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1. Introduction 

Rotor machines with auto-balancers have significantly 
nonlinear properties. Such machines can simultaneously 

have several stable steady state motion modes. Under an au-
to-balancing mode of motion of the machine, the loads rotate 
synchronously with the rotor and eliminate static imbalance 
in their correction plane. Under stuck modes, the loads come 
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One-, two-, and three-mass vibra-
tion machines with translational motion 
of platforms and a vibration exciter of a 
ball, roller, or pendulum type with sever-
al loads were studied. The empirical cri-
terion for the onset of auto-balancing was 
applied in the extended formulation.

It has been established that a sin-
gle-mass vibration machine has one reso-
nant speed, and:

– at the after-resonance speeds of 
rotation of loads synchronously with the 
rotor, the auto-balancing mode becomes 
stable;

– at the pre-resonance speeds of rota-
tion of loads, loads tend to gather together.

In a dual-mass vibration machine, 
there are two resonant speeds and one 
additional speed located between two res-
onant ones. The auto-balancing mode is 
stable when the loads rotate synchronous-
ly with the rotor at the following speeds:

– between the first resonant speed 
and the additional speed;

– greater than the second resonant 
speed. 

At other speeds of rotation of loads, 
loads tend to gather together.

The three-mass vibration machine has 
three resonant speeds and two additional 
speeds, located one by one between adja-
cent resonant speeds. The auto-balancing 
mode is stable when the loads rotate syn-
chronously with the rotor at the following 
speeds:

– between the first resonant speed 
and the first additional speed; 

– between the second resonant speed 
and the second additional speed;

– greater than the third resonant 
speed.

At other speeds of rotation of loads, 
loads tend to gather together.

In a single-mass vibration machine, the 
value of the resonant speed does not depend 
on the viscosity of supports. In dual-mass 
and three-mass vibration machines, all 
characteristic speeds depend on the vis-
cosity of supports. With small forces of vis-
cous resistance, the values of these speeds 
are close to the characteristic speeds found 
in the absence of resistance forces
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together, cannot accelerate, lag behind the rotor, and get 
stuck in the vicinity of the resonant frequencies. Because of 
this, it is proposed to use these auto-balancers to excite res-
onant vibrations in vibration machines for various purposes.

There is a general problem in determining the conditions 
under which certain steady state modes of motion of a rotor 
machine with auto-balancers can be implemented. 

One-, two-, and three-mass vibration machines with 
translational motion of platforms are widely used. It is rele-
vant for such vibration machines to determine the conditions 
under which the auto-balancing mode of motion is possible, 
and under which the machine is inclined to a certain mode 
of jamming. 

Information on the onset in practice of a certain mode 
of jam or auto-balancing is necessary for the design of both 
vibration machines and auto-balancers to balance the rotors 
on the go.

2. Literature review and problem statement

Auto-balancers of pendulum, ball, roller type are used in 
equipment for balancing fast-rotating rotors on the go [1]. 
The rotor with auto-balancers has an auto-balancing mode 
of motion. Under it, the loads rotate synchronously with the 
rotor while occupying one of the auto-balancing positions, 
which is why there are no vibrations. In the case of three or 
more loads, the auto-balancing mode is one or more paramet-
ric family of steady state motion modes.

Along with the auto-balancing mode of motion, the rotor 
machine has other steady state motions on which the rotor 
is not balanced.

Thus, a rotor machine may have resonant motion modes 
caused by the Sommerfeld effect [2]. Loads are assembled 
together, cannot accelerate to the speed of rotation of the 
rotor, and get stuck at one of the resonant speeds of the rotor. 
These stuck modes, in particular, were found for a rotor that 
executes:

– spatial motion and a two-ball auto-balancer [3];
– flat motion and a two-ball auto-balancer [4];
– flat motion, and the rotor is mounted on isotropic sup-

ports attached to a massive elastic-viscous foundation and a 
two-ball auto-balancer is installed on the rotor [5];

– flat motion, and the rotor is rigidly mounted on 
an elastic-viscous fixed platform that performs rectilinear 
translational motion and a two-ball auto-balancer is in-
stalled on the rotor [6].

Taking into account the results reported in [3, 4], pa-
per [7] proposed to use ball, roller, or pendulum auto-balanc-
ers as exciters of resonant vibrations.

Ways to use the Sommerfeld effect to build resonant 
vibration machines in the case of a single unbalanced mass 
have been theoretically investigated:

– for a three-mass vibration machine on one of the 
platforms of which a wind wheel with unbalanced mass is 
installed [8];

– for a single-mass vibration machine, on the platform of 
which a pendulum vibration exciter is installed [9];

– for a single-mass vibration machine, on the platform 
of which an unbalanced inertial vibration exciter is in-
stalled [10].

The disadvantage of using one mass is that if the rotor 
with unbalanced mass accelerates and passes the resonant 
frequency, then vibrations occur with a greater frequency. In 

this case, the centrifugal forces acting on the rotor increase 
in proportion to the square of the angular velocity of rotation 
of the rotor. This can overload the rotor.

When using two or more loads, the vibration machine 
has auto-balancing modes of motion. This can be used to 
automatically turn off the vibration exciter in case of ac-
celeration of loads to the speed of rotation of the rotor. But, 
according to the available materials, such a problem has not 
yet been solved.

Determining the conditions for the onset of auto-balanc-
ing is a complex mathematical problem. To solve it, the most 
commonly used are:

– method of synchronization of mechanical systems [11];
– method of separation of motions into fast and slow [12];
– theory of stability of stationary motions of nonlinear 

autonomous systems [13];
– empirical method for determining the conditions for 

the onset of auto-balancing [14].
Mathematical methods in [11–13] are based on the the-

ory of stability of motions and methods of small parameter. 
Therefore, these methods are too cumbersome and require 
separate application for each type of an auto-balancer or 
vibration exciter. 

The most effective method for determining the stability 
conditions of the auto-balancing mode of motion is an empir-
ical criterion [14]. It makes it possible to obtain generalized 
conditions that are applicable to the vibration exciter of any 
type. The criterion is applicable in cases of both static [14] 
and dynamic rotor balancing [15]. Also, the results obtained 
allow for an extended interpretation. Thus, the criterion can 
answer the question of what mode of motion is possible with 
unfulfilled conditions for the onset of auto-balancing.

3. The aim and objectives of the study

The purpose of our work is to determine the conditions 
under which an auto-balancing mode of motion or a certain 
mode of jamming in vibration machines with translational 
motion of platforms and a resonant vibration exciter of ball, 
roller, pendulum type is possible. This will make it possible 
to enable the occurrence of a certain mode of load jam in 
the vibration exciter or to turn off the vibration exciter in 
the case of undesirable acceleration of loads to the speed of 
rotation of the rotor.

To accomplish the aim, the following tasks have been set:
– to find the specified conditions for a single-mass vibra-

tion machine;
– to find the specified conditions for a two-mass vibra-

tion machine;
– to find the specified conditions for a three-mass vibra-

tion machine.

4. The study materials and methods

The object of research is the conditions under which an 
auto-balancing mode of motion or a certain mode of getting 
stuck in vibration machines is possible. To search for them, 
an empirical criterion for the onset of auto-balancing was 
used [14] in a slightly expanded formulation. The criterion 
gives the conditions applicable to vibration exciters of any 
type with two or more loads. According to the criterion, we 
investigated the reaction of the center of the vibration ex-
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citer to the total unbalanced mass of loads. Actually used is 
that the loads in the vibration exciter deviate in the direction 
of deviation of the center of the vibration exciter from the 
axis of rotation. From empirical considerations, it is assumed 
that if the center of the vibration exciter, on average, deviates 
in one revolution of loads:

– towards the total unbalanced mass of loads, the loads 
tend to gather together;

– opposite to the vector of the total unbalanced mass of 
loads, the loads tend to occupy an auto-balancing position.

The mathematical notation of the criterion is as follows. 
Let the loads in the vibration exciter perform a certain 
steady state motion, on which all together rotate at a con-
stant angular velocity w and do not change the relative 
position. Let the total unbalanced mass .S



 be formed. We 
consider the motion of the point K (the center of the vibra-
tion exciter), at which the longitudinal axis of the rotor 
crosses the perpendicular plane of the total unbalanced 
mass. The point K on the steady state motion will deviate 
from the equilibrium position by the vector ( ), ,Kr t S





 where 
t is time. 

Let us introduce the following functional

( ) ( )2 /

0
, , d .

2 Kf S S r t S t
π ωω

ω = ⋅
π ∫

  



  (1)

Then:
– for the local stability of the auto-balancing mode, it is 

necessary and sufficient that the loads rotate synchronously 
with the rotor and point K under the action of any unbal-
anced mass S



 is deviated from the longitudinal axis of the 
rotor on average per one rotor revolution, opposite to the 
unbalanced mass vector

( ), 0;f S ω <


  (2)

– for the emergence of steady state motions, in which the 
loads are tightly pressed against each other, it is enough that 
the point K under the action of the total unbalanced mass 
deviates from the longitudinal axis of the rotor on average 
for one revolution of the rotor, towards the vector of total 
unbalanced mass

( ), 0.f S ω >


  (3)

The criterion is applied in the following sequence:
1) describe the physical and mechanical model of a vibra-

tion machine with an auto-balancer (vibration exciter) of a 
certain type;

2) derive differential equations of motion of the vibration 
machine under the assumption that the loads have created 
constant unbalanced mass, and all together rotate at a con-
stant angular velocity;

3) determine the steady state motion of the rotor;
4) build functional (1);
5) from condition (2) of the negative functional, define 

the conditions for the onset of auto-balancing, and from con-
dition (3) of the positive functional, define the conditions for 
the emergence of steady state modes under which the loads 
are tightly pressed against each other.

The extension of the criterion is that the unbalanced 
mass is not necessarily infinitesimal, and the loads may lag 
behind the rotor when rotating. This makes it possible to 
consider cases where loads tend to gather together.

5. Results of investigating the conditions of stability or 
the emergence of various steady state motions

5. 1. A single-mass vibration machine
5. 1. 1. Description of the model of a single-mass 

vibration machine, differential equations of motion in 
dimensionless form

The model of a single-mass vibration machine is shown 
in Fig. 1 [7]. The vibration machine has a platform of mass 
M. A vibration exciter is installed on the platform – ball, 
roller (Fig. 1, b), or pendulum (Fig. 1, c) type. The platform 
moves progressively in a vertical direction. The platform is 
supported by an elastic-viscous support with a coefficient 
of stiffness k and viscosity b. The position of the platform 
is determined by the coordinate y, and, in the position of 
static equilibrium of the platform, y=0.

The vibration exciter (housing) has a mass Mc and ro-
tates around the shaft, point K, with a constant angular 
velocity w. The center of mass of the housing is at point K. 
The position of the housing is determined relative to the XK, 
YK axes by angle wt, where t is the time.

The vibration exciter has N identical loads. The mass of 
one load is m. The center of mass of the load moves in a circle 
of radius R with the center at point K (Fig. 1, b, c). The po-
sition of load number j relative to the housing is determined 
by angle jj, / 1, / .j N= The viscous resistance force acts 
on the load when moving relative to the housing, having a 
module | |, / 1, /,W jb R j N′ϕ −ω =  where bW is the coefficient 
of strength of viscous resistance and the stroke in magni-
tude denotes the time derivative t. The action of the forces of 
gravity is neglected.

Differential equations of motion of a single-mass vibration 
machine in dimensionless form take the following form [7]:

2 0,yy hy y s+ + + =  

( ) cos 0, / 1, / .j j jn y j Nϕ + εβ ϕ − + ε ϕ = =    (4)

In (4), the dot over the quantity denotes a dimensionless 
time derivative, and:

– dimensionless variables and time

Fig.	1.	Single-mass	vibration	machine,	model,	and	kinematics	
of	motion	[7]:	a	–	platform;	b	–	ball	or	roller;	c	–	pendulum

a

b c
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1

1
cos ,

N

x jj
s

N =
= ϕ∑ 1

1
sin ,

N

y jj
s

N =
= ϕ∑

,τ = ω ( )/ ;y YM NmRΣ=     (5)

– dimensionless parameters

( )/ 2 ,h b MΣ= ω  / ,n =ω ω

( )/ ,Nm MΣε = κ  ( )2/ .Wb M NmΣβ = ω   (6)

In turn, in (5), (6):
– total mass of the platform and vibration exciter

;сM M M NmΣ = + +   (7)

– characteristic time scale 

/ ;k MΣω=   (8)

– dimensionless coefficient equal to, respectively, for a 
ball, roller, and pendulum

( ){ }27 / 5, 3 / 2, 1 / .CJ mRκ = +   (9)

Note that in real vibration machines, dimensionless pa-
rameters e, h are values of the first order of smallness.

5. 1. 2. Application of the empirical criterion
We introduce the total unbalanced mass of loads on the 

steady state motion

( )cos ,xs s q= τ  ( )sin ,ys s q= − τ   (10)

where q is the dimensionless angular speed of rotation of loads.
Taking into account (10), the first equation in (4) takes 

the form

( )22 sin .y hy y sq q+ + = τ    (11)

Note that in the absence of resistance forces, the vibra-
tion machine has one single resonant speed

1 1.q =    (12)

The partial solution to the differential equation (11) 
takes the following form

( ) ( ) ( ) ( ) ( )1 2, , , , sin ) , , cos ,y q s X q s q X q s qτ = τ τ + τ τ  (13)

where

( ) ( )
( )

2 2

1 22 2 2

1
, , ,

1 4

q s q
X q s

q h q

−
τ =

− +

 

( )
( )

2

2 22 2 2

2
, , .

1 4

q shq
X q s

q h q
τ = −

− +
 (14)

The scalar product of the vector of the total unbalanced 
mass (10) by the vector of displacement of the platform:

( ) ( ) ( ) ( )
( ) ( ) ( )

2
1

2

, , , , sin

, , sin cos .

yy q s s sX q s q

sX q s q q

τ ⋅ τ = τ τ −

− τ τ τ

Averaging in one rotor revolution gives

( ) ( ) ( )
2 /

10
, , d 0.5 , , .

2

q

y

q
y q s s sX q s

π
τ ⋅ τ τ = ⋅ τ

π ∫   (15)

Taking into account (14), from (15) we obtain the fol-
lowing condition for the stability of the auto-balancing mode

1.q q>    (16)

So, at the after-resonance speeds of rotation of loads 
synchronously with the rotor, the auto-balancing mode 
becomes stable. At the pre-resonance speeds of rotation of 
loads, loads tend to gather together. The resulting condi-
tion (16) does not depend on the strength of the viscous 
resistance in the support and on the magnitude of the un-
balanced mass.

5. 2. A dual-mass vibration machine
5. 2. 1. Description of the generalized model of a two-

mass vibration machine, differential equations of motion 
in dimensionless form

The model of a two-mass vibration machine is shown 
in Fig. 2 [7]. The vibration machine consists of two plat-
forms with a mass of M1 and M2. Each platform is held by 
external elastic-viscous supports with the coefficients of 
stiffness ki and viscosity bi, /i=1,2/. The platform is con-
nected by an internal elastic-viscous support with a stiffness 
coefficient k12 and a viscosity coefficient b12.

Platforms can only move rectilinearly progressively ow-
ing to fixed guides. The coordinates Y1, Y2 of the platforms 
are counted from the positions of the static equilibrium of 
the platforms.

On the second platform, a vibration exciter is installed – 
ball, roller (Fig. 1, b), or pendulum (Fig. 1, c) type.

Differential equations of motion in dimensionless form [7]:

( ) ( )2 2
1 1 1 1 1 12 1 2 12 1 22 2 0,y h y n y h y y n y y+ + + ρ − + ρ − =   

( )
( )

2
2 2 2 2 2 12 1 2

2
12 1 2

2 2

0,y

y h y n y h y y

n y y s

+ + − ρ − −

− ρ − + =

   



( ) 2 cos 0, / 1, / .j j jn y j Nϕ + εβ ϕ − + ε ϕ = =    (17)

In (17):
– dimensionless variables and time

1

1
cos ,

N

x j
j

s
N =

= ϕ∑  
1

1
sin ,

N

y j
j

s
N =

= ϕ∑  

Fig.	2.	Generalized	model	of	a	two-mass	vibration	machine	
[7]	–	kinematics	of	platform	motion
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,tτ = ω  ( )1 1 / ,y Y Y= ρ   2 2 / ;y Y Y=     (18)

– dimensionless parameters

( )2 2
1 1 1/ ,n k M= ω  ( )2 2

12 12 2/ ,n k M Σ= ω  

( )2 2
2 2 2/ ,n k M Σ= ω  ( )1 1 1/ 2 ,h b M= ω

( )12 12 2/ 2 ,h b M Σ= ω  ( )2 2 2/ 2 ,h b M Σ= ω  

/ ,n =ω ω  ( )2/ ,Nm M Σε = κ

( )2
2 / .Wb M NmΣβ = ω   (19)

In turn, in (18), (19):
– characteristic scales (ω  not yet defined) 

2 1/ ,M MΣρ =  2/ ;Y NmR M Σ=   (20)

– the total mass of the second platform with a vibration 
exciter 

2 2 ;сM M M NmΣ = + +   (21)

– coefficient k from (9). 

5. 2. 2. Application of the empirical criterion
Let the loads create total unbalanced mass with (10). 

Then the first two equations in system (17) will take the 
form

( ) ( )2 2
1 1 1 1 1 12 1 2 12 1 22 2 0,y h y n y h y y n y y+ + + ρ − + ρ − =   

( )
( )

2
2 2 2 2 2 12 1 2

2 2
12 1 2

2 2

sin .y

y h y n y h y y

n y y s sq q

+ + − ρ − −

− ρ − + = τ

   

   (22)

Search for a partial solution to this system in the form

( ) ( ) ( )
( ) ( )

2 1

2

, , , sin

, cos , / 1,2 / .
i i

i

y q s X q s q

X q s q i

−τ = τ +

+ τ =   (23)

We substitute (23) in (22) and collect the coefficients be-
fore sin(qt), cos(qt). We obtain the next system of equations 
to search for , / 1,4/ :iX i =

( ) ( ) ( ), , .q q s q s=A X B   (24)

In (24)

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

11 12 13 14

12 11 14 13

13 14 33 34

14 13 34 33

,

a q a q a q a q

a q a q a q a q
A q

a q a q a q a q

a q a q a q a q

 
 
− − =  ρ ρ

  −ρ ρ − 

( ) 4

1
, ,iq s X=X  ( ) ( )T2, 0 0 0 ,q s sq=B  (25)

where 

( ) 2 2 2
11 1 12 ,a q n n q= +ρ − ( ) ( )12 1 122 ,a q q h h= − +ρ

( ) 2
13 12,a q n= −  ( )14 122 ,a q qh=

( ) 2 2 2
33 2 12 ,a q n n q= + −  ( ) ( )34 2 122 .a q q h h= − +   (26)

Scalar product of the total unbalanced mass vector (10) 
by the vector of displacement of the second platform

( ) ( ) ( ) ( )
( ) ( ) ( )

2
2 3

4

, , , sin

, sin( )cos .

yy q s s sX q s q

sX q s q q

τ ⋅ τ = τ +

+ τ τ    (27)

Averaging in one rotor revolution gives

( ) ( ) ( )
2 /

2 30
, , d 0.5 , .

2

q

y

q
y q s s sX s

π
τ ⋅ τ τ = ⋅ Ω

π ∫    (28)

We introduce the determinants into consideration

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

2

11 33

2 2
13 14

12 34

2

13 14 12 33

11 34

2
,

a q a q

q A q a q a q

a q a q

a q a q a q a q

a q a q

 −
   ∆ = = −ρ − − +  
 
−  

 ρ − −
+  

−  

( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 12 14

12 11 13
3 2

13 14 34

14 13 33

2 2
11 14 13

2
12 13 14

2 2
33 11 12

0

0
,

0

.2

a q a q a q

a q a q a q
q s

a q a q sq a q

a q a q a q

a q a q a q

sq a q a q a q

a q a q a q

−
∆ = =

ρ ρ
−ρ ρ

  − −  ρ + 
= −  

 + + 

 (29)

Note that in the presence of resistance forces, D(q)>0.  
Then

( ) ( ) ( )3 3, , / .X q s q s q= ∆ ∆   (30)

Taking into account (28) to (30), we obtain the follow-
ing condition for the stability of the auto-balancing mode

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 2
11 14 13

12 13 14

2 2
33 11 12

2

0.

a q a q a q
f q

a q a q a q

a q a q a q

  − −  = ρ + 
−  

 + + <   (31)

Note that the condition does not depend on the total 
unbalanced mass but depends on the forces of viscous resis-
tance in supports.

5. 2. 3. The case of the lack of resistance forces
In the absence of resistance forces

( ) ( ) ( ) ( ) ( )2
11 33 11 13 ,f q a q a q a q a q = −ρ    (32)

( ) ( ) ( ) ( ) 22
11 33 13 .q a q a q a q ∆ = −ρ    (33)

From equation (33), taking into account (26), we find

( )
( )

( )

2
4 2 2 2 2

1 2 12

2 2 2 2 2
1 2 12 1 2

1
0.

q n n n q
q

n n n n n

  − + + +ρ +  ∆ = = 
+ + +ρ  

  (34)

From (34), we find two resonant rotor speeds:
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( )
1

2 2 2 2
1/2 1 2 12

1
1 ,

2
q n n n D = + + +ρ    (35)

where 

( ) 22 2 2 4
1 2 12 121 4 0.D n n n n = − − −ρ + ρ >    (36)

The positive real root of the equation a11(q)=0 is

( )
1

2 2 2
1 12 .q n n= +ρ   (37)

Since q1<q2 and ( )( )2 2 2 2 4
1 2 12 0,q q q q n− − = ρ >   then 

1 2.q q q< <   (38)

The roots q1 and q2 are the resonant frequencies of the vi-
bration machine, and the root q  is some additional rotor speed. 

Since

( ) ( ) ( )2 2 2 2 2 2 2
1 2 1 2 12 1 120 0,f n n n n n n n = + +ρ +ρ > 

the auto-balancing mode is stable when the loads rotate syn-
chronously with the rotor at the following speeds:

– between the first resonant speed and the additional 
speed;

– greater than the second resonant speed. 
At other speeds of rotation of loads, loads tend to gather 

together.
Note that the small forces of viscous resistance in the 

supports do not change the qualitative behavior of the sys-
tem but somewhat change the characteristic speeds.

5. 3. A three-mass vibration machine
5. 3. 1. Description of the generalized model of a 

three-mass vibration machine, differential equations of 
motion in dimensionless form

A generalized model of a three-mass vibration machine is 
shown in Fig. 3 [7]. The vibration machine consists of three 
platforms with a mass of M1, M2 and M3. Each platform is 
held by external elastic-viscous supports with a coefficient of 
stiffness ki and a viscosity coefficient bi, /i=1, 2, 3/. The plat-
forms are connected to each other by internal elastic-viscous 
supports with stiffness coefficients k12, k13, k23 and viscosity 
coefficients b12, b13, b23.

Platforms can only move rectilinearly progressively 
owing to fixed guides. The coordinates Y1, Y2, Y3 of the plat-
forms are counted from the positions of the static equilibri-
um of the platforms. 

A vibration exciter is installed on the second platform – 
ball, roller (Fig. 1, b), or pendulum (Fig. 1, c) type.

Differential equations of motion of the vibration machine 
in dimensionless form [7]:

( )
( ) ( )
( )

2
1 1 1 1 1 12 1 1 2

2
12 1 1 2 13 1 1 3 3

2
13 1 1 3 3

2 2

2

0,

y h y n y h y y

n y y h y y

n y y

+ + + ρ − +

+ ρ − + ρ −ρ +

+ ρ −ρ =

   

 

( )
( ) ( )
( )

2
2 2 2 2 2 12 1 1 2

2
12 1 1 2 23 2 3 3

2
23 2 3 3

2 2

2

0,y

y h y n y h y y

n y y h y y

n y y s

+ + − ρ − −

− ρ − + −ρ +

+ −ρ + =

   

 



( )
( ) ( )
( )

2
3 3 3 3 3 13 1 1 3 3

2
13 1 1 3 3 23 2 3 3

2
23 2 1 1

2 2

2

0,

y h y n y h y y

n y y h y y

n y y

+ + − ρ −ρ −

− ρ −ρ − −ρ −

− −ρ =

   

 

( ) 2 cos 0,j j jn yϕ + εβ ϕ − + ε ϕ =   / 1, / .j N=    (39)

In (39): 
– dimensionless variables and time

( )1 1 1/ ,y Y Y= ρ   2 2 / ,y Y Y=   ( )3 3 3/ ,y Y Y= ρ 

1

1
cos ,

N

x j
j

s
N =

= ϕ∑  
1

1
sin ,

N

y j
j

s
N =

= ϕ∑  ;tτ = ω    (40)

– dimensionless parameters:
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,
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 2
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.Wb M
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  (41)

In turn, in (40), (41), characteristic scales (ω  not yet 
defined) 

2/ ,Y NmR M Σ=  1 2 1/ ,M MΣρ =  3 2 3/ .M MΣρ =   (42)

In (41), (42) M2S from (21), k from (9).

5. 3. 2. Application of the empirical criterion
Let the loads create total unbalanced mass (10). Then the 

first three equations in system (39) will take the form

( ) ( )
( ) ( )

2 2
1 1 1 1 1 12 1 1 2 12 1 1 2

2
13 1 1 3 3 13 1 1 3 3

2 2

2 0,

y h y n y h y y n y y

h y y n y y

+ + + ρ − + ρ − +

+ ρ −ρ + ρ −ρ =

   

 

( ) ( )
( ) ( ) ( )

2 2
2 2 2 2 2 12 1 1 2 12 1 1 2

2 2
23 2 3 3 23 2 3 3

2 2

2 sin ,y

y h y n y h y y n y y

h y y n y y s sq q

+ + − ρ − − ρ − +

+ −ρ + −ρ + = τ

   

  

Fig.	3.	Generalized	model	of	a	three-mass	vibration	machine	
[7]	–	kinematics	of	platform	motion
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( )
( )
( ) ( )

+ + − ρ −ρ −

− ρ −ρ −

− −ρ − −ρ =

   

 

2
3 3 3 3 3 13 1 1 3 3

2
13 1 1 3 3

2
23 2 3 3 23 2 1 1

2 2

2 0.

y h y n y h y y

n y y

h y y n y y  (43)

We search for a partial solution to this system in the form

( ) ( ) ( )
( ) ( )

2 1

2

, , , sin

, cos , / 1,3 / .

i i

i

y q s X q s q

X q s q i

−τ = τ +

+ τ =   (44)

We substitute (44) in (43) and collect the coefficients be-
fore sin(qt), cos(qt). We obtain the next system of equations 
to search for , / 1,6/ :iX i =

( ) ( ) ( ), , .q q s q s=A X B   (45)

In (45)

( ) ( ) 6

1
,ijq a q=A  ( ) 6

1
, ,iq s X=X  

( ) ( )T2, 0 0 0 0 0 ,q s sq=B   (46)

where, in turn

( ) ( )2 2 2 2
11 1 1 12 13 ,a q n n n q= +ρ + −  

( ) ( )12 1 1 12 132 ,a q q h h h = − +ρ +   ( ) 2
13 12,a q n= −

( )14 122 ,a q qh=  2
15 13 3,a n= − ρ  ( )16 13 32 ,a q qh= ρ

( ) ( )21 12 ,a q a q= − ( ) ( )22 11 ,a q a q=  ( ) ( )23 14 ,a q a q= −  

( ) ( )24 13 ,a q a q=  ( ) ( )25 16 ,a q a q= −  ( )26 15 ,a a q=

( ) 2
31 1 12,a q n= −ρ  ( )32 1 122 ,a q q h= ρ  

( ) 2 2 2 2
33 2 12 23 ,a q n n n q= + + − ( ) ( )34 2 12 232 ,a q q h h h= − + +

2
35 23 3,a n= − ρ  ( )36 23 32 ,a q qh= ρ  ( ) ( )41 32 ,a q a q= −

( ) ( )42 31 ,a q a q= ( ) ( )43 34 ,a q a q= −  ( ) ( )44 33 ,a q a q=

( ) ( )45 36 ,a q a q= − ( )46 35 ,a a q=  ( ) 2
51 1 13,a q n= −ρ

( )52 1 132 ,a q q h= ρ  ( ) 2
53 23,a q n= −  ( )54 232 ,a q qh=

( ) 2
51 1 13,a q n= −ρ ( )52 1 132 ,a q q h= ρ  ( ) 2

53 23,a q n= −

( )54 232 ,a q qh= ( ) ( )2 2 2 2
55 3 13 23 3 ,a q n n n q= + + ρ −

( ) ( )56 3 13 23 32 ,a q q h h h = − + + ρ  ( ) ( )61 52 ,a q a q= −

( ) ( )62 51 ,a q a q=  ( ) ( )63 54 ,a q a q= −  ( ) ( )64 53 ,a q a q=

( ) ( )65 56 ,a q a q= −  ( )66 55 .a a q=   (47)

Coefficients in the laws of motion (44) are determined 
from the following formulas

( ) ( ) ( )1, , .q s q q s−=X A B   (48)

The scalar product of the vector of total unbalanced 
mass (10) by the vector of displacement of the second plat-
form takes the following form (27). Averaging per revolution 

of the rotor is (28). Then, the empirical condition for the 
stability of the auto-balancing mode

( )3 , 0.X sΩ <   (49)

We introduce the determinant into the consideration

( ) ( ) 0.q A q∆ = =   (50)

Note that in the presence of resistance forces ( ) 0.q∆ >
We introduce the determinant

( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

11 12 14 15 16

21 22 24 25 26

3 41 42 44 45 46

51 52 54 55 56

61 62 64 65 66

.

a q a q a q a q a q

a q a q a q a q a q

q a q a q a q a q a q

a q a q a q a q a q

a q a q a q a q a q

∆ =   (51)

Then

( ) ( ) ( )2
3 3, .X q s sq q q= ∆ ∆   (52)

Empirical condition for the stability of the auto-balanc-
ing mode

( )3 0.q∆ <   (53)

This condition depends on the forces of viscous resis-
tance in the supports and does not depend on the value of the 
total unbalanced mass.

5. 3. 3. The case of the lack of resistance forces
In the absence of resistance forces in the supports

( ) ( )
11 33 55 11 35 53

3 13 31 55 13 51 35 11 55 15 51

31 15 53 15 33 51

,

a a a a a a

q a a a a a a a a a a

a a a a a a

− − 
 ∆ = − + + − 
 + − 

  (54)

( )
2

11 33 55 11 35 53 13 31 55
0

13 51 35 31 15 53 15 33 51

.
a a a a a a a a a

q
a a a a a a a a a

− − + 
∆ =  + + − 

  (55)

The equation D0(q)=0 defines the resonant oscillation 
frequencies of the system. The three-mass vibration ma-
chine has three resonant oscillation frequencies q1, q2, q3 
(q1<q2<q3) and three corresponding forms of platform os-
cillations. Because of this, the first multiplier in (54) gives 
three resonant frequencies of the vibration machine. The 
second multiplier in (54) takes the following form

4 2
11 55 15 51 ,a a a a q bq c− = − +    (56)

where 

( )
( )

2 2 2
1 1 12 13

2 2 2
3 3 23 13 0,

b n n n

n n n

= +ρ + +

+ +ρ + >

( ) ( )
( )

2 2 2 2 2
1 1 13 3 3 23 13

2 2 2
1 13 3 3 23 0.

c n n n n n

n n n

 = +ρ +ρ + + 

+ρ +ρ >   (57)

Equation (57) gives the following two additional char-
acteristic speeds
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( )
1
2

1/2 2 ,q b d=

   (58)

where 

( )
( )

2
2 2 2
1 1 12 13

2 4
1 2 132 2 2

3 3 23 13

4 4 0.
n n n

d b c n
n n n

 +ρ + − = − = + ρ ρ > 
 − +ρ +   

  (59)

Additional speeds are always there and positive. It can be 
shown that 1 1 2 2 3.q q q q q< < < < 

Since D3(0)>0, the auto-balancing mode is stable when 
the loads rotate synchronously with the rotor at the follow-
ing speeds:

– between the first resonant speed and the first addi-
tional speed; 

– between the second resonant speed and the second 
additional speed;

– greater than the third resonant speed.
At other speeds of rotation of loads, loads tend to gather 

together. 
It is worth noting that the small forces of viscous resis-

tance almost do not change the magnitude of the five char-
acteristic speeds found.

6. Discussion and interpretation of the obtained 
conditions of stability or the emergence of various steady 

state motions

The empirical criterion for the onset of auto-balancing in 
the extended formulation made it possible to obtain the con-
ditions of stability or the emergence of various steady state 
motions of one-, two-, and three-mass vibration machines.

In the case of a single-mass vibration machine, there is 
one single resonant frequency (12), and its value does not 
depend on the forces of viscous resistance in the supports. 
At the pre-resonance speeds of rotation of loads, loads tend 
to gather together regardless of the speed of rotation of the 
rotor. At the after-resonance speeds of rotation of loads 
synchronously with the rotor, the auto-balancing mode of 
motion of the vibration machine becomes stable.

In a dual-mass vibration machine, there are two resonant 
speeds (35) and one additional speed (37), located between 
two resonant ones. The auto-balancing mode is stable when 
the loads rotate synchronously with the rotor with the 
speeds between the first resonant speed and the additional 
speed, and when the rotor rotates at speeds greater than the 
second resonant speed. At other speeds of rotation of loads, 
loads tend to gather together. All three speeds depend on the 
viscosity of the supports. But with small forces of viscous 
resistance, the values of these speeds almost do not change.

In a three-mass vibration machine, there are three reso-
nant speeds and two additional speeds (58), located one by 
one between adjacent resonant speeds. The auto-balancing 
mode is stable when the loads rotate synchronously with the 
rotor with speeds:

– between the first resonant speed and the first addi-
tional speed;

– between the second resonant speed and the second 
additional speed;

– greater than the third resonant speed.
At other speeds of rotation of loads, loads tend to gather 

together. All five speeds depend on the viscosity of the sup-

ports. But with small forces of viscous resistance, the values 
of these speeds almost do not change.

In the case of a single-, two-, or three-mass vibration 
machine at the resonant speeds of rotation of the rotor, when 
accelerating loads to the speed of rotation of the rotor, the 
auto-balancing mode will occur. In this case, the vibration 
exciter will automatically turn off. To return a certain mode 
of jam, it is necessary to reduce the speed of rotation of the 
rotor (and loads) to the range at which loads tend to gather 
together. After the occurrence of the stuck mode, the speed 
of rotation of the rotor can be increased.

The resulting conditions of stability or the emergence of 
various steady state motions take place for a vibration excit-
er of any type with two or more loads. Such universal results 
allow us to obtain only an empirical criterion for the onset of 
auto-balancing in an extended formulation. 

It should be noted that the empirical criterion is an ap-
proximate method and therefore makes it possible to obtain 
the limits of stability of steady state motions approximately. 
The results are the more accurate, the smaller the mass of 
loads relative to the mass of the system, the greater the vis-
cous resistance forces acting on the load [14, 15].

On the other hand, as in other approximate methods, it 
is impossible to establish exact ratios of smallness between 
the parameters of the system. Therefore, the obtained limits 
of stability or the emergence of various steady state motions 
must be additionally checked. 

In the future, it is planned to investigate the features of 
the origin and disappearance of various steady state motions 
for a particular vibration machine (antiphase, anti-reso-
nance, etc.) with computational experiments.

7. Conclusions 

1. In a single-mass vibration machine, there is one single 
resonant speed that does not depend on the forces of viscous 
resistance in the supports, and:

– at the after-resonance speeds of rotation of loads 
synchronously with the rotor, the auto-balancing mode of 
motion of the vibration machine becomes stable;

– at the pre-resonance speeds of rotation of loads, loads 
tend to gather together.

2. In a dual-mass vibration machine, there are two resonant 
speeds and one additional speed located between two resonant 
ones. The auto-balancing mode is stable when the loads rotate 
synchronously with the rotor with speeds:

– between the first resonant speed and the additional speed;
– greater than the second resonant speed. 
At other speeds of rotation of loads, loads tend to gather 

together. All three characteristic speeds depend on the viscos-
ity of the supports. But with small forces of viscous resistance, 
the values of these speeds are close to the characteristic speeds 
found in the absence of resistance forces.

3. A three-mass vibration machine has three resonant 
speeds and two additional speeds, located one by one be-
tween adjacent resonant speeds. The auto-balancing mode 
is stable when the loads rotate synchronously with the rotor 
with speeds:

– between the first resonant speed and the first addi-
tional speed;  

– between the second resonant speed and the second 
additional speed;

– greater than the third resonant speed.
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At other speeds of rotation of loads, loads tend to 
gather together. All five characteristic speeds depend on 
the viscosity of the supports. But with small forces of vis-
cous resistance, the values of these speeds are close to the 
characteristic speeds found in the absence of resistance  
forces.

Conflicts of interest

The authors declare that they have no conflict of interest 
in relation to this research, whether financial, personal, au-

thorship or otherwise, that could affect the research and its 
results presented in this paper.

Financing

The study was conducted without financial support.

Data availability

All data are available in the main text of the manuscript. 

References

1. Thearle, E. L. (1950). Automatic dynamic balancers (Part 2 – Ring, pendulum, ball balancers). Machine Design, 22 (10), 103–106.

2. Sommerfeld, A. (1902). Beiträge zum dynamischen Ausbau der Festigkeitslehre. Zeitschrift des Vereines Deutscher Ingenieure, 46, 

391–394.

3. Ryzhik, B., Sperling, L., Duckstein, H. (2004). Non-Synchronous Motions Near Critical Speeds in a Single-Plane Auto-Balancing Device. 

Technische Mechanik, 24 (1), 25–36. Available at: https://journals.ub.uni-magdeburg.de/index.php/techmech/article/view/911

4. Lu, C.-J., Tien, M.-H. (2012). Pure-rotary periodic motions of a planar two-ball auto-balancer system. Mechanical Systems and 

Signal Processing, 32, 251–268. doi: https://doi.org/10.1016/j.ymssp.2012.06.001 

5. Jung, D. (2018). Supercritical Coexistence Behavior of Coupled Oscillating Planar Eccentric Rotor/Autobalancer System. Shock 

and Vibration, 2018, 1–19. doi: https://doi.org/10.1155/2018/4083897 

6. Drozdetskaya, O., Fidlin, A. (2021). Passing through resonance of the unbalanced rotor with self-balancing device. Nonlinear 

Dynamics, 106 (3), 1647–1657. doi: https://doi.org/10.1007/s11071-021-06973-4 

7. Yatsun, V., Filimonikhin, G., Dumenko, K., Nevdakha, A. (2017). Equations of motion of vibration machines with a translational 

motion of platforms and a vibration exciter in the form of a passive auto-balancer. Eastern-European Journal of Enterprise 

Technologies, 5 (1 (89)), 19–25. doi: https://doi.org/10.15587/1729-4061.2017.111216 

8. Kuzo, I. V., Lanets, O. V., Gurskyi, V. M. (2013). Synthesis of low-frequency resonance vibratory machines with an aeroinertia drive. 

Naukovyi visnyk Natsionalnoho hirnychoho universytetu, 2, 60–67. Available at: http://nbuv.gov.ua/UJRN/Nvngu_2013_2_11

9. Tusset, A. M., Bueno, Á. M., dos Santos, J. P. M., Tsuchida, M., Balthazar, J. M. (2016). A non-ideally excited pendulum controlled by 

SDRE technique. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38 (8), 2459–2472. doi: https://doi.org/ 

10.1007/s40430-016-0517-7 

10. Blekhman, I. I., Semenov, Yu. A., Yaroshevych, M. P. (2020). On the Possibility of Designing Adaptive Vibration Machinery Using 

Self-synchronizing Exciters. Mechanisms and Machine Science, 231–236. doi: https://doi.org/10.1007/978-3-030-33491-8_28 

11. Sperling, L., Ryzhik, B., Duckstein, H. (2004). Single-Plain Auto-Balancing of Rigid Rotors. Technische Mechanik, 24 (1). 

12. Yaroshevich, N., Puts, V., Yaroshevich, Т., Herasymchuk, O. (2020). Slow oscillations in systems with inertial vibration exciters. 

Vibroengineering PROCEDIA, 32, 20–25. doi: https://doi.org/10.21595/vp.2020.21509 

13. Sohn, J.-S., Lee, J. W., Cho, E.-H., Park, N.-C., Park, Y.-P. (2007). Dynamic Analysis of a Pendulum Dynamic Automatic Balancer. 

Shock and Vibration, 14 (2), 151–167. doi: https://doi.org/10.1155/2007/452357 

14. Filimonikhin, G., Filimonikhina, I., Dumenko, K., Lichuk, M. (2016). Empirical criterion for the occurrence of auto-balancing and 

its application for axisymmetric rotor with a fixed point and isotropic elastic support. Eastern-European Journal of Enterprise 

Technologies, 5 (7 (83)), 11–18. doi: https://doi.org/10.15587/1729-4061.2016.79970 

15. Filimonikhin, G., Filimonikhina, I., Yakymenko, M., Yakimenko, S. (2017). Application of the empirical criterion for the occurrence 

of auto-balancing for axisymmetric rotor on two isotropic elastic supports. Eastern-European Journal of Enterprise Technologies, 

2 (7 (86)), 51–58. doi: https://doi.org/10.15587/1729-4061.2017.96622 


