTX 1050TI Graphical Pro-
cessing Unit (GPU) utilizing stochastic gradient descent 
with momentum (SGDM). In our experiment, let’s use 
momentum multiples ranging from 0.1 to 0.9. Additionally, 

it employs a minibatchSize of 4, initialLearn-
ingRate of 0, and maxEpochs of 10. Addition-
ally, let’s employ adaptive moment estimation, 
and training techniques for root mean squared 
propagation (RMSProp) in line with the afore-
mentioned parameters adaptive moment esti-
mation (Adam). The SGDM training approach 
was tested using these two training techniques. 
A running average of the parameters calculated 
over time is used to evaluate the model.

4. 7. Evaluation Method
4. 7. 1. Accuracy
The percentage of correctly classified pixels 

for each class is indicated by accuracy. If you 
want to see how well each class accurately detects 
pixels, use the accuracy metric. According to the 

ground truth, Accuracy is the proportion of correctly identified 
pixels to all the pixels in a given class. The accuracy value was 
calculated by applying (1):

 

,
TP

acc
TP TN

=
+

    (1)

where TP (True Positive) and TN 
(True Negative) is the number of seg-
mented areas classified to the right 
vegetation level according to ground 
truth and TP+TN is the total number 
of data used. Mean Accuracy rep-
resents the average accuracy across 
all classes and photos in the aggregate 
data set. Mean Accuracy represents 
the average accuracy of all classes in a 
given image for each image. Although 
it is a straightforward metric similar 
to global accuracy, class accuracy can 
be deceptive.

4. 7. 2. Intersection over uni�
on (IoU)

The most used measure is intersec-
tion over union (IoU), often known as 
the Jaccard similarity coefficient. If you 
want a statistical accuracy assessment 
that penalizes false positives, use the IoU 
metric. IoU is the proportion of correctly 

identified pixels to all ground truth and forecasted pixels for a 
given class. The formula for the IoU score is shown in (2):

( ) ,
TP

IoU
TP FP FN

=
+ +

 (2)

where true positives (TP) is the number of predicted 
pixels that overlaps with ground truth box, false posi-
tives (FP) is the number of predicted pixels that outside 
of the ground truth box, and false negatives (FN) is the 

Fig. 10. Reduction module A, with the k, l, m, n number represent filter 

bank sizes

Fig. 11. Reduction module B
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number of pixels of ground truth box that failed to be 
predicted. Mean IoU represents the average IoU score 
across all classes in a given image. MeanIoU represents 
the average IoU score across all classes and photos in the 
aggregate data set.

4. 8. Experiment Design
By examining the relationship between image processing 

techniques and the case of vegetation density in 2D image 
data, this study aims to present the level of vegetation den-
sity based on segmentation semantics in 2D images. It also 
aims to select parameters in the segmentation method and 
the results of comparisons on the experiments conducted. As 
a result, studies with semantic segmentation were conducted 
using a variety of CNN architectures including resnet18, 
mobilenetv2, exception, and inceptionresnetv2 as a proposed 
method. The previous architecture is used in the DeepLab 
model [23], which also uses the exception architecture and 
compare the xception architecture with inceptionresnetv2 
architecture. Each architecture is implemented using vari-
ous training techniques, including adaptive moment estima-
tion (Adam), root mean squared propagation (RMSprop), 
and stochastic gradient descent with momentum (SGDM). 
This study also analyses semantic segmentation techniques 
based on U-Net [23]. The momentum parameter, which 
ranges from 0.1 to 0.9 for multiples of 0.1, is used to evaluate 
all models. The optimal outcomes are displayed in accor-
dance with the accuracy values from (1) and (2).

5. The research result of semantic image segmentation 
based on deep learning method

5. 1. Segmentation of the vegetation density level on 
2�dimensional image

Based on the best findings of the best accuracy compar-
ison, Table 2 shows the segmentation results. The column 
in Table 2 is in the form of Bare-density, Medium-density, 
and High-density labels in the image. Each row consists 
of original data, segmentation ground truth, segmentation 
result using inceptionresnetv2 architecture, mobilenetv2 ar-
chitecture, Xception architecture, and resnet18 architecture, 
respectively. This result is obtained by implementing the deep 
learning model for each CNN architecture being observed 
using matlab student version.

The tables of architecture results 
demonstrate that the green and ma-
genta sections emphasize places where 
segmentation results deviate from the 
fundamental reality anticipated by 
the expert. The number of green colors 
obtained by the mobilenetv2 archi-
tecture, Xception architecture, and 
resnet18 architecture are displayed 
from the prediction results. However, 
inceptionresnetv2 architecture and 
mobilenetv2 architecture both pro-
duce magenta colors. The segmen-
tation results in magenta and green 
deviate from the experts’ reported 
“ground truth.” It can be seen from 
the quantity of differences that the 
inceptionresnetv2 architecture differs 
slightly from the experts. 

Table 2

Visual comparison of several CNN architecture for 

DeepLabv3+ model

Description 
Bare/un-

grazed
Softly grazed

Heavily 
grazed

Original data

Segmentation 
ground truth

Inceptionres-
netv2 architec-

ture

Mobilenetv2 
architecture

Xception archi-
tecture 

Resnet18 archi-
tecture

5. 2. Choosing appropriate parameters to achieve the 
best performance

5. 2. 1. Intersection over union (IoU)
IoU values, or the ratio between correctly categorized 

pixels and the total number of ground truth and predict-
ed pixels in that class, are compared in Fig. 12. This IoU 
value obtained by implementing the equation (2) using 
matlab student version. then it calculates the IoU value 
for each segmented object detected in images. The IoU 
number displayed in the inceptionresnetv2 architecture is 
the second value after xception; it is 0.09 % higher than the 
inceptionresnetV2 architecture that is suggested. In term of 
IoU value, xception architecture is better than other CNN 
architecture observed in this research.

Fig. 12. Performance comparison of Intersection over Union for Convolutional Neural 

Network architecture
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Because IoU in this situation 
simply calculates the overlap be-
tween the ground truth and predic-
tion results, the prediction results 
from the semantic segmentation ap-
proach will be worse the lower the 
IoU number.

5. 2. 2. Accuracy
Accuracy value obtained after 

each deep learning model trained 
and tested. The models are imple-
mented using matlab student ver-
sion. When momentum is applied 
between 0.1 and 0.9, performance 
results in a performance that tends 
to fluctuate for the proposed in-
ceptionresnetv2 architecture (can 
been shown in Fig. 13). The value 
of 0.9 is the point where the fea-
tures created by the inceptionres-
netv2 architecture are in the closest 
position to the expert’s label and 
acquire a performance of 84.10 %, 
as seen from these statistics. Fur-
thermore, it demonstrates that the 
momentum value of 0.9 is the best 
value for achieving convergence. 
Momentum 0.5 is the second-best 
order, and as a result, it performs 
at 82.69 %.

According to findings in Fig. 14, 
there is an increase up to epoch 135, 
but a fluctuating pattern continues 
until epoch 450. This enables the 
suggested architecture to update 
the data continuously. The high-
est epoch was attained at 315 ep-
ochs with an accuracy value of 
85.46 percent out of the multiples 
of every 45 epochs. The perfor-
mance results are derived using the 
best momentum value, which is 0.9. 
This experiment has demonstrated 
that increasing the number of ep-
ochs can enhance performance.

A comparison of the CNN ar-
chitecture’s deployment depend-
ing on momentum value is shown 
in Fig. 15. For each increase in 
momentum, it is demonstrated 
that the Xception and mobile-
netv2 architectures significantly 
increase, unlike inceptionresnetV2 
and Resnet 18, which offer an up-
and-down rhythm. According to 
these tests, for each momentum 
parameter, Inceptionresnetv2 per-
forms better than mobilenetv2 and 
Xception designs. From this, it can 
be concluded that the outstanding 
momentum value for every archi-
tecture is unique. 

Fig. 13. Average performance accuracy using inceptionresnetv2

Fig. 14. Validation performance every epoch using momentum=0.9

Fig. 15. Performance comparison for Convolutional Neural Network architecture based 

on momentum value 
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InceptionresnetV2 achieves superior performance on 
average than other architectural solutions, according to a 
comparison of average accuracy in Fig. 16. This backs up 
one illustration of a result from a visual comparison. The 
provided number exceeds the resnet18 architecture by 
2.2 percent, the mobilenetv2 architecture by 1.8 percent, 
and the Xception architecture by 0.7 percent. This result 
demonstrates that the suggested approach performs more 
effectively when categorizing vegetation density levels 
based on 2D image.

A comparison of the inceptionresnetv2 architecture 
training methods is shown in Fig. 17. Stochastic gradient 
descent with momentum (SGD with momentum), adap-
tive moment estimation (Adam), and root mean square 
propagation (RMSprop) were compared (SGDM). The 
findings demonstrate that utilizing SGDM yields better 
accuracy outcomes than using Adam or RMSprop. With a 
performance of 83.23 %, SGDM outperformed RMSProp 
and Adam by 16.78 and 16.88 % points, respectively.

These training techniques can all lead to various 
optimal local minimums while incurring the same loss. 
While momentum might hasten the convergence process, 
RMSProp slows it down and Adam usually results in a 

sharper convergence of the minima. Thus, the optimal 
training techniques suggested for semantic segmentation 
of vegetation density is Stochastic gradient descent with 
momentum (SGDM).

5. 3. Comparison of the outcome of the best segmen�
tation model to determine vegetation density

This study uses the same training approach, SGDM, to 
compare the U-Net method in addition to comparisons based 
on CNN architecture. The findings demonstrate that Deep-
Labv3+ with inceptionresnetv2 architecture offers superior 
performance to U-Net (has been shown in Fig. 18). This is 
true because the U-Net has problems because it creates a 
symmetrical expansion path from the up-sampling section of 
this U-Net approach which contains a lot of feature channels 
and permits spreading context information to reports with 
better resolution.

According to the results of these repeated testing, 
the combination of DeepLabv3 with the inceptionres-
netv2 architecture delivers 84.10 % greater performance 
than U-Net. These findings suggest that it performs well 
when used to classify vegetation density using semantic 
segmentation.

Fig. 16. Performance comparison for Convolutional Neural Network architecture based on momentum value

Fig. 17. Performance comparison for inceptionresnetv2 Convolutional Neural Network architecture based on training methods
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6. Discussion result of semantic image segmentation 
based on deep learning method

Employing a deep learning-based semantic segmenta-
tion method with DeepLabV3+ on a dataset of photos of 
vegetation, this study investigates the efficacy of using deep 
learning architecture to semantically segment images. The 
correctness of the segmentation results is then confirmed by 
comparison to professional findings. In order to achieve the 
best performance in the classification model based on deep 
learning technique with inception resnetv2 architecture, it 
was determined from that result (Table 2) that there was 
a relationship between image processing techniques. The 
appropriate parameters have been shown in Fig. 13, 14 based 
on this investigation. It validates the use of the appropriate 
design-related variables.

The experiment employed private data evaluated on mul-
tiple semantic segmentation approaches and deep learning 
architectures. The results reveal that when employing the in-
ceptionresnetv2 architecture, the proposal gives higher per-
formance and approaches ground truth than other suggested 
architectures such as resnet18 and Xception (Fig. 12, 15). 
This is consistent with study in [27], which demonstrates 
that the inceptionresnetv2 design outperforms numerous 
resnet18 and Xception architectures. This is made feasible by 
inceptionresnetv2, a convolution network that is modelled 
after the Inception network but employs residual connec-
tions rather than filter circuits. Only over the conventional 
layer and not over the summation is batch normalization 
used for the initial block of residuals. It is possible to sig-
nificantly increase the total number of Inception blocks by 
dropping batch normalization on top of that layer. The layer 
size may be adjusted to balance calculations across the mod-
el’s many sub-networks, and residual scaling can be used to 
improve training speed. The residue appears to be stabilized 
by being reduced in size before being added to the prior lay-
er’s activation.

Based on the IoU value, it is shown that the better the 
higher, but in the experiment, it is shown that the Xception 
architecture gives 0.09 % higher than Inceptionresnetv2 and 
it is shown that there is a lot of overlap between ground truth 
and prediction (Fig. 12). These findings indicate that it is 
reasonable since “extreme inception,” or Xception, calls for 
the use of extreme Inception principles. ReLU non-linearity 

also follows the Inception architecture but not the Xception 
architecture. These results show that, because to the same 
conceptual underpinnings of the Xception and Inception-
resnetv2 designs, the CNN technique may yield competitive 
performance when applied to those architectures. The re-
sults of experiments employing successfully applied seman-
tic segmentation on the level of plant land density based on 
two-dimensional photos are also impacted by parameter 
selections. When compared to alternative designs, the draw-
backs of the enhanced semantic segmentation approach 
employing inceptionresnetv2 fall short in terms of required 
memory utilization. In order to enhance the performance of 
the model, more study may focus on lowering the colors used 
for class segmentation. Additionally, to increase the reliabil-
ity of the data, continuous time series of photographs of land 
covering are acquired.

According to the experiments carried out for this study 
and one of its limitations, the dataset collected using a drone 
is still a portion of the video confined by distance and height. 
According to data acquired by area in peatland, the number 
of labels still utilized is limited and does not fully account 
for situations in densely populated regions. This is possible 
since each area has different characteristics based on vegeta-
tion density. This study is useful, particularly in initiatives 
to reduce fire-prone locations in densely populated regions.

7. Conclusions

1. Segmentation of the vegetation density level based 
on 2-dimensional image is conducted. There are 3 level of 
vegetation density being segmented namely, Bare-density, 
Medium-density, and High-density. Deep learning architec-
ture used are inceptionresnetv2 architecture, mobilenetv2 
architecture, Xception architecture, and resnet18 architec-
ture, respectively. From experimental result, the quantity 
of segmented region differences that the inceptionresnetv2 
architecture produce are differs slightly from the experts.

2. Appropriate parameters value to achieve the best per-
formance is determined. There are three parameters of deep 
learning architecture used namely, momentum, epoch, and 
optimizer. In our experiment, we used momentum multiples 
ranging from 0.1 to 0.9 . The value of 0.9 is the point where 
the features created by the inceptionresnetv2 architecture 

Fig. 18. Performance comparison DeepLabv3+ and U-Net Model
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are in the closest position to the expert’s label and acquire 
a performance of 84.10 %, hence momentum value of 0.9 is 
best. Momentum 0.5 is the second-best order, and as a result, 
it performs at 82.69 %. The epoch used is ranging from 100 
to 450. The highest epoch was attained at 315 epochs with 
an accuracy value of 85.46 percent out of the multiples of 
every 45 epochs.

A comparison of the inceptionresnetv2 architecture 
with different training techniques is conducted. Adaptive 
moment estimation (Adam), and root mean square propa-
gation (RMSprop) were compared to Stochastic gradient 
descent with momentum (SGD with momentum) (SGDM). 
With a performance of 83.23 percent, SGDM outperformed 
RMSProp and Adam by 16.78 and 16.88 percentage points, 
respectively.

3. Comparison of the outcome of the best segmenta-
tion model to another known model is conducted. From 
experimental study, the best model obtained is inception-
resnetv2 with training approach using SGDM. This model 
is compared to another known good model namely, U-Net. 

The combination of DeepLabv3 with the inceptionresnetv2 
architecture delivers 20 % greater performance than U-Net 
with value 84.10 %.
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