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1. Introduction

Polymer, carbon, metal and organic composites and po-
rous aluminum are widely used in various branches of tech-
nology. The main constant load on the shell is its own weight. 
To reduce this load, the use of lightweight porous materials 
with low bulk weight and other useful properties is promising, 
but they have low strength characteristics. To compensate for 
this disadvantage, technological heterogeneity is created, and 
to create heterogeneity in load-bearing structures, another 
material with high strength characteristics is introduced. As 
a result, technological heterogeneity appears in the design. In 
addition, to give greater rigidity, the thin-walled part of the 
shell is reinforced with ribs, which significantly increases its 
strength with a slight increase in the mass of the structure, 
even if the ribs have a small height. The use of polymer mate-

rials in engineering practice, in particular fiberglass, makes 
it mandatory to take into account the anisotropy of elastic 
properties in the study of low-frequency vibrations of shells. 
Therefore, there is a need to develop methods for calculating 
such inhomogeneous shells and to study the effect of inho-
mogeneity on the frequencies of their own oscillations. Al-
gorithms are necessary for determining resonant frequencies 
that lead to the destruction of inhomogeneous shells.

In the future, it is assumed to solve this problem for a 
three-dimensional spherical shell, for reinforcements only in 
the meridional, as well as in parallel and meridional direc-
tions, for a visco-elastic medium.

Therefore, the study of vibrations of a parallel-reinforced 
spherical shell with an elastic filler, as the first step, opens 
the way to further study of vibrations of a three-dimensional 
spherical shell for reinforcements only in the meridional, as 
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Spherical shells are used in many 
areas of the national economy. Spherical 
domes are widely used in the construction 
of various structures (technoparks, test-
ing laboratories, entertainment complex-
es, reservoirs, etc.). They are also used in 
aircraft, ship structures, radar antennas 
and other structures. It is known that coat-
ings have sufficient strength and durabil-
ity even with a small thickness. However, 
to increase the working life of coatings, to 
ensure their long-term operation, as well 
as to increase their hardness, it is neces-
sary to strengthen them on the surface or 
inside with rods. Sometimes it is possible 
to reduce the weight of the structure and 
save material consumption by strengthen-
ing it with. One of the advantages of these 
structures is that they give the maximum 
useful volume, being both load-bearing and 
enclosing structures. Checking the shells 
for stability is a priority task, since it is 
known that the shells, even with an insig-
nificant thickness, have great strength and 
therefore their insufficient stability can be 
a criterion determining the bearing capaci-
ty. This article is devoted to identifying the 
regularities of the influence of the number 
of reinforcing elements and the inhomo-
geneity parameter of the shell material on 
the frequencies supported by an inhomo-
geneous orthotropic spherical shell with 
a medium. To solve the problem under 
consideration, the Hamilton-Ostrogradsky 
variation principle is applied. The frequen-
cy equation is constructed and implement-
ed numerically. Such studies have not been 
considered for a reinforced spherical shell 
with a no uniform filler in thickness

Keywords: spherical shell, free oscil-
lation, frequency, Legendre polynomial, 
spherical Bessel functions

UDC 539.374
DOI: 10.15587/1729-4061.2022.266166

Received date 21.07.2022

Accepted date 17.10.2022

Published date 30.10.2022



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/7 ( 119 ) 2022

36

well as in parallel and meridional directions, filled viscoelas-
tic medium, therefore, the considered problem is relevant.

2. Literature review and problem statement

In [1], an asymptotic analysis of the problem of free oscil-
lations of an unsupported spherical shell with a viscoelastic 
filler was carried out. Work [2] is devoted to the study of 
vibrations of a longitudinally reinforced inhomogeneous 
orthotropic cylindrical shell with a flowing ideal fluid. The 
results of studies of vibrations of an inhomogeneous cylin-
drical shell supported by rings dynamically interacting with 
a moving ideal fluid are given in [3]. The paper [4] presents 
the results of studies of free vibrations of an inhomogeneous 
cylindrical shell supported by rings and dynamically in con-
tact with a flowing liquid.

In the general regularities of the oscillation process of 
these shells in contact with the medium and liquid are stud-
ied based on an asymptotic analysis based on the smallness 
of the shell thickness, the nature of wave formation and the 
difference in the elastic properties of the shell materials, sol-
id medium and liquid. Frequency equations are constructed 
for all the studied cases. Asymptotic formulas of natural 
frequencies of oscillations of the considered systems are ob-
tained. Dynamic contact stresses between the shell-medium 
and the shell-liquid are investigated. Analytical formulas 
of the “bed” coefficients related to stresses on contact sur-
faces are derived. In all these questions, the heterogeneity 
of the coating material was not taken into account, and the 
solution, taking into account certain simplifications, was 
subjected to asymptotic analysis. 

In [5] the problem of oscillations of inhomogeneous 
transversely reinforced cylindrical shells with an elastic 
medium was solved, and in [6] the problem of oscillation of 
inhomogeneous longitudinally reinforced cylindrical shells 
with a viscoelastic medium was investigated. There are prac-
tically no such studies for a reinforced spherical shell with a 
filler that is inhomogeneous in thickness.

The paper [7] presents a multi-level, mathematical model 
was used to estimate the stressed-strained state of a cylindrical 
reservoir with a defect in the wall shape in the form of a dent; 
the concentration of stresses in the defect zone was studied. The 
proper choice of the mathematical model was verified; it has 
been shown that the engineering assessment of the stressed-
strained state of the wall of a cylindrical tank with the variable 
thickness could employ ratios for a cylindrical shell with a 
constant wall thickness. The spread of values is 2‒10 %. This 
indicates the proper choice of the mathematical model, as well 
as the fact that it is possible, for an engineering assessment of 
the stressed-strained state of the wall of a cylindrical tank with 
variable thickness, to use the ratios for a cylindrical shell with a 
constant wall thickness. The stressed-strained state of the dent 
zone in the tank wall was numerically estimated, which proved 
the assumption of significant stress concentrations in the dent 
zone and indicated the determining effect on the concentration 
of stresses in the dent zone exerted by its geometric dimensions 
and its depth in particular.

The problem under consideration was solved by an 
approximate method, i. e. the tense-deformation state of a 
cylindrical coating of variable thickness was reduced to the 
tense-deformation state of a cylindrical coating of constant 
thickness, compared and confirmed by a numerical method 
in which the difference is very small. The article does not 

consider the possibility of manufacturing coatings from var-
ious materials (composite, anisotropic, heterogeneous, etc.).

The paper [8] presents paper determines the load on the 
load-bearing structure of a universal gondola car during the 
transportation of cargo with a temperature of 700 °C in it. 
It has been established that the maximum equivalent stress-
es, in this case, significantly exceed permissible ones. The 
maximum temperature of the cargo, at which the strength 
indicators of the carrying structure of the gondola do not 
exceed the permissible values, is 94 °C. At the same time, the 
temperature of the cargo transported in the cars by rail can 
be much higher. In this regard, in order to use gondola cars 
for the transportation of cargoes with high temperatures, it 
is possible to arrange them in heat-resistant containers of 
open type – flatcars. Therefore, in this study, a structure 
of the flatcar with convex walls has been proposed. Such 
configuration of the sidewalls makes it possible to increase 
the usable volume of the container by 8 % compared to the 
prototype. As a flatcar material, a composite with heat-resis-
tant properties is used. In the article [8], the selected object 
was considered only as a structure, and its useful volume 
was selected in accordance with its shape. But it was noted 
that the structure is made only of composite material. Func-
tional gradient (FG) materials included in a new class of 
composites resistant to high temperatures and pressure have 
not been mentioned anywhere, although serious research is 
being conducted in Ukraine.

This paper [9] has analyzed the use of fiberglass pipes in 
the body of the railroad embankment by a method of push-
ing them through the subgrade. A flat rod model has been 
improved for assessing the deformed state of the transport 
structure “embankment-fiberglass pipe” by a method of forc-
es when replacing the cross-section of the pipe with a polyg-
onal one. The analytical model accounts for the interaction 
between the pipe and soil of the railroad embankment. To 
this end, radial and tangential elastic ligaments are intro-
duced into the estimation scheme, which make it possible to 
simulate elastic soil pressure, as well as friction forces that 
occur when the soil comes into contact with the pipe. It can 
be seen from the article that for the application of the method 
of forces in structural mechanics, the solution of the problem 
is simplified, i. e. the cross-section of the pipe is selected in 
the form of a polygon and the solution by the finite element 
method is completed. But it is not explained by which model 
the force of interaction between the soil and the pipe is cho-
sen, this model resembles the classical or dynamic Pasternak 
model. Let’s believe that for solving such engineering prob-
lems using the principle of variation would be more effective.

This paper [10] reports a study of the cement-concrete 
coating on bridges using FRP reinforcement. That has made 
it possible to design optimal structures by selecting the height 
for reinforcement arrangement in the layers of a roadbed in or-
der to ensure strength characteristics. An engineering meth-
od for calculating a hard roadbed with composite reinforce-
ment has been devised, which makes it possible to take into 
consideration its work both in a joint package of the structure 
with a slab and separately – when it exfoliates from the slab 
of the bridge’s span structure. Underlying this research are 
effort-determining methods, estimation dependences from the 
theory of bending layered structures, as well as dependences 
from elasticity theory to assess the strength of materials for a 
roadbed. The consideration of shear strains when designing 
slabs has helped establish that the deflections according to the 
devises method were 1.4 times larger than those in the classi-
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cal approach. The choice of composite reinforcement in this 
article ensures the durability of the road surface, since com-
posite reinforcement coatings are resistant to dynamic loads.

In [11], a method for calculating the surface effect in 
piecewise homogeneous bodies with large deformations is 
proposed, based on the combined use of one-level applied 
and two-level frame theories. The applied theory is used 
for a micromechanical continuation of the solution of the 
problem, but the carcass theory is used in the final part 
of the loading path or directly at the final loading of the 
body. The implementation of the problem by the carcass 
theory for the body as a whole ends with solution of extreme 
problems using a highly gradient scheme for assemblies of 
structural blocks near boundary surfaces of the body. The 
rotation-caused development of configurations of cylinders 
reinforced with ring fibers is studied using this method and 
the model of a piecewise homogeneous medium. The results 
obtained by the carcass theory and the model of a piecewise 
homogeneous medium differed only slightly, confirming the 
high accuracy of the analysis using the two-level approach. 

All this allows to assert that it is expedient to conduct 
a study on generalization of these models, i.e., a reinforced 
spherical shell filled with a solid medium is considered.

3. The aim and objectives of the study

The aim of the study is to find the natural or reso-
nant frequencies of a reinforced inhomogeneous orthotropic 
spherical shell with a medium. At the request of practice, 
large spherical structures are required to install solar panels 
for the use of alternative energy sources. These constructs 
should also be able to store areas that can be used internally. 

To achieve this aim, the following objectives are accom-
plished:

− build a physical and mathematical model of the consid-
ered design;

− build a functional describing the behavior of this struc-
ture during oscillatory processes;

− apply the Hamilton-Ostrogradsky variational princi-
ple, construct a frequency equation using Newton’s method, 
solve a transcendental equation with respect to an unknown 
frequency and analyze the results obtained.

4. Materials and methods 

In the presented article, a spherical shell in which there is 
a thickness inhomogeneity with a filler supports the selected 
object of research.

The vibrations of a spherical shell with a solid filler or 
a liquid without reinforcements and a reinforced spherical 
shell without a medium have been studied before us. In 
the proposed work, it is considered as a generalization of 
these models, i.e., a reinforced spherical shell filled with a 
solid medium is considered. The task is to study the natural 
oscillation frequencies of the marked structure. A similar 
technique can be used to solve other problems, namely, for 
various reinforcements and when the fillers are liquid. In the 
proposed article a frequency equation is constructed, which 
is a transcendental equation and implemented numerically 
for specific parameter values. From this frequency equation, 
it is possible to obtain the oscillation frequencies of the sys-
tem for other values of the problem parameters.

The Hamilton-Ostrogradsky variation principle is used 
to construct the frequency equation. The Hamilton-Os-
trogradsky variation principle is formulated as follows: the 
Hamilton action functional takes a stationary value on a 
real trajectory in the class of roundabout trajectories. To 
apply the Hamiltonian-Ostrogradsky variation principle, 
let’s calculate the Lagrange function ‒ the difference between 
the kinetic energy and the potential energy of the system. 
Calculating the Hamilton action, the problem is reduced to 
finding a function in the presence of which the Hamilton 
action has a stationary value, i. e. the value at which the first 
variation of the action is zero. Based on this, let’s make up 
the frequency equation.

Newton’s method is used to find the roots of the ob-
tained frequency equation. To apply Newton’s method, 
let’s first find a segment where the function takes values 
of different signs at the ends of the segment. Let’s draw a 
tangent to the function at the point corresponding to the 
right end of the found segment. Let’s find the intersection 
point of the tangent and the horizontal axis. Calculations 
are carried out until the specified accuracy is reached. To 
avoid calculating the derivative in which the formulas for 
calculating the roots of the equation are included, let’s re-
place the derivative with an approximate value calculated 
from the two previous points.

5. The results of the study of free oscillations supported 
by an inhomogeneous spherical shell with a filler

5. 1. Construction of a physical and mathematical 
model, the considered design

A physic-mathematical model is constructed to study 
the free oscillations of a reinforced spherical shell with a no 
uniform thickness with a filler. To apply the Hamilton-Os-
trogradsky variational principle and to account for heteroge-
neity in thickness of the spherical shell (Fig. 1) let’s proceed 
from the three-dimensional functional [2‒4, 12]: 

( )

11 11 22 22 12 12

2 2 2
2

2

1
2

sin d d d .

h

h
u v wU z
t t t

R z

−

σ ε + σ ε + σ ε 
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× ψ ϕ ψ

∫ ∫ ∫ 	 (1)

Fig. 1. Reinforced spherical shell with filler
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In solving mechanical issues, the density of the material, 
unlike physics, is usually replaced by the elasticity module E, 
which is the mechanical indicator of the material, since all 
equations are included in the elasticity module, which is the 
mechanical dimension of the material [11]. In all cases, the 
Poisson coefficient is considered constant:

( ) ( )11 11 11 12 22,b z b zσ = ε + ε

( ) ( )22 12 11 22 22,b z b zσ = ε + ε 		  (2)

( )12 66 12.b zσ = ε

In spherical system of coordinates the strain sensor com-
ponents are of the form [8]:

11 ,ru
r

∂
ε =

∂
 22

1 1 1
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u u
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ε = +
∂ ψ

 12
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.

sin
r

uu
u

r r r
ψ

φ

∂ ∂
ε = + − ψ ∂φ ∂ 

	 (3)

Using expressions (2), (3) it is possible to express the en-
ergy functional of the considered reinforced inhomogeneous 
spherical shell by tense and relative deformations.

5. 2. Construction of a functional describing the be-
havior of this structure during oscillatory processes

To construct the frequency equation, a functional de-
scribing the behavior of this construction during oscillatory 
processes is first constructed.

Given that E=E(z), ρ=ρ(z), it is possible to write [5, 6] 
down the expressions of energy, that is, the functional of the 
shell and edges.

Taking into account E=E(z), ρ=ρ(z) it is possible to 
write [5, 6]: 
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orthotropic material, ( )d .
h
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−
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i, j=1, 2 with respect to the coordinate z. Here α is a he-
terogeneity parameter, h is the thickness of the cylindrical 
shell, bij are elastic constants belonging to the homogeneous 
cylindrical shell. 

Let’s write the potential energy of the j-th ring [12]: 
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The kinetic energy of the j-th ring is in the following 
form [9]:

2 2
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In the expressions (2)‒(6) expressions u, v, w, ,jE  Fj, 
Ixj, I(kp.j) are the displacements of the cover in accordance 
with the signs, the geometric dimensions and the cross-sec-
tion area of the ring j and the moments of inertia,  jG  is the 
elasticity modulus of the j-th ring in shift, uj, vj,, wj ‒ are dis-
placements of the points of the j-th ring, ρj is the density of 
the material of the j-th ring, are the angles of rotation and 
twisting of the cross section of the j ‒ rod, through the dis-
placements of the shell are expressed as follows: 
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The work done by the force effective on a spherical shell 
as viewed from the medium in the displacements of the shell 
is written as follows:

( )
2

0
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d d .rA q u q q w
π π

ϕ ψ= − + ϑ + ϕ ψ∫ ∫ 		  (7)

Here qr, qφ, qψ are stress vector components and are 
determined from the equations of motion of a filler in dis-
placements [1, 5, 6]: 
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where λs and μs are Lame elasticity module, are dimensional 
velocities.

The expressions for projections of displacements of the 
filler have the form [12]:
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k is the half of the amount of nodal meridians or the amount 
of nodal median planes. The function Pn(cosφ) is said to be 
n-th order Legendre polynomial. Let’s give some first values 
of the indicated functions:

( )0 1,P x = ( )1 ,P x x= ( ) ( )2
2

1
3 1 ,

2
P x x= −

( )0 ,n nP P x=

( ) ( )1/21 2
1 1 ,P x x= − ( ) ( )1/21 2

2 3 1 ,P x x x= −

( ) ( )2 2
2 3 1 .P x x= −

The function P0(x) is a constant and characterizes vibra-
tions only along the radius. The function P1(cosφ) describes 
the movement of the oscillating sphere, where the plane  
 

2
π

β =  is a nodal plane. In the general case, the n-th order Leg-

endre polynomial has nodal planes (circumferences) where 
jn(z) and nn(z) are Bessel and Neimann spherical functions 
connected with cylindrical functions by the formulas [9, 10]:

( ) ,
2n

р
j z  B

z
=  ( ) ,

2
*

n

р
n z  B

z
=

( )1
2

,
n

B J z
+

=  ( )1
2

 * .
n

B N z
+

=

In the case of a solid filler, the expression (10) for ai 
(i=0, 1.2) is simplified:

( ) ( )
0 1 1

1
,n n t

n e
e t

j r
a A j r C

r r

λ µ∂  = µ +  µ ∂ µ 



( ) ( )1 1 1

1
,n e

n t
e t

j r
a A C rj r

r r r

µ ∂  = + µ  µ µ ∂ 
 		  (11) 

( )2 1 .n ta B j r= µ

The coefficients determined by expression (11) are in-
cluded in the displacements of the common points on the 
contact surface r=R of the coating with the liquid medium.

5. 3. Construction of the frequency equation of oscil-
lation using the variation principle and solution by the 
Newton method

Applying the Hamilton-Ostrogradsky variation princi-
ple, the frequency equation is constructed.

As a result, for the total energy of an ortotropic, spherical 
shell inhomogeneous in thickness, stiffened with rings and 
dynamically contacting with soil let’s obtain

( )
2

0
1

,
k

j j
j

J V K A
=

= + Π + +∑  		  (12)

here k2 is the amount of rings. 
The total energy of the system under investigation is 

supplemented with contact and boundary conditions. At the 
junction of the filler and the shell, conditions for the equality 
of displacement components:

,s uϕ = ,sψ = ϑ ,rs w= ( ),r R= 		  (13)

and equality of pressures 

,r rrq = −σ ,rqϕ ϕ= −σ ,rqψ ψ= −σ ( ),r R=  		  (14)

are set, where
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2 ,r
rr s s

s
div s

r
∂

σ = λ + µ
∂



1
,r

r s

ss
r

r r r
φ

β

  ∂ ∂
σ = µ +  ∂φ ∂    

 		  (15)

1
.

sin
r

r s

ss
r

r r r
φ

β

  ∂ ∂
σ = µ +  β ∂θ ∂    

The conditions of rigid contact between the shell and the 
rods are considered to be satisfied:

( ) ( ), ,j ju y u x y=  ( ) ( ), ,j jy x yυ = υ 		  (16)

( ) ( ), ,j jw y w x y=  ( ) ( )2 , ,j jy x yϕ = ϕ  ( ) ( )1 , ,kpj jy x yϕ = ϕ .

Using the stress formulas (15) and projections of dis-
placements of the filler (9), let’s obtain:

1 2

1
,

sin
s s

r b Y b Yϕ
∂

σ = −
∂ϕ ϕ

2 1

1
,

sin
s s

r b Y b Yψ
∂

σ = − −
∂ϕ ϕ

		  (17)

0 ,c
rr b Yσ =

where

1 0
1 ,s

a a
b r

r r r

 ∂
= µ + ∂ 

2
2 ,s

a
b r

r r
∂  = µ   ∂

2 1 0
0 02

1
( ) 2 .s n s

a a
b a r

r r r r

  ∂∂
= λ − λ + µ ∂ ∂ 

  

Using the expressions for a0, a1, a2, let’s transform b0, b1 
and b2 As a result:

( )

( )

( ) ( )

2 2
20

1 1

4

2
1 ,

2

2

n es

e

s s
n e n e

e s

n t n ts
n

t

j r

r r

r j rb
r

j r j r
A C

r r r

 ∂ µµ
− + µ ∂ 

   µ λ + λ − + µ µ=    µ µ    
 ∂ µ µµ

+ λ − µ ∂ 

( ) ( )

( )

( )

12

2
1 2 2

1

2 1 1

2 2 ,

2

n es
n e

e

n
t n e

s

t n t

j r
j r A

r r r

b j r
r r

C
j r

r r

  ∂ µµ
− µ + +  µ ∂  

   λ = − µ − µ −    µ  +  µ ∂ µ  −
 ∂   

 	 (18)

( ) ( )
2 1.n t n t

s

j r j r
b B

r r

 ∂ µ µ
= µ − ∂ 

Substituting in (17) and (18) r=R let’s find the contact 
stresses qr, qφ, qψ:

1 2 ,
sin

c s
r

k
q b Y b Yϕ

∂
= − +

∂ϕ ϕ

2 1 ,
sin

c s
r

k
q b Y b Yψ

∂
= +

∂ϕ ϕ
		  (19)

0 ,c
rrq b Y= −

where

( ) ( )

( )

( )

12

2
1 2 2

2 1 1

2 2 ,

2

n es
n e

e

n
t n t

s

t n t

j R
j R A

r R r

b j R
r R

j R

r r

  ∂ µµ
− µ + +  µ ∂  

  λ  = − µ − µ −    µ  +  µ ∂ µ  − ∂   

( ) ( )
2 1,n t n t

s

j R j R
b B

r r

 ∂ µ µ
= µ − ∂ 

( )

( )

( ) ( )

2 2
20

1

4

2
1 .

2

2

n es

e

s s
n e n e

e s

n t n ts
n

t

j R

r r
A

R j Rb
R

j R j R
C

R r R

  ∂ µµ
− +  µ ∂  +    µ λ  + λ − + µ µ=     µ µ     

  ∂ µ µµ
+ λ −  µ ∂  

Let’s present displacements of the spherical shell, that 
we will need for further investigation of the problem of free 
vibrations of a stiffened heterogeneous spherical shell with 
an elastic filler.

Finding natural frequency of free vibrations of a stiffened 
heterogeneous spherical shell with filler for all possible forms 
of vibrations is very difficult. Therefore, those displacements 
of the shell are chosen that are in good argument with the 
movement of the filler. These solutions are obtained from (9) 
if in (10) in the functions ai(r) i=0, 1, 2 let’s set r=R:

( ) ( ) ,
sin

C S
i j

k
u a r Y a r Y

∂
= −

∂ϕ ϕ

( ) ( ) ,
sin

C S
j i

k
a r Y a r Y

∂
ϑ = − −

∂ϕ ϕ
		  (20)

( )0 ,Cw a r Y=

where

( ) ( ) ( )
0 1 1

1
,n n t

n e
e t

j R
a R A j R C

r r

λ µ∂  = µ +  µ ∂ µ 



( ) ( )1 1 1

1
,n e

n t
e t

j R
a A C Rj R

r r r

µ ∂  = + µ  µ µ ∂ 

( ) ( )2 1 .n ta R B j R= µ

Using qr, qφ, qψ stress vector components (19) and the 
expression (20) for displacements, it is possible to calculate 
the work A0:



Applied mechanics

41

( )

( )

( )

( )( )

( )

2
2

01 01 11 11

2
12

11 11

2
2

02 02 12 12

2
12

12 12

2

2
21 1

2

01 02 02 010

11 12 12 11

sin

sin

sin

c c

c

c c

c

c
n t

c

b a Y b a Y

A
k

b a Y

b a Y b a Y

C
k

b a Y

k
b j R Y B

b a b a YA

b a b a

  ∂ + + ∂ϕ  
+ 

  +  ϕ  
  ∂ + + ∂ϕ  

+ + 
  +  ϕ  

 
+ µ + ϕ 

+ +=

∂
+ + +

( )

( )

( )

2

1 1

2

11 12 12 11

11

1 1

21 11

21

1 1

21 12

sin

2
sin

2
sin

c

c

c c
n t

c

c c
n t

c

Y AC

k
b a b a Y

k
b j R Y Y

A B
b a Y

k
b j R Y Y

C B
b a Y



















  
  
  
     + +   ∂ϕ   
     + +  ϕ   

∂ − µ + ϕ ∂ϕ + +
 ∂
+ ∂ϕ 

∂ − µ + ϕ ∂ϕ +
 ∂
+ ∂ϕ 

2

0 0

,
π π





























 
 
 
 
 
 
 
 
 
 
 
 
 



∫ ∫ 	 (21)
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e
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r
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1
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t

a Rj R
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Using the movements of the shell (20) and the conditions 
of rigid contact between the shell and the rods (16) for the 
movement of the rod points, let’s obtain:

( ) ( )1 2 ,
sin

cj sj
j

k
u a R Y a R Y

∂
= −

∂ϕ ϕ

( ) ( )2 1 ,
sin

cj sj
j

k
a R Y a R Y

∂
ϑ = − −

∂ϕ ϕ
 	 (22)

( ) ,cj
j ow a R Y=

where

( )sin cos ,sj k
j nY k P= ψ ϕ  ( )cos cos .сj k

j nY k P= ψ ϕ

Formulas for the movement of rod points (20) and formulas 
for kinetically and potential energy (5) and (6) can be comput-
ed for the energies of the supporting elements. Because of the 
unwieldiness of the expression obtained, it is not listed here.

Substituting (18) in (11), let’s obtain a function with 
respect to the unknown constants A1, B1, C1:

2 2 2
1 1 2 1 3 1 4 1 1 5 1 1 6 1 1.J a A a B a C a A B a BC a AC= + + + + + 	 (23)

From the stationery condition 
1

0,
J
A

∂
=

∂
 

1

0,
J
B

∂
=

∂
 

1

0
J

C
∂

=
∂

  
 
with using (21) a system of homogeneous algebraic equations 
to find constants A1, B1, C1 using the stationary condition, 
i. e. by equating the specific derivatives obtained by un-
known to zero.

1 1 4 1 6 1

4 1 2 1 5 1

6 1 5 1 3 1

2 0,

2 0,

2 0.

a A a B a C

a A a B a C

a A a B a C

+ + =
 + + =
 + + =

 		  (24)

If the system is homogeneous, for the subsistence of its 
nontrivial solution let’s equate the main determinants to 
zero. As a result, let’s obtain a frequency equation:

1 4 6

4 2 5

6 5 3

2

2 0,

2

a a a

a a a

a a a

=  		  (25)

The equation (20) was implemented for the following 
values of data [7]:

11 18.3 GPa,b = 12 2.77 GPa,b =
22 25.2 GPa,b =

66 3.5 GPa,b =  
3

kg
1850 ,

mjr = r =

9

1 22

10 N
6.67 0.35,

mjE v v= ⋅ ⋅ = =

 

0.4,α =  0.45 mm,h =  0.45 mm,jh =
 

25.2 ,mmjF =

160 cm,R = 8,n =  4
. 0.23 mm .kp jI = ,

45.1 m ,mxjI  41. ,3 mmzjI =  11 22/ .bδ = δ 

The results are calculations are in Fig. 2 in the depedence 
of the periodicity parameter 

1 0/ ,ω = ω ω  ( )
11

0 2 2
1

,
1

b

v r
ω =

− r




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of the system on the amount of rings k1, in Fig. 3 in the form of 
depedence on the heterogeneity parameter α for spherical shell 
with different property orthotropic material. As can be seen 
from Fig. 2 increasing the amount of rings, natural vibrations 
of the construction increases. The case k1=0 corresponds to 
smooth spherical shell and from the graph for this case ω1=0.87.

The curves in the figure show that strengthening the 
orthotropic properties of the material of the spherical shell, 
compared to the isotropic case the natural vibrations fre-
quency of the construction increases. Calculations show 
that increase in the value of heterogeneity parameter and 
strengthening the orthotropic property of the spherical shell 
causes increase in natural vibrations frequency of the con-
struction. This is explained by the fact that increase in the 
value of heterogeneity parameter, increases rigidity parame-
ters of the material of the spherical shell.

6. Discussion of the results of the study of free 
oscillations of an inhomogeneous spherical  

shell with a filler

The results obtained include the correct physical and 
mathematical factors.

The existing results refers to the reinforced shell with-
out filler and the unsupported shell with filler. In contrast 
to these works [12], the proposed work considers a rein-
forced shell.

Research is carried out for a thin shell and a purely elas-
tic filler.

In studies, it is assumed that the reinforced shell is homo-
geneous and the filler is purely elastic. These disadvantages 
can be overcome by assuming the filler is viscoelastic.

These studies can be developed for a thick shell with var-
ious fasteners and with a viscoelastic filler. However, taking 
into account the more real properties of the shell and filler 
materials, one may encounter mathematical difficulties.

For the first time in such a formulation of the problem, 
the frequency equation of the considered construction is 
constructed. The task is multiparametric. Among these 
parameters, the number of reinforcing elements and the het-
erogeneity parameter are selected.

Solving the frequency equation, the found eigenvalues, 
i. e. resonant frequencies, leading to the destruction of 
the structure as a whole. To avoid these frequencies, rein-
forcement of the spherical shell is assumed. As can be seen 
from Fig. 2, with an increase in the number of rings, the 
specific natural frequencies of the structure increase. The 
curves in the figure show that as the orthotropy property 
of the spherical coating material increases, the specific 
natural frequencies of the structure increase in comparison 
with the isotropic state. Fig. 2 allows to select the number 
of reinforcing elements. It can be seen from Fig. 3 that an 
increase in the value of the inhomogeneity parameter and 
an increase in the orthotropic property of the spherical 
coating material leads to an increase in the frequency of 
self-oscillation of the structure. This is explained by the 
fact that an increase in the value of the inhomogeneity pa-
rameter increases the stiffness parameters of the spherical 
coating material.

The problem for a smooth spherical shell with a filler 
and for a reinforced spherical shell without a filler has been 
solved. But it is not solved for a reinforced spherical shell 
with a filler.

Here it is assumed that the shell is thin, the reinforcing 
elements are thin and homogeneous, and the filler is elastic 
and homogeneous.

The disadvantage relates to the selection of solutions to 
the vector equation describing the behavior of the placehold-
er. To find another solution to this equation that makes it 
impossible to solve the considered problem.

This research can be developed for a three-dimensional 
shell, for inhomogeneous reinforcing elements and for a 
viscoelastic and inhomogeneous filler. It is mathematically 
difficult to solve these problems in an exact formulation. 
They can be solved only for approximate models.

7. Conclusions

1. A physical and mathematical model has been con-
structed to study free oscillations of a reinforced spherical 
shell with a filler that is inhomogeneous in thickness. 
Unlike the known models, the studied model additionally 
takes into account the heterogeneity of the shell material 
and reinforcement. There are models – a homogeneous 
spherical shell with a filler and a reinforced homogeneous 
spherical shell without a medium. The model under study 
takes into account both heterogeneity, environment, and 
reinforcements at the same time.

2. The found frequencies are simultaneously resonant. To 
avoid these frequencies, reinforcement of the spherical shell 
is assumed. As the number of rings increases, the special 

Fig. 2. Dependence of the number of frequency parameter on 
the number of rings k1

Fig. 3. Dependence of the frequency parameter on 
heterogeneity parameter α
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dance frequencies of the structure increase. As the orthot-
ropy properties of the spherical coating material increase, 
the specific vibration frequencies of the structure increase in 
comparison with the isotropic state.

3. Calculations for positive inhomogeneity parameters 
show that, the increase in the price of the inhomogeneity pa-
rameter and the strengthening of the orthotroph properties 
of the material of the spherical coating lead to an increase in 
the specific oscillation frequencies of the structure. This is 
due to the fact that the increase in the price of the non-uni-
formity parameter increases the hardness of the material of 
the spherical coating. At negative values of the uniformity 
parameter, the specific oscillation frequencies are less than 
the isotropic frequencies of the material of the spherical coat-
ing. In other words, it is possible to strengthen or weaken the 
structure by creating inhomogeneity. 
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