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Milling process is a common machining operation 
that is used in the manufacturing of complex surfaces. 
Machining-induced residual stresses (RS) have a great 
impact on the performance of machined components and 
the surface quality in face milling operations with para
meter cutting. The properties of engineering material as 
well as structural components, specifically fatigue life, 
deformation, impact resistance, corrosion resistance, and 
brittle fracture, can all be significantly influenced by resi
dual stresses. Accordingly, controlling the distribution of 
residual stresses is indeed important to protect the piece 
and avoid failure. Most of the previous works inspected 
the material properties, tool parameters, or cutting para
meters, but few of them provided the distribution of RS in  
a direct and singular way. This work focuses on study-
ing and optimizing the effect of cutting speed, feed rate, 
and depth of cut for 6061-T3 aluminum alloy on the RS 
of the surface. The optimum values of geometry parame-
ters have been found by using the L27 orthogonal array. 
Analysis and simulation of RS by using an artificial neural 
network (ANN) were carried out to predict the RS beha
vior due to changing machining process parameters. Using 
ANN to predict the behavior of RS due to changing machin-
ing process parameters is presented as a promising method.  
The milling process produces more RS at high cutting speed, 
roughly intermediate feed rate, and deeper cut, according 
to the results. The best residual stress obtained from ANN 
is –135.204 N/mm2 at a cutting depth of 5 mm, feed rate of 
0.25 mm/rev and cutting speed of 1,000 rpm. ANN can be 
considered a powerful tool for estimating residual stress
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1. Introduction

Many materials are subjected to different machining 
processes like face milling to obtain a smoother surface with 
a high quality of objects. Therefore, these processes need  
a treatment procedure. The most prominent problems that 
are manifested during the machining process are mechanical 
and thermal stresses that cause surface damage or deforma-
tion, which leads to changes in the mechanical properties of 
materials. Furthermore, the machined workpiece instigates 
residual stresses [1]. Residual stresses (RS) as a form of de-
formation can be measured in different ways (qualitatively 
and quantitatively). It can assess the machining process’s 
delicate pointer for various machining boundaries and appa-
ratus properties [2]. So, when the RS of a machined compo-
nent are elevated, the item’s life cycle is reduced. Therefore, 
to avoid any failure in a machine part, it is very significant to 
dominate the entity of residual stresses. RS are dominantly 
affected by machining parameters, cutting speed, feed rate, 
and depth of cut. That need to be controlled. Generally, 
tensile residual stress increases when cutting speed increases. 
However, the cutting feed and depth of cut have displayed 
opposite effects. In addition, residual stresses are found to 

be less sensitive to the tool rake angle variations. Therefore, 
many researchers discuss this problem. In recent years, sig-
nificant advancements in predictive and optimization model 
types have been reported. This survey has been categorized 
into three clusters depending on the types of material used, 
techniques for optimizing the machining process, and the 
area of residual stress predictions.

Primarily, a lot of previous studies investigated various 
aluminum alloys. The applications of aluminum alloys are 
vast in different domains, for example, electric module pack-
ing, electronic technology, automobile frame structure, tur-
bine, and solar energy management. They have a low density 
and high strength to weight ratio, so they are used frequently. 
6061-T3 aluminum alloy is one of the most famous aluminum 
alloys for general application, it is a precipitation solidifying 
aluminum alloy with major alloying components of magne-
sium and silicon. It has excellent mechanical qualities as well 
as excellent weldability. Some of the works are presented 
in the literature review, and others focused on 7075-T7451 
aluminum alloy. Another group correlated the relationship 
between the phenomena of mechanical and thermal proper-
ties with the residual stresses for this alloy, and inspected cor-
rosion on the residual stress surfaces [3, 4]. In addition, the 
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milling deformation of the Al alloy using the quasi-symmetri-
cal machining method was investigated in other works [5, 6].

Secondly, various studies examined the impact of some 
geometries like tools on the RS allocation in the same metal 
during machining. They discovered that the compressive 
subsurface RS is produced during the final grinding process 
and the solid end mill’s nose radius, rake/relief angle, and 
diameter had a significant impact on the RS profile. Many 
efforts have been presented for finding the redistribution and 
generation of RS under the influence of machining [7, 8]. 

Thirdly, many researchers investigated the characteris-
tics of RS by tracking the process of various machining, and 
determining the influence of process parameters on RS. They 
used different techniques for optimizing the machining pro-
cess such as genetic algorithm, Taguchi design method, finite 
elements, fuzzy networks, and others used artificial neural 
networks (ANNs) [9, 10].

To sum up, research on the experimental investigation 
and modeling of residual stresses in the face milling of  
Al-6061-T3 is important to avoid failures.

2. Literature review and problem statement

The study of residual stress characteristics is an important 
research area for determining the influence of process parame-
ters on RS to obtain a smoother surface and high quality. The 
purpose of this part is to provide a snapshot of previous works 
that progress in this field and still face major challenges, and 
are related to current research developments. Therefore, the 
subject flows into three branches depending on the study. 

Essentially, many previous works focused on the types of 
material used. In [11], the parameters of 7055-T77 aluminum 
alloy were studied, and it was concluded that the maximum resi
dual compressive stress and the depth of the residual stress layer 
are significantly increased, and the residual stress and hardening 
distribution are very good after shot peening of this alloy.

Also, the study [12] showed that the shrinkage overlap 
coefficient K was affected by echo or residual stress distri-
bution in Al 2024-T3, and the effect of deformation was re-
duced, which was inevitably accompanied by a decrease in the 
material removal rate. In addition, the work [13] measuring 
the effect of residual stress on the surface using the X-ray dif-
fraction process was presented, while twenty-five points were 
required for each piece in order to be measured. The results 
for 2219 aluminum showed that depth of cut was the largest 
and most important factor affecting RS. If the depth of cut in 
the axial direction is shallow, it produces compressive RS. On 
the other hand, the feed rate per tooth and the spindle speed 
showed little impact on the distribution of residual stress.

The study [14] investigated the effect of cutting speed on 
a face-milled 7050-T7451 aluminum workpiece. Three levels 
of cutting speed were used (200, 800, 1400 m/min) for milling 
the workpiece under the effect of a dry state. The rest of the 
factors are constant, the depth of cut is 1 mm and the feed 
rate is 0.20 mm/tooth. The results of this work showed that 
RS magnitude and altered layer thickness were sensitive to 
cutting speed, whereas surface roughness and microstructural 
defects showed large variations in the conditions tested.

Besides that, other researchers studied different techniques 
for optimizing the machining process. For example, in [15], 
finite element analysis for machining AISI 1045 steel was used 
in order to determine how different cutting parameters would 
affect the surface and subsurface of residual stresses.

Then, based on the material removal method, [16, 17] em-
ployed finite element calculations based on strain relaxation 
data to estimate RS, while Afazov devised a mathematical al-
gorithm to translate RS profiles into finite element (FE) mo
dels at a large scale. The profile of RS was calculated using the 
FE approach and used as an input in the mapping function. 

Also, in [18], a mathematical model was developed to 
estimate the presence of RS on the 2014-T6 alloy surface. 
Cutting speed, feed rate, and depth of cut are just a few of 
the variables that were used in this study to determine the 
most important factor influencing RS. These mathematical 
models were constructed using the response surface metho
dology (RSM), which reduces the number of experiments. 
The Taguchi method was used to develop these experiments. 
The outcomes demonstrate that the tool geometry has the 
biggest impact on RS. Additionally, a strong connection 
between the mathematical and experimental results was dis-
covered, which was very beneficial for determining the best 
cutting parameter for the 2014-T6 alloy.

As mentioned in [19], a mathematical model of resi
dual stress generation in complex surface machining was 
presented. Geometric transformation of nickel aluminum 
bronze (NAB) in the workpiece and contact mechanics were 
used to determine the mechanical stress caused by milling. 
An elastic-plastic model and a relaxation procedure were 
used to estimate the residual stress.

Furthermore, the work [20] investigated the relation-
ship between the end milling parameters of the 7050-T7451 
aluminum alloy and the machined-induced residual stresses. 
Four parameters were used (cutting speed, feed rate, depth 
of cut and cutting width). The results show that the lower 
limit cutting speed caused the chips to generate the least 
amount of heat (Al 7050-T7451), which reduced the amount 
of RS. An increase in the feed rate increased compressive RS. 
The observed trends in RS transformation are described 
by an analysis of the machining forces and thermal effects. 
Next, [21] introduced a more thorough experimental model 
of brass, steel, stainless steel, steel-37, 7001, and 2024 alloys. 
It not only predicts surface and subsurface residual stress 
profiles in turning operations of five different materials, but 
also shows the effect of machining parameters on the maxi
mum residual stress and identifies both the location and 
depth of the maximum residual stress.

Moreover, the paper [22] investigated surface residual 
stress in 45CrNiMoVA and 22SiMn2TiB under different cut-
ting conditions and machining properties. A new approach 
was proposed based on the Gaussian process regression for 
predicting surface residual stress due to machining. This was 
confirmed through comparison with other machine learning 
techniques.

3. The aim and objectives of the study

The aim of the study is to examine the effect of milling 
parameters (cutting speed, feed rate, depth of cut) on the sur-
face of 6061-T3 aluminum alloy by the face milling operation 
method in order to preserve the milled part, reduce residual 
stresses on the surface of the workpiece, and extend the life 
of the equipment used in milling.

To achieve this aim, the following objectives are accom-
plished:

– to develop an L27 orthogonal array (OA) by using 
X-ray diffraction equipment to perform measurements;
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– to propose an approach of experimental analysis and 
simulation of RS in the face milling of 6061-T3 aluminum 
alloy using the ANN;

– to improve the prediction of the process parameters by 
comparing mathematical model simulations to the experi-
mental method.

4. Materials and methods

4. 1. Object and hypothesis of the study
The paper discusses the surface milling process on 

AA6061-T3 aluminum alloy, where the first step of the expe
rimental work deals with material selection and preparation 
using important mechanical tests.

The surface milling process, in which a series of experi-
ments are applied to the metal plate, is the next major step. 
Surface milling variables that can be controlled include 
cutting speed, feed rate, and depth of cut, with maximum 
residual stress being the parameter studied for tolerance. 
Both of these outcomes are compared and validated us-
ing  ANN. This study work plan is condensed in the diagram 
shown in Fig. 1.

 
Fig. 1. Framework of Research Methodology

Fig. 1 shows a possible layout for the purposes of this  
paper. It presents the stages of experimental work obtained 
and validated by the artificial neural networks used. Arti
ficial neural networks are later used to predict outcomes on 
new data with very acceptable accuracy.

4. 2. Material and Method of the Experimental Work
In this work, 6061-T3 aluminum alloy plates with appro

ximate dimensions of 50×45×30 mm commonly used in alu-
minum structures were applied. The chemical compositions 
of 6061-T3 aluminum alloy are attached below in Table 1.

Table 1

Chemical compositions of the aluminum alloy (Al 6061-T3)

Al Fe Zn Cu Ti

Balance Max 0.7 Max 0.25 0.15–0.4 Max 0.15

Mn Cr Si Mg Element %Wt. 

Max 0.15 0.04–0.35 0.4–0.8 0.8–1.2 Standard [23]

Furthermore, Table 2 shows typical mechanical proper-
ties of wrought aluminum 6061-T3.

Table 2

Typical mechanical characteristics of the aluminum 	
alloy (6061-T3) 

Elasticity  
Modulus (GPa)

Yield Strength 
(MPa)

Maximum 
Strength (MPa)

Metal 
(AA6061-T3)

68.9 276 310 Standard [24]

69.3 290.55 325.306 Estimated

A single stress predestines what acted in one direction 
on the surface σϕ. The strain along an inclined line in an 
isotropic solid according to the theory of elasticity is repre-
sented as in (1):
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When considering strains in terms of inter-planar layout, it 
is possible to calculate the stresses as shown in (2) [25] below:
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Therefore, using this formula made it possible to perform 
two measurements in the path of stress and determine the 
level normal to the surface. The sin2ψ method is the strongest 
method for determining RS.

4. 3. Face Milling
Basically, all surfaces are washed to remove oxides, dirt, 

and rust. A 25×20×15 mm rectangle pocket of the experi-
mental specimen is machined using an end mill tool [26].

27 specimens are tested under a variety of paramet-
ric conditions to implement the face milling of 6061-T3 
aluminum alloy, and the experiments proceed within the 
process’s required range. Turret Milling Machine (Model: 
MDM 4VS/4HS/4S) is used to mill dry faces. An uncoated 
tungsten carbide with 5 flutes and 5 mm diameter is used as  
a cutting tool to improve surface quality and material remo
val rate as shown in Fig. 2.

 
Fig. 2. Experimental setup for the milling operation
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Through the factorial design L27 experimentations, the 
input parameters (cutting speed (rpm), feed rate (mm/rev), 
and depth of cut (mm)) are employed in the calculation of 
the RS value after face milling from multi-input variables as 
shown in Table 3.

Table 3

Parameters and Levels of the System Process

No. Process Parameters
Levels

1 2 3

1 Cutting speed (rpm) 600 800 1,000

2 Feed rate (mm/rev) 0.25 030 0.35

3 Depth of cut (mm) 3 4 5

The experiment design is regarded as a technique to 
analyze and model a system reaction. So, the full factorial 
design (FFD) is used in the current work to investigate the 
impact of system input parameters (depth of cut (mm), feed 
rate (mm/rev), and cutting speed (rpm)). The experimental 
data are performed by changing one of the parameters with 
the others fixed to obtain the values of RS.

4. 4. Evaluation of residual stress
After the face milling operation, RS have been evaluated 

by the X-350A X-ray diffraction stress analyzer. The milled 
surface is tested at four various angles along with a mea-
surement device called DX-2700BH multipurpose X-ray 
diffractometer. The residual stresses are detected using 
the X-ray diffraction technique with angles of 0°, 15°, 30°, 
and 45°. In addition, the average RS value is calculated in 
MPa as shown in Fig. 3, and the RS in the original blanks 
is –1.519 MPa.

At various psi tilts, a variety of XRD measurement data 
are acquired. An inter-planar spacing or 2-theta upper po
sition is evaluated and shown above in Fig. 3.

4. 5. Artificial Intelligence (AI)
Predictive and optimal models are among the most impor

tant aspects of AI, and they’re used in a variety of fields, 
including manufacturing. Predictive models can be useful in 
machining operations when the effect of input parameters 
on process outputs needs to be examined. Optimization algo-
rithms, a subset of intelligent methods, are also utilized to iden-
tify the best machining conditions. ANNs are one of the most 
well-known predictive models, capable of estimating machin-
ing operation output(s) in a range of input parameters [27].

ANNs are mathematical simulations of the functioning 
of the human brain. The neuron is the «brain» of a neural 
network. Synapses are a series of connections that hold 
neurons together, and each one is identified by a synap-
tic weight.

In this work, a network architecture is proposed as shown 
in Fig. 4 by utilizing the ANN to get the RS first. Since the 
response of the parameters is non-linear with multi-level 
variables. As a result, for each parameter, three-level tests 
are assumed.

 

Fig. 4. Proposed Network Architecture

The proposed network (Fig. 4) architecture involves the 
input, hidden, as well as output layers, as shown below:

1. The input layer is the first one. The non-processed 
data that entered the network are represented by the beha
vior of input units; neurons at that layer do not perform any 
computations. The current work has 3 parameters as input 
layers: cutting speed (rpm), feed rate (mm/rev) and depth of 
cut (mm) as shown in Table 4.

2. The input layer is followed by the hid-
den layers, and each hidden unit’s activity is 
governed by the activity of the input units, as 
well as the weights at the input-hidden unit 
connections. The network has a number of 
hidden or visible layers, and their purpose is 
to enhance the network performance. As even 
the amount of input neural activity increases, 
the presence of these network layers becomes 
more important. The recent work had 10 hid-
den layers. 

3. The last layer is the output layer. Re-
sidual stresses in the current research are the 
last layer.

The model structure of the designed 
three-layer backpropagation (BP) network is 
shown in Fig. 5.

 
Fig. 5. Final neural network architecture

The structure of the given ANN model is shown in Fig. 5, 
where W represents weights and b indicates bias. Neurons 
are arranged in layers, and the neurons for every layer act in 
parallel, as seen above.

  
a b

Fig. 3. Residual stress equipment:  
a – device used to measure and analyze residual stress;  

b – X-ray diffraction by a crystal lattice
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5. Results of Implementation  
of the Artificial Neural Network

5. 1. Orthogonal Array
An orthogonal array (OA) was 

created as L27 by using X-ray dif-
fraction equipment to perform mea-
surements. The number of experi-
ments to conduct the investigation is 
calculated according to the level out-
put of each variable. Each variable 
consists of three levels 1, 2, and 3, 
resulting in 3*3 and 27 experiments 
to be investigated (Table 4). Sur-
face  milling process variables were 
used to explore the effect of changing 
operating parameters on the maxi-
mum residual  stress. 

Table 4

Al 6061-T3 experimental data from the L27 orthogonal array

No.
Depth of cut 

(mm)
Feed rate 
(mm/rev)

Cutting 
speed (rpm)

Residual stress 
(N/mm2)

1 3 0.25 600 –75.722

2 3 0.25 800 –78.22

3 3 0.25 1,000 –85.354

4 3 0.30 600 –82.234

5 3 0.30 800 –90.022

6 3 0.30 1,000 –100.32

7 3 0.35 600 –103.123

8 3 0.35 800 –93.454

9 3 0.35 1,000 –110.45

10 4 0.25 600 –75.112

11 4 0.25 800 –115.653

12 4 0.25 1,000 –135.217

13 4 0.30 600 –131.311

14 4 0.30 800 –120.521

15 4 0.30 1,000 –134.252

16 4 0.35 600 –109.115

17 4 0.35 800 –106.919

18 4 0.35 1,000 –125.568

19 5 0.25 600 –89.295

20 5 0.25 800 –114.929

21 5 0.25 1,000 –131.282

22 5 0.30 600 –81.69

23 5 0.30 800 –84.956

24 5 0.30 1,000 –97.335

25 5 0.35 600 –75.076

26 5 0.35 800 –81.53

27 5 0.35 1,000 –93.019

Table 4 shows the experimental data for the parameters 
of aluminum alloy (6061-T3) from the L27 orthogonal array. 
The experimental data of RS are determined depending on 
changes in one of the parameters with the others fixed.

Fig. 6 shows the relationship between the cutting 
speed (revolutions per minute) and the residual stress mea-
sured in units (newtons per square millimeter) according 
to the parameters that were previously selected in the face 
milling process.

Therefore, Fig. 6 shows an increase in RS during the mill-
ing process at high cutting speed, roughly intermediate feed 
rate, and deeper cut.

5. 2. Neural Network Training
The goal of training algorithms is to select neural net-

work’s weights, which have to be set in order to predict the 
values and minimize error. The weight values were automa
tically configured according to the previous circumstances to 
assess changes in weights as below in (3):

Δ ( ) = Δ −( ) + ( ) ( )W n W n n Y nji ji iα ηδ1 , 	 (3)

Wji represents the change in weights: i and j = 1, 2, 3, ..., n, 
where j demonstrates errors, LRP denotes the learning rate 
variable, and Y(n) demonstrates the result at the n-th repe
tition. A Matlab Toolbox of ANN generates weights and 
biases at random as follows:

– W [1, 1] (from input 1 to layer 1): 

− −
− −

− −

2 1669 1 811 0 53818

1 9311 2 2238 1 4984

3 1108 0 85596 0 8

. . .

. . .

. . . 55322

0 21004 3 7121 1 4983

2 3775 0 63915 1 8844

2 4199 1

− − −
− −
− −

. . .

. . .

. .. .

. . .

. . .

633 0 45151

1 2957 0 47574 2 3816

1 9933 2 4901 0 65078

0

− −
− − −

.. . .

. . .

73031 1 2452 3 0681

2 0582 0 8737 1 6563

− −
− −





































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,

− −
− −

0 99983 0 35711 1 8234 1 0584 1 0924

0 093047 1 101 2 0993

. . . . .

. . . −−








0 77914 0 36616. .

;

– bias: b [1] (layer 1 is biased):

b 1
3 418 2 0876 2 244 0 6096 0 726

1 0593 1 9825 2
[ ] =

− −
− − −

. ; . ; . ; . ; . ;

. . ; .33162 2 5761 3 5436; . ; .
;

−










– bias: b [2] = [2.6761].

5. 3. Modelling of Residual Stress Error
An error function is used to combine the differences, 

resulting in the network error. Typically, the network’s mean 

 
Fig. 6. Changes in Cutting Speed with Residual Stress
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squared error (MSE) in response to the va
riable p is estimated using (4).

MSE d o
i

l

p i p i= +( )
=
∑1

2 1

2

, , , 	 (4)

where i = 1, 2,… n, l = 3. The network was trained us-
ing 27 experiments to develop the presented ANN 
model. Table 5 shows the residual stress values 
predicted by the ANN and the percentage of error.

Table 5 shows that the highest error calculated 
in the ANN is 0.287. It also demonstrates that the 
lowest error value of the ANN is –0.008. It can be 
deduced from the MSE and errors investigated that 
such ANN. The model now creates higher accuracy 
compared to the value of errors in previous works, 
which determined more significant errors [28].

Various BP network training algorithms were 
tested for the prediction of residual stress through-
out end milling in this study. Three variables with 
tree levels, rotational speed, feed rate and cutting 
depth were used as inputs. The network output is 
residual stress. The BP network was a feed-for-
ward network that is tested with different numbers 
of neurons ten hidden layers, and the results were 
quite satisfactory. By analyzing the experimental 
data and ANN data, the following was noted:

1. Whenever the depth of cut was 5 mm, 
again the feed rate seemed to be 0.35mm/rev, 
and also the cutting speed would have been 
600 rpm, the minimum RS in the experimental 
data is –75.076 (N/mm2).

2. The best value of RS as determined by the 
ANN simulation is –135.204 (N/mm2), at a feed 
rate of 0.25 mm/rev, cutting speed of 1,000 rpm 
and depth of cut of 4 mm. In comparison with 
related works [29], this is a good indication of 
ANN effectiveness.

Additionally, all the best residual stress va
lues were determined in experiments and ANN 
have a common characteristic occurring at 
a high cutting speed of 1,000 rpm (between the 
suggested ones). The lowest and medium values 
of the feed rate (0.25 mm/rev and 0.3 mm/rev), 
respectively, are within the range. The depth of 
cut in both best cases is 4mm; this value is the 
greatest of the suggested depth of cut values.

Throughout the training procedure, the ma
jority of the predicted and measured values ex-
cellently correlate on the linear regression, at-
tempting to reach R = 0.955 in training value 
systems as shown in Fig. 7. Regression has been 
discovered to be comparable with other works for 
both validation and testing, with regression being 
0.97393 in overall value achievement, which is an 
excellent result compared to related works [30].

The occurrence of some genuine amounts 
that are not particularly consistent with the pre-
dicted values can generally be attributed to a va-
riety of factors. This could be the result of errors 
in experimental findings brought by the environ-
ment, tools, and observations. A model of neural 
networks will not produce a coincidence between 
actual and predicted values if the residuals really 
aren’t both negative and positive (Fig. 8).

Table 5 

Final predicted values and errors of the ANN for Al6061-T3

No. Depth of 
cut (mm)

Feed rate 
(mm/rev)

Cutting 
speed (rpm)

Residual stress 
(N/mm2)

ANN
Predicted Err.

1 3 0.25 600 –75.722 –75.739 0.017
2 3 0.25 800 –78.22 –78.212 –0.008
3 3 0.25 1,000 –85.354 –85.353 –0.001
4 3 0.30 600 –82.234 –82.155 –0.079
5 3 0.30 800 –90.022 –90.099 0.077
6 3 0.30 1,000 –100.32 –100.243 –0.077
7 3 0.35 600 –103.123 –103.098 –0.025
8 3 0.35 800 –93.454 –93.463 0.009
9 3 0.35 1,000 –110.45 –110.512 0.062

10 4 0.25 600 –75.112 –75.399 0.287
11 4 0.25 800 –115.653 –115.652 –0.001
12 4 0.25 1,000 –135.217 –135.204 –0.013
13 4 0.30 600 –131.311 –131.242 –0.069
14 4 0.30 800 –120.521 –120.533 0.012
15 4 0.30 1,000 –134.252 –134.327 0.075
16 4 0.35 600 –109.115 –109.187 0.072
17 4 0.35 800 –106.919 –106.890 –0.029
18 4 0.35 1,000 –125.568 –125.486 –0.082
19 5 0.25 600 –89.295 –89.316 0.021
20 5 0.25 800 –114.929 –114.836 –0.093
21 5 0.25 1,000 –131.282 –131.288 0.006
22 5 0.30 600 –81.69 –81.692 0.002
23 5 0.30 800 –84.956 –84.985 0.029
24 5 0.30 1,000 –97.335 –97.249 –0.086
25 5 0.35 600 –75.076 –75.009 –0.067
26 5 0.35 800 –81.53 –81.545 0.015
27 5 0.35 1,000 –93.019 –93.020 0.001

 
 

 

a b
 

 

 
c d

Fig. 7. Neural Network Training Regression: a – training R = 0.95555; 	
b – validation R = 1; c – test R = 1; d – overall sets R = 0.97393
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Fig. 8 depicts the quality of the displayed net-
work as a result of the total for the square error 
with relation to the enhanced amount of epochs, 
with very good training and the highest accura
cy performance of 0.005313 at period number 7. 
In fact, this performance could be enhanced by 
some choices like altering the adaptation, learn-
ing, training functions, even changing the ANN 
design and the number of its layers can affect 
the network performance. In addition, the incre-
ment in training data can work well. The train-
ing state for the current case is shown in Fig. 9. 
A comparison of experimental RS values and 
estimated neural network values (throughout 
training and test sets) is presented in Fig. 10. 

The training/testing failures of networks are not 
always minor, but also close to each other as shown 
above in Fig. 10. As a result, neural networks have 
already been trained exceptionally well.

6. Discussion of the Neural  
Network Results

First, the XRD test gives good results, as shown 
in Table 4, where all experimental results with va
rious selected parameters are recognized by the artifi-
cial neural network. 

At the end of this stage, each experimental test 
was optimized.

In fact, successful face milling of a part requires 
establishing a plane that is exactly perpendicular to 
the machine tool’s spindle, from which the exact slots 
to each other can be established. Also, within speci-
fied tolerances, the XRD technique measures internal 
stresses to guide the correct phase and identify cor-
rect input data to the neural network, ensuring good 
network performance.

Second, the proposed ANN offers a simple, flexible, effi-
cient, and economical method, along with the ability to learn, 
improve, and enhance, especially when compared to other 
control methods. By using this artificial intelligence method, 
the maximum residual stress reaches –135.204 N/mm2, and the 
minimum RS reaches –75.076 N/mm2 as shown in Table 5. This 
explains the good behavior of the proposed ANN that processes 
RS to achieve a minimum value, and controls it in addition to 
improving the system life as a result of reduced cutting speed.

A comparison of the performance based on the MSE (mean 
squared error) was obtained by the backpropagation neural 
network, which was obtained in this work with previous 
related studies in [31]. The average percentage of accuracy 
in the last reference reached 81.71 %, while in this study the 
average percentage of accuracy preserved is 97.393 %.

Some limitations have been found, such as operators of 
milling machines. They need proper training for different 
tasks like design and programming time and experience in 
selecting optimal parameters for the milling machine. This 
can be overcome by developing the skills of employees to deal 
with different types of CNC machines and allowing arbitrary 
values for parameters.

As a development of this study, other milling parame-
ters (cutting tool, squeeze time, width of cut, metal plate 
thickness, etc.) could be investigated to observe the behavior 
of other properties. It is possible to add other mechanical 

 
Fig. 8. Neural Network Mean Square Errors
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Fig. 9. Neural Network Training State:  

a – gradient = 5.6061e-13; b – mu = 1e-07; c – validation 
cheks = 7

 

Fig. 10. Residual Stresses (exp.)×Residual Stresses (ANNs)
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tests (surface roughness, hardness, etc.), items that require 
the use of different testing machines for metals. More research 
cases are more reliable and provide a better database of ANN 
models. Also, using different AI methods or combining them 
like CNN gives better results. Nonetheless, modern CNC (Con-
volutional Neural Network) machines are perfect for solving 
computer vision-related problems. Milling can open the door 
to easily studying new parameters and performance efficiencies 
of milling. These machines have cost and proficiency barriers.

7. Conclusions

1. In the presented development of orthogonal arrays, 
L27 is developed using an X-ray diffractometer. The X-ray 
diffraction method is employed to measure the distribution 
of RS on the surface. Experimental investigations are con-
ducted to determine the effects of process parameters such as 
depth of cut, feed rate, and cutting speed on residual stress. 
The highest value of RS = –135.217 MPa with an input vec-
tor depth of cut = 4 mm, feed rate = 0.25 mm/rev, and cutting 
speed = 1,000 rpm was found.

2. The highest RS predicted in the ANN program is 
–135.204 MPa. This is a considerable improvement in the 
life and performance of the component, furthermore, it 
reduces errors. On the other hand, the least RS indi-
cated by the ANN would be less than the least experi-
mental results (–75.009 MPa vs. –75.076 MPa) as shown 
above in Table 5. These results are obtained with the 
depth of cut = 5 mm, feed rate = 0.35 mm/rev, and cutting 
speed = 600 rpm. This means that ANN provides optimum 
machining conditions and minimizes RS.

3. The results of the work show that ANN is capable of 
predicting the RS of the milling process for selected speci
mens, which can be generalized to other materials. The 

results show that the proposed model is highly accurate, 
with a prediction error of –0.008 to 0.287. It offers funda-
mental information for machining thin-walled aluminum 
alloy workpieces, which seems to have important potential 
application. In the future, in order to increase the generality 
of the prediction model, we will add more variables affect-
ing the RS brought on by grinding, and also employ addi-
tional forecasting techniques like the Taguchi method or  
fuzzy logic. 

Conflict of interest

The authors declare that they have no conflict of inte
rest in relation to this research, whether financial, personal,  
authorship or otherwise, that could affect the research and its 
results presented in this paper.

Financing

The study was performed without financial support.

Data availability

The manuscript has no associated data.

Acknowledgments

We sincerely thank the Al-Khwarizmi College of Engi-
neering and the mechanical applied Laboratory of the De-
partment of Automated Manufacturing Engineering for their 
assistance in carrying out this work.

References

1.	 Treuting, R. G., Read, W. T. (1951). A Mechanical Determination of Biaxial Residual Stress in Sheet Materials. Journal of Applied 

Physics, 22 (2), 130–134. doi: https://doi.org/10.1063/1.1699913 

2.	 Lucca, D. A., Brinksmeier, E., Goch, G. (1998). Progress in Assessing Surface and Subsurface Integrity. CIRP Annals, 47 (2), 

669–693. doi: https://doi.org/10.1016/s0007-8506(07)63248-x 

3.	 Tang, Z. T., Liu, Z. Q., Pan, Y. Z., Wan, Y., Ai, X. (2009). The influence of tool flank wear on residual stresses induced by milling alumi-

num alloy. Journal of Materials Processing Technology, 209 (9), 4502–4508. doi: https://doi.org/10.1016/j.jmatprotec.2008.10.034 

4.	 Masmiati, N., Sarhan, A. A. D., Hassan, M. A. N., Hamdi, M. (2016). Optimization of cutting conditions for minimum residual 

stress, cutting force and surface roughness in end milling of S50C medium carbon steel. Measurement, 86, 253–265. doi: https://

doi.org/10.1016/j.measurement.2016.02.049 

5.	 Wu, Q., Li, D.-P., Zhang, Y.-D. (2016). Detecting Milling Deformation in 7075 Aluminum Alloy Aeronautical Monolithic Compo-

nents Using the Quasi-Symmetric Machining Method. Metals, 6 (4), 80. doi: https://doi.org/10.3390/met6040080 

6.	 Hlembotska, L., Melnychuk, P., Balytska, N., Melnyk, O. (2018). Modelling the loading of the nose-free cutting edges of face mill 

with a spiral-stepped arrangement of inserts. Eastern-European Journal of Enterprise Technologies, 1 (1 (91)), 46–54. doi: https://

doi.org/10.15587/1729-4061.2018.121712 

7.	 Huang, X., Sun, J., Li, J. (2015). Experimental investigation of the effect of tool geometry on residual stresses in high speed milling 

7050-T7451 aluminium alloy. International Journal of Surface Science and Engineering, 9 (4), 359. doi: https://doi.org/10.1504/

ijsurfse.2015.070813 

8.	 Mia, M., Bashir, M. A., Khan, M. A., Dhar, N. R. (2016). Optimization of MQL flow rate for minimum cutting force and surface 

roughness in end milling of hardened steel (HRC 40). The International Journal of Advanced Manufacturing Technology, 89 (1-4), 

675–690. doi: https://doi.org/10.1007/s00170-016-9080-8 

9.	 Mumali, F. (2022). Artificial neural network-based decision support systems in manufacturing processes: A systematic literature 

review. Computers & Industrial Engineering, 165, 107964. doi: https://doi.org/10.1016/j.cie.2022.107964 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/1 ( 120 ) 2022

24

10.	 Faizin, A., I Made Londen, B., Pramono, A. S., Wahjudi, A. (2021). Determination of the effect of thickness reduction ratio, die angle, 

and coefficient of friction on residual stresses in ironing process: an analysis using computer simulation. Eastern-European Journal 

of Enterprise Technologies, 5 (1 (113)), 70–78. doi: https://doi.org/10.15587/1729-4061.2021.243245 

11.	 Yao, C., Dou, X., Wu, D., Zhou, Z., Zhang, J. (2016). Surface integrity and fatigue analysis of shot-peening for 7055 aluminum alloy 

under different high-speed milling conditions. Advances in Mechanical Engineering, 8 (10), 168781401667462. doi: https://doi.org/ 

10.1177/1687814016674628 

12.	 Jiang, X., Zhang, Z., Ding, Z., Fergani, O., Liang, S. Y. (2017). Tool overlap effect on redistributed residual stress and shape distor-

tion produced by the machining of thin-walled aluminum parts. The International Journal of Advanced Manufacturing Technology,  

93 (5-8), 2227–2242. doi: https://doi.org/10.1007/s00170-017-0693-3 

13.	 Ji, C., Sun, S., Lin, B., Fei, J. (2018). Effect of cutting parameters on the residual stress distribution generated by pocket  

milling of 2219 aluminum alloy. Advances in Mechanical Engineering, 10 (12), 168781401881305. doi: https://doi.org/10.1177/ 

1687814018813055 

14.	 Perez, I., Madariaga, A., Cuesta, M., Garay, A., Arrazola, P. J., Ruiz, J. J. et al. (2018). Effect of cutting speed on the surface integrity 

of face milled 7050-T7451 aluminium workpieces. Procedia CIRP, 71, 460–465. doi: https://doi.org/10.1016/j.procir.2018.05.034 

15.	 Mohammadpour, M., Razfar, M. R., Jalili Saffar, R. (2010). Numerical investigating the effect of machining parameters on residual 

stresses in orthogonal cutting. Simulation Modelling Practice and Theory, 18 (3), 378–389. doi: https://doi.org/10.1016/j.simpat. 

2009.12.004 

16.	 Schajer, G. S. (1981). Application of Finite Element Calculations to Residual Stress Measurements. Journal of Engineering Mate

rials and Technology, 103 (2), 157–163. doi: https://doi.org/10.1115/1.3224988 

17.	 Afazov, S. M., Becker, A. A., Hyde, T. H. (2012). Mathematical Modeling and Implementation of Residual Stress Mapping From 

Microscale to Macroscale Finite Element Models. Journal of Manufacturing Science and Engineering, 134 (2). doi: https:// 

doi.org/10.1115/1.4006090 

18.	 Fuh, K.-H., Wu, C.-F. (1995). A residual-stress model for the milling of aluminum alloy (2014-T6). Journal of Materials Processing 

Technology, 51 (1-4), 87–105. doi: https://doi.org/10.1016/0924-0136(94)01355-5 

19.	 Zhou, R., Yang, W. (2019). Analytical modeling of machining-induced residual stresses in milling of complex surface. The Inter-

national Journal of Advanced Manufacturing Technology, 105 (1-4), 565–577. doi: https://doi.org/10.1007/s00170-019-04219-7 

20.	 Huang, X., Sun, J., Li, J., Han, X., Xiong, Q. (2013). An Experimental Investigation of Residual Stresses in High-Speed End Milling 

7050-T7451 Aluminum Alloy. Advances in Mechanical Engineering, 5, 592659. doi: https://doi.org/10.1155/2013/592659 

21.	 El-Axir, M. H. (2002). A method of modeling residual stress distribution in turning for different materials. International Journal of 

Machine Tools and Manufacture, 42 (9), 1055–1063. doi: https://doi.org/10.1016/s0890-6955(02)00031-7 

22.	 Cheng, M., Jiao, L., Yan, P., Feng, L., Qiu, T., Wang, X., Zhang, B. (2021). Prediction of surface residual stress in end milling with 

Gaussian process regression. Measurement, 178, 109333. doi: https://doi.org/10.1016/j.measurement.2021.109333 

23.	 Davis, J. R. (2001). Aluminum and Aluminum Alloys.‏ ASM Internationa. Available at: https://materialsdata.nist.gov/bitstream/

handle/11115/173/Aluminum%20and%20Aluminum%20Alloys%20Davis.pdf

24.	 Standard test methods for tension testing wrought and cast aluminum- and magnesium-alloy products (Metric) (2015). ASTM 

International. 

25.	 Baden, A. S. (2017). Prediction the effect of milling parameters upon the residual stresses through using taghuchi method. Iraqi jour-

nal of mechanical and material engineering, 17 (2), 211–222. Available at: https://www.iasj.net/iasj/download/bdfade35166a8370

26.	 Muñoz-Escalona, P., Maropoulos, P. G. (2015). A geometrical model for surface roughness prediction when face milling Al 7075-

T7351 with square insert tools. Journal of Manufacturing Systems, 36, 216–223. doi: https://doi.org/10.1016/j.jmsy.2014.06.011 

27.	 Sova, O., Shyshatskyi, A., Zhuravskyi, Y., Salnikova, O., Zubov, O., Zhyvotovskyi, R. et al. (2020). Development of a methodology 

for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 

2 (4 (104)), 6–14. doi: https://doi.org/10.15587/1729-4061.2020.199469 

28.	 Silva, D. P., Bastos, I. N., Fonseca, M. C. (2020). Influence of surface quality on residual stress of API 5L X80 steel submitted to 

static load and its prediction by artificial neural networks. The International Journal of Advanced Manufacturing Technology, 

108 (11-12), 3753–3764. doi: https://doi.org/10.1007/s00170-020-05621-2 

29.	 Nouioua, M., Laouissi, A., Yallese, M. A., Khettabi, R., Belhadi, S. (2021). Multi-response optimization using artificial neural net-

work-based GWO algorithm for high machining performance with minimum quantity lubrication. The International Journal of 

Advanced Manufacturing Technology, 116 (11-12), 3765–3778. doi: https://doi.org/10.1007/s00170-021-07745-5 

30.	 Jebaraj, M., Pradeep Kumar, M., Yuvaraj, N., Mujibar Rahman, G. (2019). Experimental study of the influence of the process 

parameters in the milling of Al6082-T6 alloy. Materials and Manufacturing Processes, 34 (12), 1411–1427. doi: https://doi.org/ 

10.1080/10426914.2019.1594271 

31.	 Reimer, A., Luo, X. (2018). Prediction of residual stress in precision milling of AISI H13 steel. Procedia CIRP, 71, 329–334.  

doi: https://doi.org/10.1016/j.procir.2018.05.036


