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1. Introduction 

Computer modeling of complex technical systems makes 
it possible to replace the study of a physical object with a 
computational experiment. This can significantly reduce 
the cost of design by reducing the number of full-scale 
tests. At the same time, the requirements for the computer 
models themselves and the corresponding software are in-
creasing. One of the most effective and universal numerical 
methods for solving multiphysics problems is the method of 
finite elements [1]. A significant number of both universal 
and specialized software packages have been developed for 
its application. Among the most well-known programs of 
finite-element analysis worth noting are Abaqus, Ansys, 
Nastran, and many others. However, most of these programs 
are proprietary, that is, based on a closed program code. An 
alternative to them is software with an open architecture, in 

particular, FreeFEM, GetFEM, FreeCAD, etc. [2]. Open-
source code allows the academic community to verify the 
software implementation of the algorithms used.

The number and variety of such systems are growing 
rapidly since in practice new types of materials (compos-
ites, materials with memory, etc.) are increasingly used. 
There are also new types of computing equipment (mul-
tiprocessor systems with shared or distributed memory, 
graphics and tensor processors). Thus, for the productive 
use of existing computer equipment and for taking into 
account the peculiarities of new structural materials, it is 
necessary to develop new software for finite-element anal-
ysis with an open-source code.

Due to the need for constant modernization of scientific 
software, the task arises of developing such a structure of the 
main modules of the programs, which would be as flexible 
and open to scaling as possible. As a result, so-called pat-
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the stressed-strained state of the turbine rotor 
blade. Due to the ease of implementation, it was 
possible to build a set of effective and intuitive 
classes that make it possible to solve numerically 
the static and dynamic problems in the theory 
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programming language, scaling the system requires consid-
erable effort compared to Python and Julia.

Work [8] offers a framework for the development of 
finite-element modeling fully implemented by the Julia pro-
gramming language. It is noted that the Gridap system is not 
a shell to other engineering analysis systems and, owing to 
the use of Julia, it combines a high level of abstraction of pro-
gram code and the efficiency of low-level C\C++ functions. 
The cited work does not indicate the features of the software 
architecture and the ability to scale.

In addition to standard implementations using deter-
ministic numerical algorithms, neural network variants of 
the finite element method have become popular in recent 
years. 

The algorithm for constructing a neural network, which 
is based on the idea of sampling the method of finite ele-
ments, is described in [9]. The kernel of neural solvers of dif-
ferential equations is deep neural networks, which can repre-
sent arbitrarily complex functions from the domain of values 
and, therefore, can approximate the equation. The system 
algorithm is based on the methods of Galerkin and Rayleigh-
Ritz. The work does not define the issues of the speed of the 
system, compared with the traditional implementations of 
the method of finite elements. This is probably due to the fact 
that the system is still at the stage of development. 

Paper [10] describes the FEM-NN library. The geometric 
domain determined by the differential equation is sampled 
in space using a well-established system of finite elements 
FEniCS [2]. The approach makes it possible to train neural 
networks when solving the optimization problem where the 
equation itself and boundary conditions are constraints. The 
work does not define the limits of application of the software 
implementation and the software repository does not con-
tain sufficient documentation. 

The authors of work [11] propose a dynamic architec-
ture of deep learning to solve linear parametric partial 
differential equations. The connections between neurons in 
architecture mimic the coherence graph of finite elements 
during the application of grid refinements. The software 
implementation is made in Python. The article does not 
highlight the features of the software implementation, 
which is important from the point of view of further prac-
tical use of the system. 

One of the important stages of the work of approximate 
methods for solving boundary problems is the solution of 
systems of linear algebraic equations. Work [12] proposes a 
method for solving large branched systems of algebraic equa-
tions. This approach involves the representation of a system 
of equations in the form of an unoriented weighted graph, 
which is the input of a graph neural network. The neural 
network is trained to solve the problem of regression of the 
system solution. Testing on static linear problems of struc-
tural mechanics has been carried out. It should be noted that 
the method is less accurate compared to classical numerical 
methods, and slower at that. However, as shown in the article 
on a synthetic example, neural network approximations may 
be promising.

In [13], the application of such neural networks to the 
solution of partial differential equations is analyzed: net-
works based on radial-basis functions (RBF-networks), 
multilayer perceptrons, and cell networks. Theoretical cal-
culations are given, without describing the software imple-
mentation, which is a disadvantage, from the point of view 
of a given article. 

terns or templates for the development of scientific software 
systems are devised [3].

This paper proposes a methodology for developing an ob-
ject-oriented architecture for the finite-element analysis of 
problems in the theory of elasticity, which was implemented 
in the Python programming language. 

The relevance of the work is associated with the need to 
design and develop software systems for engineering analy-
sis, with architecture adapted for further expansion, when 
solving new classes of problems. 

2. Literature review and problem statement

Finite-element analysis systems are usually designed to 
solve multiphysics problems. The emergence of new materi-
als (compositional, functional-gradient) requires constant 
updating of existing ones and the development of new imple-
mentations of the finite element method. 

Article [4] describes a Python implementation of the 
processor and postprocessor, designed to solve multiph-
ysics problems in 1D, 2D, and 3D spaces. In particular, a 
module for the homogenization of composite materials has 
been implemented. The system has an abstract interface 
for many grid generators. Abstract classes for methods for 
solving multiphysics problems (linear, nonlinear, etc.) are 
also implemented. But the issues of scaling this system to 
fundamentally different types of tasks, adding new finite 
elements, etc. remained uncovered. Obviously, this is due to 
the orientation of developers to certain classes of problems 
and appropriate approaches to solving them.

Work [5] considers the Freefem++ system, which imple-
ments the method of finite elements with a built-in language 
of a high level of description of problem statement and 
geometric regions. There is built-in grid generator, trian-
gular finite elements of different types, implementation of 
parallelization by means of the MPI library. In general, the 
Freefem++ system is an integrated open-source environ-
ment in the C++ programming language using generalized 
programming. Such a software implementation makes it 
possible to achieve high speed of calculations, but further 
modification of the system requires highly qualified devel-
oper and is quite complex.

The general scheme of construction of a finite-element 
kernel for solving differential equations in a weak form is 
proposed in [6]. It is assumed to use symbolic calculations 
for the kernel of the finite element method. The software is 
implemented in the Julia programming language, and the use 
of the CUDA library and computing on graphics processors 
is implied. It should be noted that owing to the use of the 
Julia language, the system has an intuitive source code but, 
at the same time, is quite fast. The cited article left undis-
closed the issue of software architecture and the interaction 
of software modules. 

Work [7] describes the automated finite-element analy-
sis system GetFEM, an essential part of which is the GWFL 
task description language built into the runtime library. Ow-
ing to GWFL, it is possible to set directly the mathematical 
formulation of the system’s energy functionality. GWFL ex-
pressions are passed as text string arguments to the available 
functions of C++, Python, Scilab to perform calculations. 
The cited work does not indicate the issues of support and 
expansion of this system to a wider class of tasks. The possi-
ble reason is that since GetFEM is implemented in the C++ 
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So, from the above works on the development of systems 
of finite-element analysis, we can draw the following con-
clusions:

– when implementing classical variants of the finite 
element method, often the computational core consists of 
modules in C++ to speed up operations [5]. At the same time, 
further scaling and adding new modules is problematic;

– recently, there have been wider distributed software 
implementations in the Julia language [6, 8]. However, an 
analysis of the source code showed that scaling these sys-
tems is problematic for a third-party user;

– a common approach is the implementation of neural 
network variants of approximate methods while the neural 
network is considered as a universal approximator. Cur-
rently, this approach does not always give an advantage in 
accuracy or performance [12]. However, neural network nu-
merical methods are promising and require further research;

– there are no works with a focus on applying the princi-
ples of object-oriented design to the development of methods 
for constructing scalable systems of finite-element analysis.

Among the above implementations of the finite element 
method, there are no advancements aimed at potentially 
expanding the capabilities of the system by its users. Most 
studies consider integral systems focused on a specific type 
of analysis, and changes to such systems can be carried out 
either by developers or qualified programmers.

3. The aim and objectives of the study

The aim of this study is to devise a methodology for de-
signing object-oriented systems of finite-element modeling, 
which can be used to build both universal and specialized 
software designed to analyze multiphysics problems.

This will make it possible not only to use the developed 
software as a finished product but also to scale it in an easy 
and understandable way.

To accomplish the aim, the following tasks have been set:
– to design an open object-oriented architecture of the 

system of finite-element analysis; 
– to develop an object-oriented PyFEM class library, 

which implements the solution of static and dynamic prob-
lems of the theory of elasticity using the method of finite 
elements;

– to test the developed system on model problems from 
the theory of elasticity.

4. The study materials and methods

The object of our study is the systems of finite-element 
analysis. The focus is on open software implementations in 
the form of a package of modules or independent software. 
The hypothesis of the study assumes that software imple-
mentations of the finite-element method with a scalable 
architecture will improve the quality of research using 
finite-element analysis. It is assumed that the object-ori-
ented programming paradigm is the most acceptable for 
the development of this class of systems. Accepted sim-
plifications are that a qualitative analysis of the program 
code of the systems considered in the work and relevant 
publications is used. The main criteria are the presence of a 
clear class structure that corresponds to the main stages of 
the finite element method.

Software complexes of finite-element analysis, as a rule, 
consist of three basic subsystems:

1) preprocessor – subsystems of automation of prepara-
tion of initial data for calculation (generator of finite-ele-
ment model of the original geometric domain);

2) processor – the core of the analysis system, which 
directly implements the finite-element calculation of the 
problem (statics, dynamics, thermoelasticity, etc.);

3) postprocessor – a subsystem that automates the anal-
ysis of the obtained numerical results, for example, by their 
specific visualization [1].

As a preprocessor, the work can use, for example, 
Gmsh [14], Netgen/NGSolve [15].

The main component of any finite-element system is the 
processor. It directly implements one or another algorithm for 
applying the method of finite elements to solve a specific class of 
problems. Usually, this algorithm makes it possible to construct 
for each finite element its corresponding matrices of hardness, 
mass, and damping, which depend on the energy functionality 
used (variational principle). All further functions of the pro-
cessor (or solver) are fairly standard. Among them are adding 
local matrices of finite elements to their corresponding global 
ones; taking into account the boundary conditions; solving sys-
tems of linear algebraic equations, etc. The architecture of the 
processor in general depends on the type of tasks on which it is 
focused (for example, statics or dynamics) but in most cases, it 
is closed (that is, it does not allow its easy expansion to adapt to 
new conditions of use) [1].

Since the result of the work of any processor of the fi-
nite-element analysis system is a large array of numerical 
information, the task arises of increasing the clarity of its 
analysis. For this purpose, so-called postprocessors are 
being developed that automate the analysis of numerical 
information. Usually, visualization is used for this in the 
form of various graphs or color images of the distribution of 
the values of the resulting function – a phase variable in the 
calculation area. Also, prostprocessors can synthesize addi-
tional information (for example, calculating the intensity of 
stresses based on the values of previously obtained compo-
nents of the stress tensor). The substantiation of the above 
structure of finite-element analysis systems is given in [1]. 

Software development and support are becoming in-
creasingly complex and time-consuming processes. One 
of the main approaches to the design of complex software 
systems is the object-oriented programming paradigm [16]. 
When using this paradigm, in particular for the development 
of scientific software, certain architectural templates are 
typically used. These may include some generic solutions 
in software architecture that are applied in a specific given 
context. More general approaches to the design of object-ori-
ented systems are also used, for example, SOLID principles 
that describe the general requirements for class construction 
and interaction between them [16]. 

Among the main generally accepted requirements for the 
construction of object-oriented software are the following: sep-
aration of class responsibility according to the functions of the 
developed system; openness of classes for expansion; avoiding 
duplication of information and program code in the system; the 
simpler the class structure, the better the rest [1, 16]. The use of 
these principles in the design will make it possible to develop a 
software implementation open for adding new implementations 
of the method of finite elements, types of elements, methods of 
preprocessor and postprocessor processing, etc. That is, it will 
make the program open to scaling and expanding functionality. 
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So, when developing complex software systems, in par-
ticular finite-element analysis programs, it is relevant to 
apply an object-oriented paradigm and general design prin-
ciples, for example, SOLID. 

5. Design and development of a finite�element analysis 
system 

5. 1. Design of an open object�oriented architecture of 
a finite�element analysis system 

The process of designing the architecture of the system 
of finite-element analysis is partially described in [17]; this 
article expands the description of the main abstract classes 
and model problems.

The description of the discrete model of the original do-
main can be given in the form of a class hierarchy, where the 
basic abstract class, TMesh (Fig. 1), contains all the informa-
tion necessary for calculation about the structure of the grid: 
the type of finite elements; the number of nodes, etc., but does 
not have the implementation of downloading data from a file 
of a specific format (vol, mesh, trpa, etc.). Classes derived from 
TMesh (for example, TMeshTRPA) contain only methods for 
reading information from grid data files in a given format [17].

The most important from the point of view of software 
implementation of the finite element method are classes that 
encapsulate different types of finite elements (their elastic 
and physical characteristics, local stiffness, mass and damping 
matrices, etc.). To account for their diversity, PyFEM imple-
ments a hierarchical class structure. The base is the abstract 
class TFE, which describes the most fundamental properties 
of an isoparametric finite element: the number of nodes (di-
mension); cross-sectional area for one-dimensional or thickness 
for two-dimensional elements; elastic properties; temperature; 
coefficient of thermal expansion; density; damping factor; local 
hardness, mass and damping matrices, quadrature parameters 
for numerical integration, etc. In this class, the procedure for 
constructing local matrices is defined but not implemented 
because it depends on the type of a particular element. Abstract 
classes TFE1D, TFE2D, and TFE3D derived from TFE imple-
ment the construction of local matrices for standard one-, two-, 
and three-dimensional elements [17]. These implementations 
do not contain appropriate procedures for constructing func-
tions of finite element forms (Fig. 1). 

No less important component of any system of finite-el-
ement analysis is the module, which directly implements the 
algorithm for solving a specific type of problem [1]. Due to a 
large number of types of calculations (statics, dynamics, nonlin-
earity, contact problems, etc.), their universal practical imple-
mentation is associated with certain difficulties. The PyFEM 
library has developed a number of interrelated classes for this, 
each of which is designed to solve a specific type of problem.

The basic abstract class TFEM contains the most gen-
eral properties and methods necessary for the programmatic 
implementation of the finite element method: a description of 
the finite-element grid; all the parameters necessary for the 
calculation; solver of systems of linear algebraic equations; table 
of results, etc. The central method of TFEM is the procedure 
for starting the calculation, which in this class is abstract since 
its specific implementation depends on the type of task. Py-
FEM currently implements two successor classes from TFEM: 
TFEMStatic and TFEMDynamic, designed to solve the cor-
responding elastic static and dynamic problems (Fig. 2) [17].

Fig. 2. UML diagram of abstract classes of the finite element 

method (TFEM) and calculation object (TObject)

Fig. 1. UML diagram of the main abstract classes of the 

discrete model (TMesh) and finite element (TFE)
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The central part of the PyFEM library is the TObject 
class (Fig. 2). In fact, it is a shell for TFEM and its heirs and 
implements a user interface for accessing the library. By con-
trolling the methods of this class, the user can determine a 
new object of calculation, and assign a finite-element model 
to it, elastic and physical characteristics, 
boundary conditions and loads, as well as 
other parameters necessary for calculation. 
The user can also choose a way to solve 
systems of linear algebraic equations (direct 
or iterative), the format for displaying the 
calculation results in a file or screen, etc. [17].

5. 2. Software implementation of the 
PyFEM class library

The software implementation of the 
finite element method class library is per-
formed in the Python programming lan-
guage using the basic libraries Math, Scipy, 
Numpy. So, the work of PyFEM does not 
require the installation of additional librar-
ies in which version conflicts may occur.

Fig. 3 shows an example of creating an 
instance of the TObject class for a new calculation. In fact, 
to perform finite-element analysis using the PyFEM library, 
it is necessary to connect all the necessary libraries and cre-
ate a TObject object with specified physical and geometric 
parameters.  

In the above example (Fig. 3), by using the method of 
class TObject set_mesh(), from a given data file one loads in-
formation about the discrete shell model that was built in the 
Gmsh application [14]. After that, 
the calculation type (method set_
problem_type()), calculation meth-
od (set_solve_method() method), 
Young’s module and Poisson coef-
ficient (methods add_young_mod-
ulus() and add_poisson_ratio(), 
respectively), boundary conditions 
(method add_boundary_condi-
tion()) are set, and the volumetric 
load (add_volume_load() method) 
is determined.

To determine the effectiveness 
of the software implementation, 
code metrics are used. Among the 
most popular metrics are the fol-
lowing: maintainability index (En-
glish: Maintainability Index, MI), 
cyclomatic complexity (English: 
Cyclomatic Complexity, CC) [18].

As shown in [18], these dimen-
sionless numerical characteristics 
determine the quality of the pro-
gram code, in terms of its support 
and scaling. The MI value in the 
range of 20–100 indicates a satis-
factory level of complexity of code 
support. The SS metric indicates 
the structural complexity of the 
code; at values greater than 10, it 
is recommended to refactor [18]. 
The values of these metrics for 
the modules of the PyFEM system 

core vary in the following ranges: MI from 1 to 18, SS from 
22 to 100. In general, this indicates a satisfactory quality of 
the program code in terms of further scaling. To calculate 
the metrics, the Radon package was used  (https://pypi.org/
project/radon/).

5. 3. Testing on model problems from the theory of 
elasticity

As a numerical example, the problem of determining the 
stressed-strained state of the turbine rotor blade is consid-
ered (Fig. 4). The following materials were used to compare 
the results: Titanium Ti-6Al-4V and an intermetallic alloy 
based on titanium aluminides Ti-Al-Nb. The physical prop-
erties of these materials are given in Table 1.

Fig. 3. Software implementation of the calculation of the turbine rotor blade

a                                                                   b

Fig. 4. Turbine rotor blade calculation results: a – Ti-6Al-4V material; 

b – Ti-Al-Nb material
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Table 1

Physical properties of materials for a numerical experiment

Material 
Young’s modu-

lus, MPa
Poisson coefficient

Ti-6Al-4V [19] 1.14E05 0.342

Ti-Al-Nb [20, 21] 0.95E05 0.300

The calculations were carried out in a linear-elastic 
statement with a volumetric load of 0.05 MPa, the type of 
finite element was a linear tetrahedron, 4 nodes. There are 
no temperature stresses.

Fig. 4 shows the distribution of movements U along the 
X axis thru the volume of the blades.

The software implementation of the developed Py-
FEM class library can be found at the https://github.com/
SeregaGomen/pyfem link.

6. Discussion of results of the design and development of 
an object�oriented system

The developed project of the system of finite-element 
analysis and the open library of classes as a whole correspond 
to the approaches to object-oriented programming, in par-
ticular, SOLID principles [16]. The PyFEM system design 
methodology, a system of developed classes, is common for 
the implementation of the finite element method and can be 
used in the development of other similar software systems. 

The developed architecture makes it possible to add new 
elements of the system by imitating abstract classes. For ex-
ample, an abstract class of a finite element TFE (Fig. 1) must 
be the parent for any implementation of a new element type. 
Similarly, when creating a new version of the finite element 
method, for example, for the thermoelasticity problem, it is 
necessary to imitate the abstract class TFEM (Fig. 2) and 
redefine the methods of this class. 

In general, this approach to development is flexible and 
makes it possible to use PyFEM in the development of other 
engineering analysis systems or directly for calculations. 

The software implementation of PyFEM is fully execut-
ed by the Python programming language (Fig. 3), while, 
for programming the processor modules, the Math, Scipy, 
Numpy libraries are used, which have stable versions for 
different operating systems. In addition, the high level of 
abstraction of the Python language can reduce development 
time, compared to the C++ or Fortran languages. Analysis 
of similar implementations showed that, for example, the 
systems SfePy [4], FreeFem [5], GetFem [7] are implemen-
tations of the finite element method for solving a wide range 
of problems from the theory of elasticity, however, there is 
currently no possibility for quickly adding new modules to 
expand the possibilities of calculation. To test the quality 
of the developed system from the point of view of software 
engineering, the maintainability index and cyclomatic com-
plexity code metrics were used. The values of these metrics 
for the modules of the PyFEM system core vary in the fol-
lowing ranges: from 1 to 18 for the maintainability index, 
and from 22 to 100 for cyclomatic complexity.

Model problems (Fig. 4) illustrate the work of the post-
processor to visualize the distribution of the desired move-
ments by the volume of the structure.

Currently, the limitations of the developed system are the 
inability to parallel calculation using graphics processors.

The disadvantage of the study is the lack of implemen-
tation of methods for solving problems of physically and 
geometrically nonlinear elasticity, plasticity, viscoelasticity. 

So, further development may consist in programming 
computational modules using computing libraries on graphics 
processors (for example, CUDA). As well as adding new vari-
ants of the finite element method for a wider range of tasks.

7. Conclusions 

1. An open object-oriented architecture system of fi-
nite-element analysis has been designed. The hierarchical 
structure of classes encapsulates the object of calculation, 
the static and dynamic implementation of the finite element 
method, finite elements of different types, the discrete mod-
el of the original object, etc. The method of designing the 
system used is common for the implementation of the finite 
element method and can be applied in the development of 
other similar implementations of the finite element method. 

2. An object-oriented PyFEM class library has been de-
veloped. Due to the ease of implementation, it was possible to 
build a set of effective and intuitive classes that make it possible 
to perform numerical solutions to static and dynamic problems 
from the theory of elasticity. The software system provides 
the ability to easily expand it to improve the functionality of 
the processor, which is confirmed by the calculation of source 
code metrics. To test the quality of the developed system from 
the point of view of software engineering, the maintainability 
index and cyclomatic complexity code metrics were used. The 
values of these metrics for the modules of the PyFEM system 
core vary in the following ranges: from 1 to 18 for the main-
tainability index, and from 22 to 100 for cyclomatic complexity.

3. PyFEM testing was performed on the task of deter-
mining the stressed-strained state of the turbine rotor blade. 
Examples of the software interface for determining the cal-
culation conditions and the results of the postprocessor are 
given. Our technological advancement can be applied in the 
practice of design organizations.
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