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1. Introduction 

In modern construction, as well as mechanical engineer-
ing, instrumentation, various types of measuring instru-
ments and sensors are used. The most important functional 
unit of such devices are elastic sensitive elements, the main 
working property of which is the ability to significantly 
deform under load. As a rule, these deformations are elastic, 
and after removing the load, the element restores its size. 
Every year, shell elastic elements (SEE) are increasingly 
used as elastic elements, specifically thin-walled corrugated 
shells of growth such as, for example, corrugated membranes.

The geometric shape of elastic elements can be very 
diverse and depends on the purpose and conditions of their 
operation.

Manometric elastic elements loaded during operation 
by pressure are considered. This pressure acts on an elastic 
element, for example, a corrugated membrane, the center of 
which executes a linear displacement. This displacement is 
transmitted by means of a transfer mechanism to the arrow 
of the device. In this case, the membrane serves to convert 
pressure into displacement.

A corrugated shell membrane differs from a flat membrane 
by the presence of concentric waves. The properties of a corru-
gated membrane depend on its profile. The elastic characteris-
tic at different profiles can be linear, attenuated, or increasing 
in pressure. In this respect, corrugated membranes have an 
advantage over other types of gauge elastic elements (bellows, 
tubular springs), the elastic characteristics of which are close 
to linear [1]. With the help of corrugated membranes, usually 
equipped with a rigid center, the tasks of measuring displace-
ment, linearly or nonlinearly associated with pressure, are 
solved. The advantage of corrugated membranes over flat 
membranes is manifested in the fact that at the same pressure, 
the corrugated membrane makes large displacements, and, 
therefore, has greater sensitivity than a flat one. 

The accelerated development of technology imposes in-
creased requirements on the materials from which structures 
and their elements are made. One of the most important 
requirements is to minimize the mass of structural elements 
while maintaining their performance characteristics. This is 
most fully met by composite materials developed only rela-
tively recently, but, despite this, which are increasingly used 
in various fields of technology.
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This paper considers elastic shell elements. 
They move under pressure. The type of depen-
dence of displacement on pressure is called the 
elastic characteristic of the element. The object 
of this study is shell elements with a complex sur-
face shape, consisting of composite materials of 
the “metal-metal” type. The composite is a metal 
shell with reinforcing fiber made of another metal 
material. The form of reinforcement is different. 
The task to be solved is to determine the elastic 
characteristics of the shell elements depending on 
the geometric parameters, as well as the mechan-
ical values of the shell at its various points and 
in different directions. To this end, algorithms 
were built for calculating mechanical quantities 
depending on the percentage of the fiber and the 
shell matrix. It was required to derive a system of 
equations for determining the displacements and 
internal forces in the element depending on the 
geometric and mechanical parameters. A numer-
ical calculation of shell elastic elements was per-
formed and a comparison of the results of ana-
lytical calculation according to the algorithm 
developed in this work and experimental data 
was performed. The match between these results 
is 99.8–100 %. The characteristics of the shell 
elements were determined depending on the type 
of reinforcing fiber and matrix, on the geomet-
ric parameters, and the type of reinforcement of 
the shell. These studies make it possible to design 
shell elements with specified characteristics and 
predefined sensitivity
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Previously, the work of elastic shells made of monomate-
rials, or smooth shells, was studied. Research into the static 
characteristics of corrugated shells made of composite ma-
terials is relevant because it will make it possible to design 
shell elements with specified parameters, up to a decrease in 
their mass, which leads to a decrease in the weight of build-
ing structures.

2. Literature review and problem statement

Elastic elements are usually thin-walled shells of rota-
tion, in particular, corrugated, the meridional cross-section 
of which is a wave-like curve. Such shells can be prepared 
by applying concentric ring corrugations of arbitrary shape 
to any surface of rotation, called the initial or main one. 
Work [1] considers elastic elements in the form of thin-
walled shells of rotation with the shape of a meridian in 
the form of corrugations of various depths but consisting of 
monomaterials. Such elastic elements have the same physical 
and mechanical properties in all directions. However, stress-
es in elastic elements are determined only at static loads. 
Paper [2] considers the theory of calculation of multilayer 
shells made of isotropic materials. The shells are represent-
ed as smooth, and anisotropy is caused by a combination 
of different materials. However, shells with an arbitrary 
meridian shape are not considered. Paper [3] considered 
the definition of elastic permanent, taking into account the 
heterogeneity of the shells caused by uneven reinforcement. 
Clarified values of such characteristics are used in research. 
In work [4], the application of finite element methods for 
the calculation of a thin two-layer conical shell under the 
action of a uniformly distributed load using an axisymmet-
ric finite element is outlined. The discrepancy between the 
results of the study of the proposed mathematical model 
and the available results of calculations according to ana-
lytical formulas for thin two-layer conical shells does not 
exceed 9.3 %. From a mathematical point of view, the finite 
element method is widely implemented in the calculation 
of building structures. But taking into account the uneven 
distribution of elastic characteristics in the calculation of 
heterogeneous corrugated shells will be very difficult to 
reflect when filling in the initial data, which makes this 
method difficult. Study [5] touches upon the issue of cal-
culating multilayer structures by type of layered plates and 
shells. The authors analyzed existing approaches in the field 
of calculating layered plates and shells. It is established that 
the calculation of multilayer structures is considered using 
two main methods: the theory of elasticity and the methods 
of mechanics of composite materials. The isotropic, aniso-
tropic, and orthotropic structures of plates and shells, which 
obeys Hooke’s law, were considered. The choice of calcula-
tion method depends on the composition of the multilayer 
structure, the rigidity of the middle layer, and the diversity 
of all layers. Studies of the stress-strain state and the dis-
tribution of forces between the components of multilayer 
structures in the above calculations show that basically the 
deformation standing is described by Hooke’s generalized 
law. An important factor is to take into account the general 
anisotropy of the structure and the work of the middle layer 
in the layered structure. However, shells with a complex 
meridian shape and shells with anisotropy caused by uneven 
reinforcement were not considered. Paper [6] discusses the 

same constructions as in the previous work but uses the 
SCAD (RF) program. A comparison of theoretical and com-
puter calculations is given. For the same reasons that were 
indicated in the finite element calculation (FEM) method, 
this method is undesirable to use in the calculation of SEE. 
Study [7] considers the determination of proper oscillations 
of cylindrical shells of composites. However, composites 
are taken as various combinations of plastic materials, not 
matrix-reinforcing fiber combinations. In that work, the 
static characteristics of the shells were also not determined. 
Paper [8] considers various types of composites for use in 
building structures but without the calculation of specific 
structural elements for static effects. Work [9] formulates 
the initial-boundary problem of viscoelastic bending of cy-
lindrical round shells transversely reinforced on equidistant 
surfaces. Instantaneous elastic-plastic deformation of the 
components of the shell is described by the basic equations of 
the theory of plastic flow with isotropic hardening. However, 
the dynamics of rotation shells made of composite materials 
are not considered. In [10], the multilayer shell is considered, 
and stresses and deformations are determined. However, the 
anisotropy of such shells is caused by different materials of 
the layers, and not by reinforcing fibers. Study [11] considers 
the tensile forces of the toroidal shell caused by pressure and 
rotation, and their effect on their own oscillations. However, 
dynamic forces are not taken into account and heteroge-
neous shells are not considered. In [12], the shells of rotation 
with a complex shape of the meridian on dynamic effects 
were considered, while the shell material was taken to be 
homogeneous, from a monomaterial. Study [13] reports a 
method for the formation of structural systems from wavy 
shells using a special complex material consisting of regular 
transformable shell elements bounded by spatial quadran-
gles. These structures are not elastic sensitive elements. 
Paper [14] considers a variant of the rotation shell in the 
form of a closed round cylindrical shell, which is often used 
in the practice of designing civil, energy, and other industrial 
structures. The peculiarity of the shell in question is in its 
material. It manifests a double anisotropy depending on the 
ambient temperature. Work [15] describes the tests of a cy-
lindrical shell with physical and geometric nonlinearity. An 
approximate solution method is proposed, and its accuracy is 
determined. In [16], corrugated cylindrical shells with arbi-
trary boundary conditions. The influence of basic geometry 
parameters on the dynamic characteristics of corrugated 
shells is considered. However, static characteristics have 
not been studied. In [17], the geometry of spherical shells 
with corrugated edges, the wave-like perturbation of which 
is controlled by the corresponding equations and parame-
ters, was considered. A simple example is given for pressure 
loading, to demonstrate the change in the properties of the 
structure due to the corrugated form. But the materials of 
the shell were taken to be homogeneous. In [18], spiral corru-
gation in an isotropic cylindrical shell was considered. This 
fact changes the isotropy of the structure. The design space 
of anisotropy is used to differentiate the effect of geometric 
parameters on the stiffness of spiral-corrugated cylindrical 
shells. In this case, the rotation shells were not considered. 
In [19], round and spiral-corrugated cylindrical shells were 
considered. The maximum von Mises stresses in wavy shells 
vary considerably compared to similar stresses in round 
shells. Rotation shells have not been studied. In [20], cor-
rugated shells of monomaterials are considered, a method 
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for calculating such shells has been developed. The authors 
considered such a shell as a test case for determining the 
accuracy of the results. However, anisotropic shells made of 
composite materials are not considered in [20]. After analyz-
ing the scientific literature, it becomes obvious that the task 
of determining the static elastic characteristics of shell cor-
rugated elements from composite materials is very relevant 
and is of interest both scientifically and in the manufacture 
of these elements.

3. The aim and objectives of the study

The purpose of this study is to develop a method for cal-
culating the performance characteristics (elastic character-
istics, static sensitivity) of corrugated shell elastic elements 
made of composite materials. This theoretical study will 
make it possible to design elastic shell elements with speci-
fied static characteristics, as well as to improve the accuracy 
of the measured values.

To accomplish the aim, the following tasks have been set:
– to build an estimation scheme of the elastic element 

as a shell of rotation under deformation and equilibrium 
equations;

– to derive equations for determining the displacements 
and forces in corrugated shell elastic elements;

– to reduce the system of equations to a dimensionless 
form and determine the vector of the state;

– to determine the displacements, forces, and stresses in 
corrugated elastic elements.

4. The study materials and methods

The object of our study is shell elements with a complex 
surface shape and consisting of composite materials 
of the “metal-metal” type. The composite is a metal 
shell with reinforcing fiber made of another metal 
material.

The main hypothesis of the study assumes that 
when calculating the shells of rotation, the Kirch-
hoff Love’s hypotheses hold. The use of this model 
in the first approximation makes it possible to 
achieve sufficient accuracy in solving a number of 
practical tasks. However, in this case, this scheme 
is not complete enough since we are talking about a 
shell of composite materials. Such shells are hetero-
geneous, anisotropic elastic systems. The presence 
of reinforcement, the combination of materials with 
various modulus of elasticity determines the fea-
tures of the properties of structures, in particular, deforma-
tion. So, when bending such shells, shear compliance is of 
great importance in deformation, so here it is impossible to 
neglect the deformations corresponding to the tangential 
stresses along the normal. With respect to the layer pack-
age as a whole, the direct normals hypothesis is no longer 
acceptable. This applies to all shells of composite materials 
with a binder having relatively low shear stiffness. There-
fore, in addition to the “classical” deformations, we intro-
duce shear deformations associated with transverse forces. 

Assumptions – shells with a relatively small amplitude of 
corrugation are considered. This circumstance is dictated by 
the technology of manufacturing elastic elements.

The main lines of curvature of the shells of rotation are 
meridians and parallels. These lines are taken as curvilinear 
coordinates. The position of point N (Fig. 1) on the median 
surface is characterized by two parameters (coordinates): 
the angle φ and the distance s.

The angle φ determines the position of the meridional 
plane in which a given point is located. The distance s is 
equal to the length of the arc of the meridian from some 
starting point to point N. The angle between the normal to 
the median surface of the shell and the axis of its symmetry 
is indicated by θ. 

Fig. 2 shows an estimation scheme of an undeformed 
element.

Fig. 2 has the following designations: H - the amplitude 
of the corrugation, h – the thickness of the shell, R – the 
outer radius of the shell, r – the current radius of the shell, 
r0 – the radius of the rigid center, θ0 – the angle between 
the normal and the z axis at r=r0, θ – the angle between the 
normal and z-axis at r=r0.

Two static models of corrugated shell elements, de-
scribed in Table 1, were considered. 

Three variants of the structures of corrugated shell 
elastic elements from composite materials are consid-
ered (Fig. 3, a–c). The choice of these options is dictated 
by the technology of manufacturing shell elements and the 
peculiarities of their work as elastic sensitive elements.

Fig.	1.	Estimation	scheme	of	deformed	elastic	shell	element

Fig.	2.	Estimation	scheme	of	an	undeformed	elastic	element
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Table	1

Types	of	element	models

Static Mod-
el Designa-
tion (SM)

Nature of defor-
mation

Types of accept-
ed theories and 

hypotheses

Scope of the 
model

SM-1

Low deflec-
tion without 

consideration of 
transverse shear

Linear theory of 
thin shells and the 

Kirchhoff-Love 
conjecture

GOUEKM with 
a matrix with a 
sufficiently high 

shear stiffness

SM-2
Small deflec-
tions due to 

transverse shear

Linear theory of 
thin shells and the 
Tymoshenko-type 

hypothesis

GOECM with 
a matrix with 
relatively low 
shear stiffness

As a coordinate surface, the median surface is chosen, di-
viding the thickness of the shell into two equal parts. Let’s refer 
it to curvilinear orthogonal coordinates directed so that at each 
point of the shell the directions equivalent in terms of physical 
and mathematical properties coincide with them. The values of 
the mechanical characteristics at each point of the shell will de-
pend on the concentration of the reinforcing fiber at each point:

( ) ( )0 0
1 0 01 ,В M

r r
Е Е r E r

r r
 = ψ + −ψ  

  (1)

( ) ( )
2

0
0 0

,
1

В M

B M

Е E
Е

r
E r E r

r

=
 −ψ + ψ 

    (2)

where E1 is the modulus of elasticity in the direction of 
reinforcing fibers, and E2 is the modulus of elasticity in the 
direction perpendicular to the reinforcing fibers, EB is the 
modulus of elasticity of the fiber material, EM is the modulus 
of elasticity of the matrix material, ψ is the volume content 
(concentration) of the fiber in the shell.

The Poisson coefficients and shear moduli are calculated 
as follows:

1 ,B B M Mv v v=ψ +ψ    (3)

1 2
2

1

,
E

E
ν

ν =   (4)

( )12 21 .
1

B M

B M B B

G G
G G

G G
= =

ψ + −ψ
  (5)

Here, ν1 is the Poisson coefficient in the direction of the 
reinforcing fibers, ν2 is the Poisson coefficient in the direc-
tion perpendicular to the reinforcing fibers, G12 is the shear 
modulus of the composite.

Tables 2, 3 give the values of these constants for different 
materials.

Table	2

Samples	of	matrix	materials

No. Material
Modulus of elasticity E 

(MPa)
Poisson’s coef-

ficient ν
1 Magnesium 43,600 0.42

2 Copper 112,000 0.34

3 Aluminum 72,000 0.31

Table	3

Samples	of	fiber	materials

No. Material
Modulus of elasticity E 

(MPa)
Poisson’s coef-

ficient ν
1 Boron 400,000 0.42

2 Steel 200,000 0.31

3 Aluminum 72,000 0.31

The elastic characteristic is the dependence between the 
linear axial displacement Uz of the rigid center of the elastic 
shell element and the load p. The elastic characteristic of 
the element can be linear and nonlinear: increasing (soft) or 
decreasing (hard) (Fig. 4) [1]. 

If the characteristic of the elastic element is linear, then 
the stiffness K is the ratio of the load to the corresponding 
displacement.

K=р/Uz;  (6)

and sensitivity S is the ratio of displacement to the load that 
caused it:

S=1/K=S=Uz/р.  (7)

The stiffness and sensitivity of an elastic element with 
a nonlinear characteristic vary depending on the deflection 
and are determined as follows:

K=Δр/ΔUz; S=ΔUz/Δр.  (8)

As can be seen from (8), sensitivity and stiffness are 
reciprocal quantities.

5. Results of the development of a methodology for 
determining the static characteristics of elastic shells

5. 1. Justification of the estimation scheme
The elastic element is considered as a shell of rotation. 

The calculation scheme for deriving equilibrium equations 

Fig.	3.	Variants	of	the	structure	of	corrugated	shell	elastic	
elements	made	of	composite	materials:	a	–	unidirectional	

with	a	radial	arrangement	of	fibers;	b	–	unidirectional	with	an	
annular	arrangement	of	fibers;	c	–	orthogonally	reinforced

a b c

Fig.	4.	Linear	and	nonlinear	characteristics	of	the	elastic	
element:	a	–	linear;	b	–	decreasing	(soft);	c	–	ascending	(hard)

Uz (mm) 

b 
a 

c 

p (MPa) 
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is presented in Fig. 5, a–c. One of the equilibrium equations 
can be drawn up in integral form - this is the sum of the pro-
jections on the axis of symmetry of the forces applied to the 
final section of the shell (Fig. 5, a, b). 

( ) ( )1 sin cos 2 ,N Q r F sθ− θ π =    (9)

where F(s) is the total axial load on the allocated part of the 
shell. The value of F(s) consists of the axial load p0 on the up-
per edge of the shell and the projections on the axis of loads 
q1 and qn distributed over the surface of the section. 

( )
0

2
0 0 12 cos sin 2 d ,

S

s n
S

F Q r p r q q r s= ⋅ π = π + θ− θ π∫  (10)

( ) ( )12 cos sin 2 ,Z n

d
Q r q q r

ds
⋅ π = θ− θ π

( ) ( )1cos sin .Z n

d
Q r q q r

ds
⋅ = θ− θ

When calculating the shells of rotation, it is convenient, 
along with the projections N1 and Q, to determine the forces 
in the cross-section normal to the meridian. Consider the 
projections of these forces on the direction of the axis of 

symmetry of the shell (Fig. 5, b) and on the direction of the 
normal to the axis (Fig. 5, c). The axial component of the 
force is equal in cross-section to [F(s)/2πr], and normal to 
the symmetry axis, Qr=N1cosθ+Qsinθ; the component Q is 
called the spacer force [1, 2]. 

5. 2. Derivation of equations for determining dis-
placements and forces in corrugated shell elastic ele-
ments 

The equilibrium of the shell element, distinguished by 
two meridional sections and two sections normal to the 
meridian (Fig. 5, a) was considered. For the element of a 
symmetrically loaded shell, three non-identical equilibrium 
equations can be drawn up: two equations of projections 
on any directions lying in the meridional plane, and one 
equation of moments with respect to the axis normal to this 
plane. The sum of the projections of forces on the direction 
of the normal to the element is compiled. The equation of 
equilibrium includes the projection of the external load 
qnrdϕds (rdϕds – the area of the element), the difference in 
the values of the transverse forces applied to the lower and 
upper faces of the element, d(Q1r)dϕ, as well as projections 
to the normal of the forces applied to the element N1 and N2. 

As can be seen from Fig. 5, b, the projection on the normal 
n of the forces N1 with an accuracy of small higher order is 
N1rdφds/R1.

Similarly, considering the normal to the meridian 
cross-section of the element, the projection to the normal of 
forces N2 is equal to N1rdϕds/R2.

Thus, the sum of the projections of all forces on the direc-
tion of the normal is:

( )1 1 2
1 2

0,n

ds ds
d Q r d N rd N rd q rd ds

R R
ϕ− ϕ − ϕ + ϕ =

or, after reduction by ,rd dsϕ  

( ) 1 2
1

1 2

1
0.n

N Nd
Q r q

r ds R R
− − + =    (11)

The equation of moments of the forces with respect to 
the tangent t to the parallel passing through the lower face 
of the element. 

( )( ) ( )1 1 1 1 ,M dM r dr d M rd d M r d+ + ϕ− ϕ = ϕ

where M1 is the angular momentum applied to the upper face 
of the transverse force Qrdϕds, as well as the projection of 
the moments M2ds applied to the side faces. This equation 
includes the difference between the moments M1 applied to 
the lower and upper faces of the element.

In order to calculate these three projections, the moments 
are depicted as vectors (Fig. 5, c). It was established that 
the angle between these vectors dψ=(rdϕ/rcosθ)=dϕcosθ. 
Therefore, the projection of vectors on the t direction:

2 2 cos .M dsd M dsd− ψ = − ϕ θ

The moment relative to t of the distributed loads is of a 
small higher order. So, the equation of moments is:

( )1 2 1cos 0,d M r d M dsd Q rd dsϕ− ϕ θ− ϕ =

or, after reduction by rdϕds,

Fig.	5.	Estimation	scheme	of	the	shell	element:	a	–	fragment	
of	the	shell	element;	b	–	projection	of	forces	on	the	axis	
of	symmetry;	c	–	projection	of	forces	in	a	cross-section	

perpendicular	to	the	meridian

a

b

c
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( )1 2 1

1 cos
0.

d
M r M Q

r ds r
θ

− − =      (12)

In addition to the equations of equilibrium (11), (12), 
it is also possible to draw up a condition of equality to zero 
the sum of projections on the direction of the meridian of all 
forces applied to the element (Fig. 1). This equation is:

( )1 2 1 0,d N r d N dsd Qrd d q rd dsϕ− ψ + ϕ θ+ ϕ =

where the minor of higher orders are omitted. After reduc-
tion by rdϕds and substitution

1

1
cos , ,

d d
d ds R
ψ θ
= θ =

ϕ
 

we obtain

( )1 2 1
1

1 cos
0,

d Q
N r N q

r ds r R
θ

− + + = .  (13)

1 cos sin ,rdu
ds

= ε θ−ϑ θ    (14)

1 sin cos .zdu
ds

= ε θ+ϑ θ   (15)

We expressed the elongation of the ring fiber ε2=ur/r 
through the intensity force N2:

2 1
2 2 2 1

1 2 2

1 2 1
2 2 2 1 2 2 1

2 2 2

1

.

E h E
N

E

E N E
c

E c E
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−ν ν  
 

= ε + ν ε →ε − ν ε 
 

  (16)

After substituting this value into an expression for N1:

2 2 2
1 1 1 2 1 1 1 2

1 2 1 1

2 2 1
1 1 1 2 1

1 2 2

2 2
1 1 1 1 2 1

1 2

1 2
1 1 1 2 1 1 2 1
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E N E
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c E
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c E
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= ε + ν −ν ν ε = 
 

= ε + ν − ν ν ε  (17)

Substituting N2 into this expression, we obtained:

 
= ε + ν ε + ν ε − ν ν ε = 

 

= ε + ν ε + ν ν ε − ν ν ε =

= ε ν ε + ν ν ε − ν ν ε =

= ε + ν ε

1 2 1
1 1 1 1 2 2 2 1 1 1 2 1
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We expressed from the last expression ε1:

1 2 1 2
1 1 2 2 1

1 1 1 1

.r rN E u N E u
c E r c E r

ε = − ν ε = ε = = − ν    (19)

Considering that N1=Qzsinθ+Qrcosθ, we obtained
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N E u
c E r
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Q Q
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or, what is the same:

1 2 1 2 2
1 1

1 1 1

1 1
sin cos .r

z r

E u
Q Q

E h E h E r
−ν ν −ν ν

ε = θ+ θ−ν  (21)

Substituting this expression in (6) and (7), we ob-
tained:

21 2 1 2

1 1

2
1

1

1 1
sin cos

cos sin ,

r
z r

r

du
Q Q

ds E h E h

E u
E r

−ν ν −ν ν
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−ν θ −ϑ θ    (22)
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Q Q
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= θ+ θ θ−

−ν θ +ϑ θ  (23)

It is known that

1 ,
d

K
ds
ϑ

=  
2

cos
.K

r
θ

= ϑ

Substituting these values in
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we obtained 
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1

cos
.

Ed
M D

ds E r

 ϑ θ
= + ν ϑ 

 
   (24)

After the conversion, we have 

1 2
1

1 1

cos
,

M Ed
ds D E r
ϑ θ
= + ν ϑ    (25)

or, finally:

( )1 2 2
1 13

1 1

12 1 cos
.

Ed
M

ds E h E r

−ν νϑ θ
= − ν ϑ   (26)

From the equation of projections of all forces on the di-
rection of the normal, taking into account

1 sin cos ,z rN Q Q= θ+ θ  

1 cos sin ,z rQ Q Q= − θ+ θ  

we obtained:
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Knowing that 
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From the equation of projections of all forces on the di-
rection of the normal, taking into account
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Thus, the desired system of differential equations is as 
follows:
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As a result of theoretical transformations, a system of 
ordinary differential equations for determining internal 
forces and displacements in corrugated shell elements made 
of composite materials was obtained (35).

5. 3. Reducing a system of equations to a dimension-
less form and determining the state vector

For numerical integration (35), the method of initial 
parameters is used. This method is not always applicable be-
cause of the fast-growing and fast-decreasing solutions, i.e., 
because of the so-called “flattening” of the system of solution 
vectors. To avoid this, the method of running and orthogo-
nalizing the results at the intermediate points of division of 
the integration segment, which is proposed in [20], helps. 
According to it, the integration segment is divided into a 
number of intermediate segments so that numerical integra-
tion of the system of equations (35) within any intermediate 
section is possible. The number of partition points of the in-
tegration segment is set empirically. The system of vectors in 
the second and subsequent sections is solved with the initial 
parameters, which came out as a result of the integration of 
the equations of the previous integration segment.

The dependence U=Uz(p) is the static characteristic of 
the elastic element of interest to us. Varying the geometric 
dimensions and methods of reinforcement, we obtain various 
components of the state vector at all points of interest of the 
middle surface. The stresses in the mutually perpendicular 
sections, one of which lies in a plane parallel to the meridi-
onal plane, the other in a plane perpendicular to the middle 
surface of SEE, are determined from formulas: 

2
1 1 1/ 6 / ;N h M hσ = ±  2

2 2 2/ 6 / ,N h M hσ = ±  (36)

where σ1, N1, M1 are, respectively, the stress, the normal 
force, the bending moment in a cross-section perpendicular 
to the middle surface, σ2, N2, M2 are similar values in the 
cross-section parallel to the meridional plane. In (36), the 
plus sign is for stresses on a stretched surface, and the minus 
sign is for stresses on the compressed surface. The stress in 
the cross-section parallel to the middle surface is neglect-
ed according to the accepted Kirchhoff-Love conjecture. 
The force factors included in equation (36) are determined 
through the components of the state vector according to the 
formulas:

1 cos sin ,r zN Q Q= θ+ θ

2 2 1 2 / ,rN N E hu r= ν +

1 1,M M=     (37)

( )3
2 2 1 2 cos / 12 .M M E h r= ν + θ⋅ν

The equivalent stress is determined by energy theory:

σ = σ +σ −σ σ2 2
1 2 1 2 .equiv   (38)

Strength testing is carried out by force:

[ ] / ,equiv y ynσ σ = σ   (39)

where [σ] is the allowable stress; σy is the yield strength at 
stretching or compression; ny is the yield factor.

As a result of the calculation, 15 components of the state 
vector are obtained:

1. Axial displacement – uz.
2. Radial displacement – ur.
3. Transverse force – Qr.
4. Transverse force – Qz.
5. Bending moment – M1.
6. Bending moment – M2.
7. Longitudinal force – N1.
8. Longitudinal force – N2.
9. Tensile stress – 1 1 / .t N hσ =
10. Bending stresses 2

1 16 / .b М hσ =
11. Stresses – 1 1 1 .t bσ = σ ±σ
12. Tensile stresses 2 2 / .t N hσ =
13. Bending stresses 2

2 16 / .b М hσ =
14. Stresses – 2 2 2.t bσ = σ ±σ
15. Equivalent stresses  σ = σ +σ −σ σ2 2

1 2 1 2 .equiv

5. 4. Determination of displacements, forces, and 
stresses in corrugated elastic elements 

As a test example, an isotropic shell with the following 
physical and mechanical characteristics was calculated: 
E=100,000 MPa; ν=0.33. According to the proposed calcu-
lation method, the following results were obtained.

At a pressure of 0.01 MPa according to the Godunov 
method, the deflection in the center of the membrane is 
0.128 mm (in the present work and in the experiment de-
scribed in [2] – 0.127 mm).

Fig. 6 shows the diagrams of normal stresses σ1 during 
bending and stretching, calculated from the results of this 
study and from the results of the test example. 

Fig. 7 shows the diagrams of normal stresses σ2 during 
bending and stretching, calculated from the results of this 
study and from the results of the test example. 

The maximum bending stress occurs at the outer con-
tour of the membrane, where it (according to the Godunov 
method) is 59 MPa, (according to the algorithm proposed in 
this work, 58.84 MPa). The stress diagrams are completely 
identical in nature, and the difference in numbers does not 
exceed 0.27 % (Fig. 6, 7).

Fig. 8 shows the elastic characteristics of the element, 
determined from various theoretical and experimental data.

Fig. 8 shows the elastic characteristics of the shell ele-
ment, built as a result of analytical calculations obtained in 
this work (3), according to the analytical calculations pro-
posed in [1] – (1), [2] – (2), and experimental data obtained 
in [1] – (3). As can be seen from Fig. 8, the results of the 
proposed calculation method coincide with the experimen-
tal data and therefore, accurately reflect the behavior of the 
shell under load. It can be concluded that the calculation 
method, as well as the program implementing it, are accurate 
enough to be used in practice.
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Fig. 9 shows the diagrams of the vertical displacements 
Uz, the radial displacements Ur, the transverse forces Qr, the 
transverse forces Qz, the bending moments M1.

These forces are defined for three combinations of fi-
ber and matrix in radial reinforcement. The softest matrix 
(magnesium) and the stiffest fiber (boron) are combina-
tion 1, the stiffest “matrix” (copper, medium stiffness fiber 
(steel) is combination 2, medium stiffness values of the 
matrix and fibers (aluminum-steel) are combination 3. 

The geometric dimensions of all shells are the same, the 
load p=0.01 MPa. Radial displacements are, respectively, 
0.006 mm, 0.0035 mm, 0.005 mm.

The character of the diagram of the transverse forces 
Qz resembles the profile of the shell, but the maximum 
values of the transverse forces are near the hollows of 
the shell, and the minimum values are vice versa, near 
the vertices. Values of maximum forces for combinations 
a, b, c (respectively): 0.4 kN/m; 0.467; 0.446. The min-
imum values of the transverse forces Qz in all cases are 
the same: 0.0095 kN/m, and the maximum 0.107 kN/m; 
0.12 kN/m; 0.11 kN/m – for options a, b, c, respectively.

The diagram of the bending moments M1 resembles 
a sine wave in nature, only with a period half that of the 
shell. On the “troughs” and “vertices” of the shell, the mo-
ment values are the smallest in their period, the maxima 
of moments fall on the “zero” points of the shell. Starting 
the last half-wave of the sine wave of the shell, the values 
of the moment M1 fall sharply, which can be explained by 
the presence of a boundary effect. At the base of the rigid 
center of the shell, where the largest concentration of re-
inforcing fibers is, the influence of the value of the modu-
lus of elasticity of the fiber is manifested: when combined 
fibers and matrices, i.e., at the most “rigid” fiber, the value 
of the moment M1 at the rigid center significantly exceeds 
similar moment values for other combinations of fiber and 
matrix: 

a) M1max=0.43 kN/m;
b) M1max=0.16 kN/m;
c) M1max=0.158 kN/m.
The values of non-moments at the outer edge of the 

shell, the concentration of fibers has a much smaller effect 
on the stiffness, close to each other: 

a) ‒0.45 kN/m; 
b) ‒0.487 kN/m;
c) ‒0.47 kN/m.
Since the matrix material has a much smaller modulus 

of elasticity compared to fiber, and when the membrane is 
loaded, the length of the threads remains practically un-
changed, the change in the shape of the membrane under 
load is associated with shear deformations in the matrix. 

Therefore, the calculation was made for each combination of 
fiber and matrix twice: without taking into account the shift 
and taking into account it. 

Fig. 10 shows the elastic characteristics of the shell ele-
ment at the radial arrangement of reinforcing fibers for their 
different concentrations: ψ=0.785, ψ=0.81, ψ=0.906.

Fig. 10, 11 show the elastic characteristics of the element 
depending on the concentration of the reinforcing fiber 
during radial and ring reinforcement. Obviously, the greater 
the fiber concentration (in both cases of reinforcement), the 
more rigid the characteristic.

Fig. 12 shows elastic characteristics at different shell 
thicknesses. Reinforcement in all cases is radial.

Fig. 13 shows elastic characteristics at different shell 
thicknesses. Reinforcement in all cases is circular.

Fig. 12, 13 demonstrate that the thickness of the shell 
significantly affects the elastic characteristic: the greater 
the thickness of the shell, the stiffer it is, and therefore less 
sensitive. This dependence persists for both radial and ring 
reinforcement, although the shells are stiffer with ring rein-
forcement than with radial reinforcement. With a thickness 
of the shell h=0.05 mm, radial reinforcement gives a rapid 
increase in displacement with a slight increase in load, which 

Fig.	6.	Normal	stress	σ2	diagrams	when	stretching	and	bending:	
a	–	when	stretching:	____	–	test,	.....	–	calculation;		b	–	when	

bending:	____	–	test,	........	–	calculation

a

b

Fig.	7.	Normal	stress	σ1	diagrams	when	stretching	and	bending:	
a	–	when	bending:	____	–	test,	.....	–	calculation;		b	–	when	

bending:	____	–	test,	........	–	calculation

a

b

Fig.	8.	Elastic	characteristics	of	the	shell	element:		
1	–	analytical	calculation	[1];	2	–	according	to	the	Godunov	

method;	3	–	according	to	the	results	of	this	study
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violates the gentle linearity of the elastic characteristic, 
with ring reinforcement, almost the same thing happens. 
At thickness h=0.22 mm, radial reinforcement retains the 
linearity of the characteristic up to p=0.015 MPa, ring – up 
to 0.05 MPa, with a thickness of 0.45 mm, radial reinforce-
ment gives a linear characteristic up to p=0.06 MPa, ring – 

with an unlimited p. At a minimum thickness, the radially 
reinforced shell is much more stressed than the ring; with 
increasing thickness, this difference disappears.

Fig. 14 shows the elastic characteristics of the element 
in various combinations of fiber and matrix without taking 
into account shear. Reinforcement in all cases is orthogonal.

Fig.	9.	Force	diagrams:	a	–	estimation	scheme,	b	–	diagram	of	vertical	displacements	Uz;	c	–	radial	displacement	diagram Ur;	
d	–	diagram	of	the	transverse	radial	forces Qr;	e –	diagram	of	transverse	forces	Qz;	 f	–	diagram	of	bending	moments	M1;	

_____	–	combination	1;	········	–	combination	2;	-------- – combination	3

a

b

c

d

e

f



Applied mechanics

73

Fig. 15 shows the elastic characteristics of the element 
in various combinations of fiber and matrix without taking 
into account the shift and taking into account the shift. Re-
inforcement in all cases is orthogonal.

The plots in Fig. 14 show (straight lines 5, 3, 1) that 
the shells with the stiffest fiber (boron) have the greatest 
stiffness, and therefore the least sensitivity. The influence 
of the matrix in them is weaker, although the shells with a 
“softer” matrix are less rigid. The next two characteristics 
are straight lines 2 and 4 - belong to the elements where 
steel was used as a fiber. These two straight lines are 
located very close to each other, that is, the matrix mate-
rial practically does not create a difference in the stress-
stressed state. This can be seen in the values of equivalent 
stresses in the second combination of fibers of the matrix 
σequiv=57.3 MPa at p=0.01 MPa, and at the fourth combi-
nation at the same pressure σequiv=57.34 MPa.

The sixth combination of fiber and matrix provides 
a fairly “soft” sensitive shell with σeq=56.6 MPa at 
p=0.01 MPa. The linearity of the elastic characteristic 
is preserved with the third and fifth variants of the fi-
ber and matrix combinations at p=0.047 MPa, with the 
first to p=0.04 MPa, with the second and fourth – up to 
p=0.032 MPa, with the sixth – up to p=0.02 MPa.

When analyzing the plots shown in Figs. 14, 15, it can 
be seen that in the first and second variants, combina-
tions of fiber and shear matrix practically do not occur. 
In the first variant, at p=0.01 MPa, the displacement of 
the rigid center without taking into account the shift 
is 0.068 mm, taking into account the shift – 0.063 mm, 
σequiv=53.6 MPa (excluding shift), σeq=52.6 MPa (taking 
into account the shift).

In the second option, without taking into account the 
shift:

Uz=0.084 mm, σequiv=57.34 MPa at р=0.01 MPa;

taking into account the shift

Uz=0.083 mm, σequiv=57.26 MPa.

At the same pressure, it is obvious that in the first case, 
very rigid boron fibers “hold” the malleable matrix, and in 
the second, a fairly rigid matrix resists shear well. In the 
remaining four cases, the effect of shear is already great: 
malleable matrices resist weakly, and not very “rigid” fibers 
cannot provide the overall stiffness of the element. Moreover, 
the “softer” the matrix, the greater the effect of the shift, the 
greater the difference in elastic characteristics and stresses.

Fig. 16 shows the obtained elastic characteristics with 
various combinations of radial and ring fiber in the case of 
orthogonal reinforcement.

The matrix is magnesium. The most rigid charac-
teristic is in the shell with reinforcing fibers radial from 
aluminum, ring - from boron. Here, the linearity is main-
tained until the pressure load is 0.045 MPa, and the 
σeq=58.72 MPa at p=0.01 MPa. The characteristic with 
the first combination of radial and ring fibers is the 
“softest”, the linearity is maintained until the pressure 
reaches 0.017 MPa. The most rigid characteristic is in 
the shell with reinforcing radial fibers made of aluminum, 
ring – from boron. Here the linearity is preserved until 
the pressure is loaded with a pressure of 0.045 MPa, and 
σequiv=58.72 MPa at p=0.01 MPa. Characteristic with the 

first combination of radial and ring fibers – the “softest” 
linearity is maintained until a pressure of 0.017 MPa is 
reached, σeq=56.6 MPa at p=0.01 MPa. From a comparison 

Fig.	10.	Elastic	characteristics	in	the	radial	arrangement	of	fibers	
depending	on	the	concentration	of	reinforcing	fibers

Fig.	11.	Elastic	characteristics	in	the	ring	arrangement	of	fibers	at	
different	concentrations:	ψ=0.785;	ψ=0.81;	ψ=0.906

Fig.	12.	Elastic	characteristics	at	different	thicknesses	of	the	
shell	(radial	reinforcement)

Fig.	13.	Elastic	characteristics	at	different	shell	thicknesses	(ring	
reinforcement)
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of these three characteristics, it can be concluded that ring 
reinforcement gives greater rigidity to the shell than radial.

Fig. 17 shows the elastic characteristics in various types 
of reinforcement.

The most “rigid” shell is with ring reinforcement, the 
linearity of the characteristic is preserved until the pressure 
load is 0.06 MPa, while with radial reinforcement up to 
0.013 MPa “Intermediate” is orthogonal reinforcement: here 
the linearity is preserved up to 0.035 MPa.

6. Discussion of results of applying the methodology 
for determining the static characteristics of elastic shell 

elements

Estimation schemes of deformed (Fig. 1) and unde-
formed shells (Fig. 2) were drawn up. Various combina-
tions of materials for the manufacture of shell elements 
are presented (Tables 2, 3). After mathematical transfor-
mations of the equilibrium equations and determination of 
the magnitude of the mechanical characteristics of mate-
rials (1) to (5), equations (35) were built. To solve them, 
a program for calculating efforts and displacements has 
been compiled. The reliability of the theoretical results is 
confirmed by experimental data [1] conducted for isotro-
pic shells. This is also confirmed by test calculations, the 
results of which are reflected in Fig. 6–8. The reliability 
of the results obtained is explained by the correctly cho-
sen estimation scheme of the shell element and the rational 
system of differential equations (35). The peculiarity of 
the proposed method is that it takes into account both the 
complex geometry of the shell and uneven reinforcement. 
Studies were carried out under the condition of linearity 
of the elastic characteristic. In the subsequent develop-
ments, it is proposed to increase the class of studied prob-
lems by determining nonlinear elastic characteristics. The 
system of equations (35) does not allow such an analysis 
to be made. As a shell material, a scheme of composite 
material “metal on metal” is used. Difficulties may arise 
when implementing the results of the technical plan 
study: the technology for the manufacture of such shell 
elements has not yet been sufficiently developed. 

Based on the results of calculations of internal forces and 
displacements, recommendations can be made for the design 
of corrugated shell elements from composite materials. To 
obtain linear elastic characteristics, you can use:

a) radially reinforced shells with a rigid matrix (per-
missible pressure – 0.035 MPa) or soft (permissible pres-
sure 0.01 MPa);

b) ring-reinforced boron fibers – permissible pressure of 
0.06 MPa; steel fibers – permissible pressure 0.035 MPa; 
aluminum fibers – permissible pressure 0.015 MPa;

c) orthogonally reinforced shells.
Recommendations:
1. In shell elements with ring reinforcement, the decisive 

role is played by the material of the reinforcing fiber, in 
contrast to radially reinforced elements, where the matrix 
material is decisive.

2. Depending on the choice of material, the displacement 
fibers of the center of the shell have a significant variation 
in values at the same pressure: from 0.03 mm (boron) to 
0.18 mm (aluminum).

3. To obtain a linear elastic characteristic when using bo-
ron fibers in the case of ring reinforcement, the shell can be 
loaded with pressure up to 0.06 MPa. If the fibers are made 
of steel, the pressure should not exceed 0.035 MPa, and with 
aluminum fibers not more than 0.015 MPa. Otherwise, lin-
ear theory is unacceptable.

Fig.	14.	Elastic	characteristics	for	various	combinations	of	
fiber	and	matrix	(orthogonal	reinforcement)	without	taking	

into	account	shear:	1	–	boron-magnesium;	2	–	steel-copper;	
3	–	boron-copper;	4	–	steel-aluminum;	5	–	boron-aluminum;	

6	–	aluminum-magnesium

Fig.	15.	Elastic	characteristics	for	various	combinations	of	fiber	
and	matrix	(orthogonal	reinforcement)	without	shear	and	taking	

into	account	shear:	1	–	boron-magnesium;	2	–	steel-copper;		
3	–	boron-copper;	4	–	steel-aluminum;	5	–	boron-aluminum;		

6	–	aluminum-magnesium

Fig.	16.	Elastic	characteristics	with	various	combinations	of	
radial	and	ring	fiber:	1	–	boron-aluminum;		

2	–	aluminum-boron;	3	–	steel-steel

Fig.	17.	Elastic	characteristics	for	various	types	of	
reinforcement
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The results of the study determine the maximum possi-
ble pressure values to obtain linear elastic characteristics. 
If these values are exceeded, the nature of the dependences 
has not been studied. It is assumed that the linearity of the 
elastic characteristic above the calculated pressure values 
will not be observed. There is a need to derive a new system 
of equations taking into account nonlinearity. This is un-
doubtedly a very time-consuming task that can be solved 
in future studies. These conclusions can be attributed to 
the shortcomings of the proposed method. This is also the 
goal of future research. The complexity of the task will 
lie in mathematical calculations (taking into account the 
nonlinearity of several types), and in the manufacture of 
elastic shells with a complex meridian shape and uneven 
reinforcement. Metal-to-metal reinforcement has not yet 
found much application in technology, mainly composites 
made of plastic materials are used. This is another factor 
that complicates research. Although the composite “metal 
on metal” can reduce the own weight of the element. This, 
of course, is an important aspect of the operation of the en-
tire structure and will lead to savings in both the material 
and the cost of the elements. 

7. Conclusions 

1. An estimation scheme of an elastic element as a shell 
of rotation during deformation is drawn up and equilibri-
um equations are derived. A feature of this scheme is the 
accounting of the anisotropy of the structure caused by un-
even reinforcement, as well as the possibility of taking into 
account the geometric and physical parameters of the shell 
at each point. When solving these equations, it is possible to 
obtain static characteristics not only of isotropic structures 
but also to combine various materials in the structure, both 
matrices and fibers. 

2. Equations for determining displacements and forces 
in corrugated shell elastic elements are derived. A feature 
of these equations is the consideration of the mechanical 
and geometric parameters of the shell, which are variable 
values at each point of the section. This is due to the pecu-
liarity of the design of the shell element, caused by uneven 
reinforcement. 

3. The system of equations is reduced to a dimension-
less form and the state vector of the system is obtained to 
compile the algorithm of the computational program for 
the PC.

4. Displacements, forces, and stresses in corrugated 
elastic elements have been determined. Based on the results, 
elastic characteristics of shell elements are constructed 
under various combinations of matrix and fiber materials, 
at different geometric parameters. Recommendations to de-
signers for the manufacture of shell elements with specified 
characteristics of rigidity and sensitivity are given.

Conflicts of interest

The authors declare that they have no conflicts of in-
terest in relation to the current study, including financial, 
personal, authorship, or any other, that could affect the study 
and the results reported in this paper.

Funding 

The study was conducted without financial support.

Data availability

All data are available in the main text of the manuscript. 

References

1. Andreeva, L. E. (1962). Uprugie elementy priborov. Moscow: Mashgiz, 456.

2. Alfutov, N. A., Zinov’ev, P. A., Popov, B. G. (1984). Raschet mnogosloynyh plastin i obolochek iz kompozitsionnyh materialov. 

Moscow: Mashinostroenie, 264.

3. Shimyrbaev, M. K. (1992). Utochnennye metody opredeleniya uprugih postoyannyh odnonapravlenno armirovannogo materiala. 

Vestnik AN RK.

4. Kurochka, K. S., Nesterenya, I. L. (2014). Raschet mnogosloynyh osesimmetrichnyh obolochek metodom konechnyh elementov. 

Informatsionnye tekhnologii i sistemy 2014 (ITS 2014): materialy mezhdunarodnoy nauchnoy konferentsii. Minsk, 214–215. 

Available at: https://libeldoc.bsuir.by/handle/123456789/2008

5. Golova, T. A., Andreeva, N. V. (2019). Analysis of methods of calculation of layered plates and shells for the calculation of multilayer 

structures. The Eurasian Scientific Journal, 5 (11).

6. Bazhenov, V. A., Solovei, N. A., Krivenko, O. P., Mishchenko, O. A. (2014). Modeling of nonlinear deformation and buckling of 

elastic inhomogeneities shells. Stroitel’naya mekhanika inzhenernyh konstruktsiy i sooruzheniy, 5, 14–33.

7. Kairov A. S., Vlasov O. I., Latanskaya L. A. (2017). Free vibrations of constructional non-homogeneous multilayer orthotropic 

composite cylindrical shells. Visnik Zaporizʹkogo nacionalʹnogo universitetu. Fiziko-matematicni nauki, 2, 57–65.

8. San’kov, P., Tkach, N., Voziian, K., Lukianenko, V. (2016). Composite building materials and products. International scientific 

journal, 4 (1), 80–82. Available at: http://nbuv.gov.ua/UJRN/mnj_2016_4(1)__24

9. Yankovskii, A. P. (2020). The refined model of viscoelastic-plastic deformation of reinforced cylindrical shells. PNRPU Mechanics 

Bulletin, 1, 138–149. doi: https://doi.org/10.15593/perm.mech/2020.1.11

10. Bakulin, V. N. (2019). Posloyniy analiz napryazhenno-deformirovannogo sostoyaniya trekhsloynyh obolochek s vyrezami. Izvestiya 

Rossiyskoy Akademii Nauk. Mekhanika Tverdogo Tela, 2, 111–125. doi: https://doi.org/10.1134/s0572329919020028 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/7 ( 120 ) 2022

76

11. Senjanović, I., Čakmak, D., Alujević, N., Ćatipović, I., Vladimir, N., Cho, D.-S. (2019). Pressure and rotation induced tensional 

forces of toroidal shell and their influence on natural vibrations. Mechanics Research Communications, 96, 1–6. doi: https:// 

doi.org/10.1016/j.mechrescom.2019.02.003 

12. Polyakova, I., Imambayeva, R., Aubakirova, B. (2021). Determining the dynamic characteristics of elastic shell structures. Eastern-

European Journal of Enterprise Technologies, 6 (7 (114)), 43–51. doi: https://doi.org/10.15587/1729-4061.2021.245885 

13. Abramczyk, J. (2021). Transformed Shell Structures Determined by Regular Networks as a Complex Material for Roofing. 

Materials, 14 (13), 3582. doi: https://doi.org/10.3390/ma14133582 

14. Treshchev, A., Lapshina, M., Zavyalova, Y. (2021). Thermomechanical deformation of the orthotropic shell taking into account the 

deformation anisotropy. E3S Web of Conferences, 274, 03026. doi: https://doi.org/10.1051/e3sconf/202127403026 

15. Myntiuk, V. (2021). Spectral solution to a problem on the axisymmetric nonlinear deformation of a cylindrical membrane shell due 

to pressure and edges convergence. Eastern-European Journal of Enterprise Technologies, 5 (7 (113)), 6–13. doi: https://doi.org/ 

10.15587/1729-4061.2021.242372 

16. Liu, Y., Zhu, R., Qin, Z., Chu, F. (2022). A comprehensive study on vibration characteristics of corrugated cylindrical shells with 

arbitrary boundary conditions. Engineering Structures, 269, 114818. doi: https://doi.org/10.1016/j.engstruct.2022.114818 

17. Lai, M., Eugster, S. R., Reccia, E., Spagnuolo, M., Cazzani, A. (2022). Corrugated shells: An algorithm for generating double-

curvature geometric surfaces for structural analysis. Thin-Walled Structures, 173, 109019. doi: https://doi.org/10.1016/ 

j.tws.2022.109019 

18. Khurukijwanich, C., Aimmanee, S. (2021). Anisotropic behaviors of helically corrugated cylindrical shells: Homogenized in-plane 

stiffness. Thin-Walled Structures, 160, 107378. doi: https://doi.org/10.1016/j.tws.2020.107378 

19. Khurukijwanich, C., Aimmanee, S. (2021). Anisotropic behaviors of helically corrugated cylindrical shells: Stress distributions and 

edge effects. Thin-Walled Structures, 168, 108263. doi: https://doi.org/10.1016/j.tws.2021.108263 

20. Biderman, V. L. (1977). Mekhanika tonkostennyh konstruktsiy. Moscow: Mashinostroenie, 488.


