
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/2 (120) 2022

78

1. Introduction

Computer modeling of complex technical systems makes
it possible to replace the study of a physical object with a
computational experiment. This can significantly reduce
the cost of design by reducing the number of full-scale
tests. At the same time, the requirements for the computer
models themselves and the corresponding software are in-
creasing. One of the most effective and universal numerical
methods for solving multiphysics problems is the method of
finite elements [1]. A significant number of both universal
and specialized software packages have been developed for
its application. Among the most well-known programs of
finite-element analysis worth noting are Abaqus, Ansys,
Nastran, and many others. However, most of these programs
are proprietary, that is, based on a closed program code. An
alternative to them is software with an open architecture, in

particular, FreeFEM, GetFEM, FreeCAD, etc. [2]. Open-
source code allows the academic community to verify the
software implementation of the algorithms used.

The number and variety of such systems are growing
rapidly since in practice new types of materials (compos-
ites, materials with memory, etc.) are increasingly used.
There are also new types of computing equipment (mul-
tiprocessor systems with shared or distributed memory,
graphics and tensor processors). Thus, for the productive
use of existing computer equipment and for taking into
account the peculiarities of new structural materials, it is
necessary to develop new software for finite-element anal-
ysis with an open-source code.

Due to the need for constant modernization of scientific
software, the task arises of developing such a structure of the
main modules of the programs, which would be as flexible
and open to scaling as possible. As a result, so-called pat-

DESIGNING AN

OBJECT-ORIENTED

ARCHITECTURE FOR

THE FINITE ELEMENT

SIMULATION OF

STRUCTURAL ELEMENTS

O l e k s i i G n e z d o v s k y

Senior Lecturer

Department of Informational Technologies in Tourism

National University "Zaporizhzhia Polytechnic"

Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

O l e k s i i K u d i n

PhD, Associate Professor

Department of Software Engineering**

Y u r i y B e l o k o n

Corresponding author

Doctor of Technical Sciences, Associate Professor*

E-mail: belokon.zp@gmail.com

D m y t r o K r u g l y a k

PhD, Associate Professor

Department of Pressure Metal Processing**

S e r g i i I l i n

PhD

Department of Thermal Power and Hydropower**

*Department of Pressure Metal Processing**

**Zaporizhzhia National University

Zhukovskoho str., 66, Zaporizhzhia, Ukraine, 69600

This paper reports the development of an
architecture and software implementation of the
library of classes for the finite-element analysis
of problems in the theory of elasticity with an
open-source code. The practical necessity of
such systems is due to the fact that in modern
equipment there are new types of materials whose
structural elements' calculation has certain
features. As a result, it is necessary to update
the relevant scientific software or even devise
a new one. A flexible software architecture is
designed to reduce the time and complexity
of such updates. Existing implementations of
the method of finite elements with open source
have been analyzed: it was revealed that there
are no systems aimed at the most flexible and
user-friendly architecture. The system of
abstract classes proposed in the current work
corresponds to known SOLID principles of
object-oriented design and makes it possible to
scale the already developed analysis program
for new tasks in an easy and understandable
way. To test the quality of the developed system
from the point of view of software engineering,
the maintainability index and cyclomatic
complexity code metrics were used. The values
of these metrics for the modules of the PyFEM
system core vary in the following ranges: from
1 to 18 for the maintainability index, and from
22 to 100 for cyclomatic complexity. PyFEM
testing was performed on the task of determining
the stressed-strained state of the turbine rotor
blade. Due to the ease of implementation, it was
possible to build a set of effective and intuitive
classes that make it possible to solve numerically
the static and dynamic problems in the theory
of elasticity. The developed class library can
be used in the development of both universal
and specialized software designed to analyze
multiphysics problems

Keywords: finite element method, object-
oriented programming, design pattern, theory of
elasticity, PyFEM

UDC 004.925:539.3

DOI: 10.15587/1729-4061.2022.268018

How to Cite: Gnezdovsky, O., Kudin, O., Belokon, Y., Kruglyak, D., Ilin, S. (2022). Designing an object-oriented architecture for

the finite element simulation of structural elements. Eastern-European Journal of Enterprise Technologies, 6 (2 (120)), 78–84.

doi: https://doi.org/10.15587/1729-4061.2022.268018

Received date 23.09.2022

Accepted date 25.11.2022

Published date 30.12.2022

Copyright © 2022, Authors. This is an open access article under the Creative Commons CC BY license

Information technology

79

programming language, scaling the system requires consid-
erable effort compared to Python and Julia.

Work [8] offers a framework for the development of
finite-element modeling fully implemented by the Julia pro-
gramming language. It is noted that the Gridap system is not
a shell to other engineering analysis systems and, owing to
the use of Julia, it combines a high level of abstraction of pro-
gram code and the efficiency of low-level C\C++ functions.
The cited work does not indicate the features of the software
architecture and the ability to scale.

In addition to standard implementations using deter-
ministic numerical algorithms, neural network variants of
the finite element method have become popular in recent
years.

The algorithm for constructing a neural network, which
is based on the idea of sampling the method of finite ele-
ments, is described in [9]. The kernel of neural solvers of dif-
ferential equations is deep neural networks, which can repre-
sent arbitrarily complex functions from the domain of values
and, therefore, can approximate the equation. The system
algorithm is based on the methods of Galerkin and Rayleigh-
Ritz. The work does not define the issues of the speed of the
system, compared with the traditional implementations of
the method of finite elements. This is probably due to the fact
that the system is still at the stage of development.

Paper [10] describes the FEM-NN library. The geometric
domain determined by the differential equation is sampled
in space using a well-established system of finite elements
FEniCS [2]. The approach makes it possible to train neural
networks when solving the optimization problem where the
equation itself and boundary conditions are constraints. The
work does not define the limits of application of the software
implementation and the software repository does not con-
tain sufficient documentation.

The authors of work [11] propose a dynamic architec-
ture of deep learning to solve linear parametric partial
differential equations. The connections between neurons in
architecture mimic the coherence graph of finite elements
during the application of grid refinements. The software
implementation is made in Python. The article does not
highlight the features of the software implementation,
which is important from the point of view of further prac-
tical use of the system.

One of the important stages of the work of approximate
methods for solving boundary problems is the solution of
systems of linear algebraic equations. Work [12] proposes a
method for solving large branched systems of algebraic equa-
tions. This approach involves the representation of a system
of equations in the form of an unoriented weighted graph,
which is the input of a graph neural network. The neural
network is trained to solve the problem of regression of the
system solution. Testing on static linear problems of struc-
tural mechanics has been carried out. It should be noted that
the method is less accurate compared to classical numerical
methods, and slower at that. However, as shown in the article
on a synthetic example, neural network approximations may
be promising.

In [13], the application of such neural networks to the
solution of partial differential equations is analyzed: net-
works based on radial-basis functions (RBF-networks),
multilayer perceptrons, and cell networks. Theoretical cal-
culations are given, without describing the software imple-
mentation, which is a disadvantage, from the point of view
of a given article.

terns or templates for the development of scientific software
systems are devised [3].

This paper proposes a methodology for developing an ob-
ject-oriented architecture for the finite-element analysis of
problems in the theory of elasticity, which was implemented
in the Python programming language.

The relevance of the work is associated with the need to
design and develop software systems for engineering analy-
sis, with architecture adapted for further expansion, when
solving new classes of problems.

2. Literature review and problem statement

Finite-element analysis systems are usually designed to
solve multiphysics problems. The emergence of new materi-
als (compositional, functional-gradient) requires constant
updating of existing ones and the development of new imple-
mentations of the finite element method.

Article [4] describes a Python implementation of the
processor and postprocessor, designed to solve multiph-
ysics problems in 1D, 2D, and 3D spaces. In particular, a
module for the homogenization of composite materials has
been implemented. The system has an abstract interface
for many grid generators. Abstract classes for methods for
solving multiphysics problems (linear, nonlinear, etc.) are
also implemented. But the issues of scaling this system to
fundamentally different types of tasks, adding new finite
elements, etc. remained uncovered. Obviously, this is due to
the orientation of developers to certain classes of problems
and appropriate approaches to solving them.

Work [5] considers the Freefem++ system, which imple-
ments the method of finite elements with a built-in language
of a high level of description of problem statement and
geometric regions. There is built-in grid generator, trian-
gular finite elements of different types, implementation of
parallelization by means of the MPI library. In general, the
Freefem++ system is an integrated open-source environ-
ment in the C++ programming language using generalized
programming. Such a software implementation makes it
possible to achieve high speed of calculations, but further
modification of the system requires highly qualified devel-
oper and is quite complex.

The general scheme of construction of a finite-element
kernel for solving differential equations in a weak form is
proposed in [6]. It is assumed to use symbolic calculations
for the kernel of the finite element method. The software is
implemented in the Julia programming language, and the use
of the CUDA library and computing on graphics processors
is implied. It should be noted that owing to the use of the
Julia language, the system has an intuitive source code but,
at the same time, is quite fast. The cited article left undis-
closed the issue of software architecture and the interaction
of software modules.

Work [7] describes the automated finite-element analy-
sis system GetFEM, an essential part of which is the GWFL
task description language built into the runtime library. Ow-
ing to GWFL, it is possible to set directly the mathematical
formulation of the system’s energy functionality. GWFL ex-
pressions are passed as text string arguments to the available
functions of C++, Python, Scilab to perform calculations.
The cited work does not indicate the issues of support and
expansion of this system to a wider class of tasks. The possi-
ble reason is that since GetFEM is implemented in the C++

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/2 (120) 2022

80

So, from the above works on the development of systems
of finite-element analysis, we can draw the following con-
clusions:

– when implementing classical variants of the finite
element method, often the computational core consists of
modules in C++ to speed up operations [5]. At the same time,
further scaling and adding new modules is problematic;

– recently, there have been wider distributed software
implementations in the Julia language [6, 8]. However, an
analysis of the source code showed that scaling these sys-
tems is problematic for a third-party user;

– a common approach is the implementation of neural
network variants of approximate methods while the neural
network is considered as a universal approximator. Cur-
rently, this approach does not always give an advantage in
accuracy or performance [12]. However, neural network nu-
merical methods are promising and require further research;

– there are no works with a focus on applying the princi-
ples of object-oriented design to the development of methods
for constructing scalable systems of finite-element analysis.

Among the above implementations of the finite element
method, there are no advancements aimed at potentially
expanding the capabilities of the system by its users. Most
studies consider integral systems focused on a specific type
of analysis, and changes to such systems can be carried out
either by developers or qualified programmers.

3. The aim and objectives of the study

The aim of this study is to devise a methodology for de-
signing object-oriented systems of finite-element modeling,
which can be used to build both universal and specialized
software designed to analyze multiphysics problems.

This will make it possible not only to use the developed
software as a finished product but also to scale it in an easy
and understandable way.

To accomplish the aim, the following tasks have been set:
– to design an open object-oriented architecture of the

system of finite-element analysis;
– to develop an object-oriented PyFEM class library,

which implements the solution of static and dynamic prob-
lems of the theory of elasticity using the method of finite
elements;

– to test the developed system on model problems from
the theory of elasticity.

4. The study materials and methods

The object of our study is the systems of finite-element
analysis. The focus is on open software implementations in
the form of a package of modules or independent software.
The hypothesis of the study assumes that software imple-
mentations of the finite-element method with a scalable
architecture will improve the quality of research using
finite-element analysis. It is assumed that the object-ori-
ented programming paradigm is the most acceptable for
the development of this class of systems. Accepted sim-
plifications are that a qualitative analysis of the program
code of the systems considered in the work and relevant
publications is used. The main criteria are the presence of a
clear class structure that corresponds to the main stages of
the finite element method.

Software complexes of finite-element analysis, as a rule,
consist of three basic subsystems:

1) preprocessor – subsystems of automation of prepara-
tion of initial data for calculation (generator of finite-ele-
ment model of the original geometric domain);

2) processor – the core of the analysis system, which
directly implements the finite-element calculation of the
problem (statics, dynamics, thermoelasticity, etc.);

3) postprocessor – a subsystem that automates the anal-
ysis of the obtained numerical results, for example, by their
specific visualization [1].

As a preprocessor, the work can use, for example,
Gmsh [14], Netgen/NGSolve [15].

The main component of any finite-element system is the
processor. It directly implements one or another algorithm for
applying the method of finite elements to solve a specific class of
problems. Usually, this algorithm makes it possible to construct
for each finite element its corresponding matrices of hardness,
mass, and damping, which depend on the energy functionality
used (variational principle). All further functions of the pro-
cessor (or solver) are fairly standard. Among them are adding
local matrices of finite elements to their corresponding global
ones; taking into account the boundary conditions; solving sys-
tems of linear algebraic equations, etc. The architecture of the
processor in general depends on the type of tasks on which it is
focused (for example, statics or dynamics) but in most cases, it
is closed (that is, it does not allow its easy expansion to adapt to
new conditions of use) [1].

Since the result of the work of any processor of the fi-
nite-element analysis system is a large array of numerical
information, the task arises of increasing the clarity of its
analysis. For this purpose, so-called postprocessors are
being developed that automate the analysis of numerical
information. Usually, visualization is used for this in the
form of various graphs or color images of the distribution of
the values of the resulting function – a phase variable in the
calculation area. Also, prostprocessors can synthesize addi-
tional information (for example, calculating the intensity of
stresses based on the values of previously obtained compo-
nents of the stress tensor). The substantiation of the above
structure of finite-element analysis systems is given in [1].

Software development and support are becoming in-
creasingly complex and time-consuming processes. One
of the main approaches to the design of complex software
systems is the object-oriented programming paradigm [16].
When using this paradigm, in particular for the development
of scientific software, certain architectural templates are
typically used. These may include some generic solutions
in software architecture that are applied in a specific given
context. More general approaches to the design of object-ori-
ented systems are also used, for example, SOLID principles
that describe the general requirements for class construction
and interaction between them [16].

Among the main generally accepted requirements for the
construction of object-oriented software are the following: sep-
aration of class responsibility according to the functions of the
developed system; openness of classes for expansion; avoiding
duplication of information and program code in the system; the
simpler the class structure, the better the rest [1, 16]. The use of
these principles in the design will make it possible to develop a
software implementation open for adding new implementations
of the method of finite elements, types of elements, methods of
preprocessor and postprocessor processing, etc. That is, it will
make the program open to scaling and expanding functionality.

Information technology

81

So, when developing complex software systems, in par-
ticular finite-element analysis programs, it is relevant to
apply an object-oriented paradigm and general design prin-
ciples, for example, SOLID.

5. Design and development of a finite�element analysis
system

5. 1. Design of an open object�oriented architecture of
a finite�element analysis system

The process of designing the architecture of the system
of finite-element analysis is partially described in [17]; this
article expands the description of the main abstract classes
and model problems.

The description of the discrete model of the original do-
main can be given in the form of a class hierarchy, where the
basic abstract class, TMesh (Fig. 1), contains all the informa-
tion necessary for calculation about the structure of the grid:
the type of finite elements; the number of nodes, etc., but does
not have the implementation of downloading data from a file
of a specific format (vol, mesh, trpa, etc.). Classes derived from
TMesh (for example, TMeshTRPA) contain only methods for
reading information from grid data files in a given format [17].

The most important from the point of view of software
implementation of the finite element method are classes that
encapsulate different types of finite elements (their elastic
and physical characteristics, local stiffness, mass and damping
matrices, etc.). To account for their diversity, PyFEM imple-
ments a hierarchical class structure. The base is the abstract
class TFE, which describes the most fundamental properties
of an isoparametric finite element: the number of nodes (di-
mension); cross-sectional area for one-dimensional or thickness
for two-dimensional elements; elastic properties; temperature;
coefficient of thermal expansion; density; damping factor; local
hardness, mass and damping matrices, quadrature parameters
for numerical integration, etc. In this class, the procedure for
constructing local matrices is defined but not implemented
because it depends on the type of a particular element. Abstract
classes TFE1D, TFE2D, and TFE3D derived from TFE imple-
ment the construction of local matrices for standard one-, two-,
and three-dimensional elements [17]. These implementations
do not contain appropriate procedures for constructing func-
tions of finite element forms (Fig. 1).

No less important component of any system of finite-el-
ement analysis is the module, which directly implements the
algorithm for solving a specific type of problem [1]. Due to a
large number of types of calculations (statics, dynamics, nonlin-
earity, contact problems, etc.), their universal practical imple-
mentation is associated with certain difficulties. The PyFEM
library has developed a number of interrelated classes for this,
each of which is designed to solve a specific type of problem.

The basic abstract class TFEM contains the most gen-
eral properties and methods necessary for the programmatic
implementation of the finite element method: a description of
the finite-element grid; all the parameters necessary for the
calculation; solver of systems of linear algebraic equations; table
of results, etc. The central method of TFEM is the procedure
for starting the calculation, which in this class is abstract since
its specific implementation depends on the type of task. Py-
FEM currently implements two successor classes from TFEM:
TFEMStatic and TFEMDynamic, designed to solve the cor-
responding elastic static and dynamic problems (Fig. 2) [17].

Fig. 2. UML diagram of abstract classes of the finite element

method (TFEM) and calculation object (TObject)

Fig. 1. UML diagram of the main abstract classes of the

discrete model (TMesh) and finite element (TFE)

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/2 (120) 2022

82

The central part of the PyFEM library is the TObject
class (Fig. 2). In fact, it is a shell for TFEM and its heirs and
implements a user interface for accessing the library. By con-
trolling the methods of this class, the user can determine a
new object of calculation, and assign a finite-element model
to it, elastic and physical characteristics,
boundary conditions and loads, as well as
other parameters necessary for calculation.
The user can also choose a way to solve
systems of linear algebraic equations (direct
or iterative), the format for displaying the
calculation results in a file or screen, etc. [17].

5. 2. Software implementation of the
PyFEM class library

The software implementation of the
finite element method class library is per-
formed in the Python programming lan-
guage using the basic libraries Math, Scipy,
Numpy. So, the work of PyFEM does not
require the installation of additional librar-
ies in which version conflicts may occur.

Fig. 3 shows an example of creating an
instance of the TObject class for a new calculation. In fact,
to perform finite-element analysis using the PyFEM library,
it is necessary to connect all the necessary libraries and cre-
ate a TObject object with specified physical and geometric
parameters.

In the above example (Fig. 3), by using the method of
class TObject set_mesh(), from a given data file one loads in-
formation about the discrete shell model that was built in the
Gmsh application [14]. After that,
the calculation type (method set_
problem_type()), calculation meth-
od (set_solve_method() method),
Young’s module and Poisson coef-
ficient (methods add_young_mod-
ulus() and add_poisson_ratio(),
respectively), boundary conditions
(method add_boundary_condi-
tion()) are set, and the volumetric
load (add_volume_load() method)
is determined.

To determine the effectiveness
of the software implementation,
code metrics are used. Among the
most popular metrics are the fol-
lowing: maintainability index (En-
glish: Maintainability Index, MI),
cyclomatic complexity (English:
Cyclomatic Complexity, CC) [18].

As shown in [18], these dimen-
sionless numerical characteristics
determine the quality of the pro-
gram code, in terms of its support
and scaling. The MI value in the
range of 20–100 indicates a satis-
factory level of complexity of code
support. The SS metric indicates
the structural complexity of the
code; at values greater than 10, it
is recommended to refactor [18].
The values of these metrics for
the modules of the PyFEM system

core vary in the following ranges: MI from 1 to 18, SS from
22 to 100. In general, this indicates a satisfactory quality of
the program code in terms of further scaling. To calculate
the metrics, the Radon package was used (https://pypi.org/
project/radon/).

5. 3. Testing on model problems from the theory of
elasticity

As a numerical example, the problem of determining the
stressed-strained state of the turbine rotor blade is consid-
ered (Fig. 4). The following materials were used to compare
the results: Titanium Ti-6Al-4V and an intermetallic alloy
based on titanium aluminides Ti-Al-Nb. The physical prop-
erties of these materials are given in Table 1.

Fig. 3. Software implementation of the calculation of the turbine rotor blade

a b

Fig. 4. Turbine rotor blade calculation results: a – Ti-6Al-4V material;

b – Ti-Al-Nb material

Information technology

83

Table 1

Physical properties of materials for a numerical experiment

Material
Young’s modu-

lus, MPa
Poisson coefficient

Ti-6Al-4V [19] 1.14E05 0.342

Ti-Al-Nb [20, 21] 0.95E05 0.300

The calculations were carried out in a linear-elastic
statement with a volumetric load of 0.05 MPa, the type of
finite element was a linear tetrahedron, 4 nodes. There are
no temperature stresses.

Fig. 4 shows the distribution of movements U along the
X axis thru the volume of the blades.

The software implementation of the developed Py-
FEM class library can be found at the https://github.com/
SeregaGomen/pyfem link.

6. Discussion of results of the design and development of
an object�oriented system

The developed project of the system of finite-element
analysis and the open library of classes as a whole correspond
to the approaches to object-oriented programming, in par-
ticular, SOLID principles [16]. The PyFEM system design
methodology, a system of developed classes, is common for
the implementation of the finite element method and can be
used in the development of other similar software systems.

The developed architecture makes it possible to add new
elements of the system by imitating abstract classes. For ex-
ample, an abstract class of a finite element TFE (Fig. 1) must
be the parent for any implementation of a new element type.
Similarly, when creating a new version of the finite element
method, for example, for the thermoelasticity problem, it is
necessary to imitate the abstract class TFEM (Fig. 2) and
redefine the methods of this class.

In general, this approach to development is flexible and
makes it possible to use PyFEM in the development of other
engineering analysis systems or directly for calculations.

The software implementation of PyFEM is fully execut-
ed by the Python programming language (Fig. 3), while,
for programming the processor modules, the Math, Scipy,
Numpy libraries are used, which have stable versions for
different operating systems. In addition, the high level of
abstraction of the Python language can reduce development
time, compared to the C++ or Fortran languages. Analysis
of similar implementations showed that, for example, the
systems SfePy [4], FreeFem [5], GetFem [7] are implemen-
tations of the finite element method for solving a wide range
of problems from the theory of elasticity, however, there is
currently no possibility for quickly adding new modules to
expand the possibilities of calculation. To test the quality
of the developed system from the point of view of software
engineering, the maintainability index and cyclomatic com-
plexity code metrics were used. The values of these metrics
for the modules of the PyFEM system core vary in the fol-
lowing ranges: from 1 to 18 for the maintainability index,
and from 22 to 100 for cyclomatic complexity.

Model problems (Fig. 4) illustrate the work of the post-
processor to visualize the distribution of the desired move-
ments by the volume of the structure.

Currently, the limitations of the developed system are the
inability to parallel calculation using graphics processors.

The disadvantage of the study is the lack of implemen-
tation of methods for solving problems of physically and
geometrically nonlinear elasticity, plasticity, viscoelasticity.

So, further development may consist in programming
computational modules using computing libraries on graphics
processors (for example, CUDA). As well as adding new vari-
ants of the finite element method for a wider range of tasks.

7. Conclusions

1. An open object-oriented architecture system of fi-
nite-element analysis has been designed. The hierarchical
structure of classes encapsulates the object of calculation,
the static and dynamic implementation of the finite element
method, finite elements of different types, the discrete mod-
el of the original object, etc. The method of designing the
system used is common for the implementation of the finite
element method and can be applied in the development of
other similar implementations of the finite element method.

2. An object-oriented PyFEM class library has been de-
veloped. Due to the ease of implementation, it was possible to
build a set of effective and intuitive classes that make it possible
to perform numerical solutions to static and dynamic problems
from the theory of elasticity. The software system provides
the ability to easily expand it to improve the functionality of
the processor, which is confirmed by the calculation of source
code metrics. To test the quality of the developed system from
the point of view of software engineering, the maintainability
index and cyclomatic complexity code metrics were used. The
values of these metrics for the modules of the PyFEM system
core vary in the following ranges: from 1 to 18 for the main-
tainability index, and from 22 to 100 for cyclomatic complexity.

3. PyFEM testing was performed on the task of deter-
mining the stressed-strained state of the turbine rotor blade.
Examples of the software interface for determining the cal-
culation conditions and the results of the postprocessor are
given. Our technological advancement can be applied in the
practice of design organizations.

Conflicts of interest

The authors declare that they have no conflicts of in-
terest in relation to the current study, including financial,
personal, authorship, or any other, that could affect the study
and the results reported in this paper.

Acknowledgments

The study was carried out within the framework of
research work 0122U001765 “Thermochemical pressing of
special-purpose materials”.

References

1. Breslavskyi, D. V., Korytko, Yu. M., Tatarinova, O. A. (2017). Proektuvannia ta rozrobka skinchennoelementnoho prohramnoho

zabezpechennia. Kharkiv, 232. Available at: http://library.kpi.kharkov.ua/files/new_postupleniya/prropz.pdf

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/2 (120) 2022

84

2. Logg, A., Mardal, K.-A., Wells, G. (Eds.) (2012). Automated Solution of Differential Equations by the Finite Element Method.

Lecture Notes in Computational Science and Engineering. doi: https://doi.org/10.1007/978-3-642-23099-8

3. Choporov, S., Gomenyuk, S., Kudin, O., Lisnyak, A. (2018). Design patterns for object-oriented scientific software. CEUR

Workshop Proceedings, 441–444. Available at: https://ceur-ws.org/Vol-2105/10000441.pdf

4. Cimrman, R., Lukeš, V., Rohan, E. (2019). Multiscale finite element calculations in Python using SfePy. Advances in Computational

Mathematics, 45 (4), 1897–1921. doi: https://doi.org/10.1007/s10444-019-09666-0

5. Hecht, F. (2012). New development in freefem++. Journal of Numerical Mathematics, 20 (3-4). doi: https://doi.org/10.1515/

jnum-2012-0013

6. Xie, J., Ehmann, K., Cao, J. (2022). MetaFEM: A generic FEM solver by meta-expressions. Computer Methods in Applied

Mechanics and Engineering, 394, 114907. doi: https://doi.org/10.1016/j.cma.2022.114907

7. Renard, Y., Poulios, K. (2021). GetFEM: Automated FE Modeling of Multiphysics Problems Based on a Generic Weak Form

Language. ACM Transactions on Mathematical Software, 47 (1), 1–31. doi: https://doi.org/10.1145/3412849

8. Badia, S., Verdugo, F. (2020). Gridap: An extensible Finite Element toolbox in Julia. Journal of Open Source Software, 5 (52), 2520.

doi: https://doi.org/10.21105/joss.02520

9. Khara, B., Balu, A., Joshi, A., Sarkar, S., Hegde, C., Krishnamurthy, A., Ganapathysubramanian, B. (2021). NeuFENet: Neural Finite

Element Solutions with Theoretical Bounds for Parametric PDEs. arXiv. doi: https://doi.org/10.48550/arXiv.2110.01601

10. Mitusch, S. K., Funke, S. W., Kuchta, M. (2021). Hybrid FEM-NN models: Combining artificial neural networks with the finite

element method. Journal of Computational Physics, 446, 110651. doi: https://doi.org/10.1016/j.jcp.2021.110651

11. Uriarte, C., Pardo, D., Omella, Á. J. (2022). A Finite Element based Deep Learning solver for parametric PDEs. Computer Methods

in Applied Mechanics and Engineering, 391, 114562. doi: https://doi.org/10.1016/j.cma.2021.114562

12. Grementieri, L., Galeone, P. (2022). Towards Neural Sparse Linear Solvers. arXiv. doi: https://doi.org/10.48550/arXiv.2203.06944.

13. Trushevskyi, V. M., Shynkarenko, H. A., Shcherbyna, N. M. (2014). Metod skinchennykh elementiv i shtuchni neironni merezhi.

Liviv: LNU imeni Ivana Frankach, 396.

14. Geuzaine, C., Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities.

International Journal for Numerical Methods in Engineering, 79 (11), 1309–1331. doi: https://doi.org/10.1002/nme.2579

15. Netgen/NGSolve. Available at: https://ngsolve.org/

16. Weisfeld, M. (2019). The Object-Oriented Thought Process. Addison-Wesley, 412.

17. Ihnatchenko, M. S., Kudin, O. V., Gnezdovskiy, O. V. (2020). Object-oriented implementation of the finite element analysis

library in the python programming language. Visnyk of Zaporizhzhya National University. Physical and Mathematical Sciences,

1, 138–147. doi: https://doi.org/10.26661/2413-6549-2020-1-18

18. Turan, O., Tanriöver, Ö. Ö. (2018). An Experimental Evaluation of the Effect of SOLID Principles to Microsoft VS Code Metrics.

AJIT-e: Online Academic Journal of Information Technology, 9 (34), 7–24. doi: https://doi.org/10.5824/1309-1581.2018.4.001.x

19. Ranjan, A., Rakshith, A. (2021). Analysis of Industrial Gas Turbine Blade. International Research Journal of Engineering and

Technology, 8 (5), 4247–4251.

20. Yuriy, B., Aleksandr, Z., Karina, B. (2017). The investigation of nanostructure formation in intermetallic γ-TiAl alloys. 2017 IEEE

International Young Scientists Forum on Applied Physics and Engineering (YSF). doi: https://doi.org/10.1109/ysf.2017.8126640

21. Sereda, B., Sereda, D., Belokon, Y. (2015). Investigation of corrosion and oxidation of γ-TiAl alloys obtained in self propagating high

temperature synthesis. Materials Science and Technology Conference and Exhibition. Vol. 2. Columbus, 1249–1255.

