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1. Introduction 

Robots and manipulators (M) were designed to per-
form tasks that a person cannot cope with in some circum-
stances. For example, AMR of a variable configuration 
performs operations under dangerous or harmful con-
ditions for humans. Increasingly, M is used for military 
purposes [1, 2], in space [3, 4], in nuclear energy [5], to 
overcome the consequences of man-made and natural di-
sasters [6]. For work under extreme conditions, remotely 
controlled AMR with M are typically used [1–6]. To 
ensure effective remote control of AMR with M, it is nec-
essary to design:

– a kinematic scheme of AMR with M with actuators;
– an information system of AMR with M;
– a mathematical model taking into account the dy-

namic relationships of control channels;
– control algorithms and software;
– technology of transmission of commands from the 

operator. 
To study the dynamics, such AMR can be considered as 

M on a mobile basis or a system of “carrier and transferred 
body” [1–6]. In [7], it is noted that in order to accurately 
model the dynamics of AMR with M, it is necessary to take 
into account the interaction between M and the platform, 
the interconnection of simultaneous rotation and sliding of 

rigid arms, as well as non-holonomic restrictions to prevent 
slipping and skidding of the platform. 

A feature of the dynamics of AMR with a manipulator as 
a system of bodies is [8]:

– changing the position of the center of mass of the sys-
tem with the relative movement of the manipulator;

– commensuration of non-diagonal and diagonal elements 
of the inertia tensor calculated relative to the axes of the base 
coordinate system associated with the center of mass of the 
AMR platform. Changing the position of the center of mass 
of the system causes the occurrence of disturbing momenta 
and causes a loss of orientation of the AMR in vertical planes. 
The loss of orientation or fall of AMR in the working area 
under extreme conditions not only leads to the impossibility 
of performing technological operations and causes material 
losses. When transporting radiation or explosive objects, a fall 
of AMR can have catastrophic consequences.

The non-diagonality of the tensor of the inertia of the 
body system relative to the basic coordinate system causes [8]: 

– the occurrence of inconsistency of the main central 
axes of inertia of the system of bodies with the axes connect-
ed to the center of mass of the AMR platform by the basic 
coordinate system;

– inconsistency of control actions with the directions of 
the main central axes of inertia of the system;

– interdependence of control channels.
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This paper considers the construction of a mathematical model of the 
movement of an autonomous mobile robot (AMR) in variable configuration, 
taking into account the relationship of the dynamic parameters of a mechan-
ical system.

As an example, the design of AMR with a manipulator is considered. 
The object of this study is the dynamics of AMR with a manipulator. The 

peculiarities of the dynamics of AMR with the manipulator are due to the 
change in the position of the center of mass of the system with the relative 
movement of the manipulator and the commensurate non-diagonal and diag-
onal elements of the inertia tensor calculated relative to the axes of the base 
coordinate system. The construction of the mathematical model was carried 
out according to the Nyton-Euler method. The resulting mathematical model 
contains:

– an equation of motion of the center of mass of the AMR system of vari-
able configuration along the trajectory in the inertial coordinate system;

– an equation of angular motion of AMR in variable configuration in the 
inertial coordinate system;

– an equation of motion of the manipulator with respect to AMR. In a 
general case, the center of mass of the AMR platform moves in a horizontal 
plane. Establishing the relationship of dynamic parameters of the mechani-
cal system will make it possible to maintain functionality and ensure the ori-
entation of AMR in vertical planes despite the movement of the manipulator. 
As an object of control, AMR with a manipulator is a multi-connected system 
with a cross-internal connection of control channels, which is formed by the 
dynamic parameters of a mechanical system. Based on the results of math-
ematical modeling using the proposed model, it is possible to develop algo-
rithms for adaptive control using cross-connection of channels. This will make 
it possible to identify reserves to reduce energy consumption, increase stabil-
ity, improve the efficiency and survivability of AMR in variable configuration 
during autonomous work under extreme conditions
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When providing control commands to the drives 
of the AMR chassis, the non-diagonality of the inertia 
tensor causes the occurrence of angular velocities in the 
directions perpendicular to the direction of movement. 
The control system tries to work out perturbations and 
prevent the growth of angular velocities in the directions 
perpendicular to the direction of movement. Despite the 
operation of the control system, due to the non-diagonal-
ity and instability of the inertia tensor and cross-connec-
tion of the control channels, AMR with M loses orienta-
tion. Additional operation of the control system increases 
energy consumption, reduces battery life, and reduces the 
performance of AMR. 

The movable base expands the service characteristics of 
M but imposes more stringent requirements on drives, devic-
es of control, and surveillance systems. 

The cycle of work of AMR with M can be divided into 
several stages [9]:

– movement of the AMR platform from the starting 
point S to the finish point F with a fixed manipulator in 
compliance with the requirements of optimality (speed, per-
formance, or efficiency, etc.);

– performing technological operations with a manip-
ulator, attached or information equipment with a fixed or 
movable platform;

– return of the AMR platform to the starting point S 
(or movement to a predetermined end point K) with a fixed 
manipulator.

At the first stage of operation, AMR is a trolley with 
an adaptive control system that moves under predeter-
mined environmental conditions. To ensure the steady 
movement of the AMR from point S to point F, the control 
system must, based on the results of the exploration of 
the working area, draw up a dangerous route and gener-
ate control commands for each chassis drive. If in a me-
chanical system there is a relationship between dynamic 
characteristics and control channels, then the impact on 
the chassis drives causes disturbances in the drives of the 
manipulator. Such perturbations cause an increase in the 
generalized coordinates of M, as a result of which M be-
gins to move relative to the platform and the system loses 
stability. Thus, in order to comply with the requirements 
of optimality, even for moving AMR with a fixed M, it is 
necessary to first establish the relationship of dynamic 
characteristics, to perform mathematical and simulation 
modeling of a mechanical system. Mathematical modeling 
of AMR dynamics of variable configuration without tak-
ing into account the relationship of the dynamic parame-
ters of the mechanical system predetermines methodolog-
ical and computational errors.

The relevance of this scientific topic is related to the 
need to build a mathematical model of AMR dynamics 
with a manipulator, taking into account the interrelation-
ships of the dynamic parameters of a mechanical system. 
Such a mathematical model is the scientific basis for the 
development of adaptive control algorithms with a unit of 
current object self-identification. Synthesis of commands 
for actuators is carried out programmatically online after 
analyzing the dynamic parameters of a mechanical sys-
tem, taking into account the interconnection of control 
channels. In practice, this will preserve the functionality 
and ensure the orientation of the AMR in vertical planes 
despite external disturbances and movements of the ma-
nipulator. 

2. Literature review and problem statement

When working remotely under extreme a priori un-
certain environmental conditions, various AMR designs 
of variable configuration are used. The use of AMR with 
manipulators is also appropriate in the implementation of 
technological operations with radiating [5] or explosive ob-
jects [1, 2]. In the operation of such AMRs, the manipulator 
executes technological operations with the movement of 
the object of manipulation (cargo, tools, instrumentation) 
according to a given law of motion.

In different parts of the AMR trajectory of the changing 
configuration, the load parameters may change: geometric 
dimensions, shape, mass distribution. These features should 
be taken into account when building a mathematical model 
since the coefficients of differential equations of dynamics 
are functions of the generalized coordinates of the manipu-
lator and depend on the law of motion and load parameters.

The presence of a movable base increases the maneuver-
ability of manipulation AMR, expands the working space, 
and increases the number of permissible configurations of 
the manipulator, but reduces the accuracy of positioning the 
grip (attachments or tools).

Dynamic processes for M on a moving platform can be 
divided into three driving modes:

– controlled movement of the platform along a given 
route with a “checked” M;

– performance of technological operations M with the 
platform stopped;

– M executes technological operations with controlled 
movement of the platform.

The mathematical model of the dynamics of the mechan-
ical system “AMR with M” should be built and loaded into 
the microprocessor of the control system in a general case. 
The equations of the dynamics of a mechanical system for the 
listed modes of motion are special cases and are derived from 
a general mathematical model under certain conditions. In 
addition, the mathematical model should reflect the dynamic 
features of the studied design of AMR with M.

The controlled movement of the platform with the 
“checked” manipulator is well researched for various chassis 
design options. The “checked” manipulator changes the coor-
dinates of the center of mass of the system but the elements of 
the inertia tensor are stationary [8]. When implementing this 
mode of movement, AMR is a controlled trolley that moves 
along the trajectory. The synthesis of the law of controlling 
the flat motion of a robot-trolley is a typical task: several 
methods of stabilizing movement along a given trajectory are 
known. In [10], the dynamics of a 4-wheelchair equipped with 
fixed devices were investigated. The mathematical model of 
the dynamics of the all-wheel drive and front-wheel drive 
trolley when cornering is given. In this case, the platform is 
considered a solid, the center of mass of the platform is the 
center of mass of the system. The linearized mathematical 
model presented in [10] does not reflect the relationship of 
dynamic parameters and control channels.

When moving the AMR with M along a given route, the 
control system must ensure minimal deviation of the center 
of mass of the platform from the specified trajectory. At the 
same time, the control moments are directed along the axes 
of the basic coordinate system associated with the center of 
mass of the AMR platform. 

In [11], an unmanned vehicle is considered as a multi-
state hinge system. To describe the kinematics of the trolley, 
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a modified Denavit-Hartenberg method was used. To build 
a dynamic model, the Newton-Euler algorithm is used. The 
proposed model takes into account the interrelationships of 
all parts of the vehicle, which makes it more representative 
for the development of adaptive control algorithms. Con-
trol is implemented using the Lyapunov functions. Taking 
into account the interrelationships of dynamic parameters 
ensures reliable tracking of the reference trajectory when 
kept in lanes, lane changes, avoiding obstacles, and during 
critical driving situations. It is noted that multi-body models 
provide more information, which is usually neglected when 
using a closed-form model. The model presented in [11] can-
not be used to describe the dynamics of AMR with M but 
the expediency of using the Nyton-Euler method has been 
proven. 

Paper [12] considers dynamic modeling of mobile multi-
body systems. This class of systems includes spatial wheeled 
vehicles subjected to constant rigid contacts. To build a 
nonlinear dynamic model, the Newton-Euler algorithm was 
used in combination with a projective approach based on an 
explicit contact model. The results of the implementation 
of the proposed method for modeling the dynamics of the 
bicycle are provided. Based on the mathematical model, an 
algorithm for controlling the movement along the trajectory 
has been developed. It has been proven that passive asymp-
totic stabilization of a bicycle can be ensured when it moves 
at sufficient initial speeds. The model presented in [12] does 
not take into account the peculiarities of the dynamics of 
AMR with M. At the same time, the effectiveness of the 
proposed control algorithms for cross-communication of 
channels is questionable. 

Paper [13] describes dynamic models of tracked un-
manned ground vehicles (UGV) in three-dimensional space 
instead of a simplified two-dimensional projection on a sin-
gle plane in traditional vehicle theory. The determination of 
Euler angles is carried out relative to the coordinate system 
fixed on the main body. A dynamic model for rectilinear 
movement and steering modes is proposed. with the use 
of spatial forces and moments. Dynamic models are built 
according to the Newton-Euler method and the Lagrange 
method. With the help of the developed models, it is pos-
sible to establish rules for the distribution of vehicle load 
to ensure the stability of movement in three-dimensional 
space and implement the appropriate control algorithms. 
The model presented in [13] does not take into account the 
non-diagonality and nonstationarity of the tensor of inertia, 
especially the dynamics of AMR with M.

In [14], for the equations of controlled motion of the 
robot along the trajectory, a replacement of variables was 
found, which allows the linearization of the mathematical 
model on feedback. The synthesis of the law of control for an 
arbitrary “target path” was carried out taking into account 
the restrictions on phase coordinates and control actions. 
For AMR with M, linearization of the mathematical model 
is possible only for individual modes of motion. At the same 
time, the effectiveness of the proposed control algorithms for 
cross-linking channels is questionable. 

Work [15] states that slipping the wheel can cause a sig-
nificant deterioration in handling while driving a mobile ro-
bot. This paper proposes a method to prevent wheel slippage 
using a nonlinear predictive driving model. The limitations 
included in the optimization task change the force of inter-
action between each wheel and the ground. This approach 
has been tested under a dynamic modeling environment 

using the example of a wheeled mobile robot Pioneer 3-DX, 
which performs box pushing manipulations. For autonomous 
operation of AMR with M under extreme or predetermined 
conditions, the proposed method of preventing wheel slip-
page can be useful. 

The trolley dynamics equations track properly the de-
viation of the trolley’s center of mass from a given trajec-
tory. But, in [12–15], issues related to the expediency and 
justification of the limits of application of the linearized 
mathematical model remained unresolved. In addition, the 
mathematical models proposed in [12–15] do not reflect the 
relationship of the dynamic parameters of the mechanical 
system. In [16], the design schemes for the formation of 
control actions on the chassis drives, taking into account 
the interconnection of the control channels, are given. The 
proposed schemes should be used in the development and 
design of driving chassis system for AMR with M; this will 
take into account and compensate for the non-diagonality 
and nonstationarity of the inertia tensor. But the mathe-
matical models given in [16] cannot be used to describe the 
movement of M relative to the AMR platform. 

M performs some technological operations with the plat-
form stopped. Under this mode, the mathematical model of 
the system contains the equation of M dynamics relative to a 
non-moving base. Most often, the dynamics of manipulators 
are described using the Newton-Euler method and the La-
grange-Euler method [17].

When moving M relative to the AMR platform, the main 
central axes of inertia of the body system do not coincide 
with the axes of the base coordinate system [8]. As a result, 
the AMR inertia tensor in the coordinate system associated 
with the platform is non-diagonal and non-stationary. In [8], 
the results of the analysis of the elements of the inertia ten-
sor of AMR are given. It is accepted that the mass M with a 
load of 10 % by weight of the AMR chassis. It is proved that 
the centrifugal and axial moments of inertia of AMR with 
a manipulator (relative to the axes of the base coordinate 
system) depend on the time and values of the generalized 
coordinates [8]. These features should be taken into account 
when building a mathematical model of movement M with a 
movable platform of AMR.

If M performs technological operations with controlled 
movement of the AMR platform, then the mathematical 
model should take into account the interrelationships of the 
dynamic parameters of the mechanical system. Under this 
mode of operation, it is advisable to consider the dynamics 
equation in relation to the coordinate system associated 
with the docking node of M and the platform. This approach 
is used in [18] where the mathematical model M of the 
spacecraft is presented, built according to the Newton-Euler 
method, taking into account the non-diagonality and non-
stationarity of the inertia tensor. In [18], the mathematical 
model is constructed in the assumption that the mass of M 
is 1 % of the mass of the spacecraft’s hull, and the center 
of mass of the spacecraft’s hull is the center of mass of the 
mechanical system. Therefore, the mathematical model pro-
posed in [18] does not take into account the change in the 
position of the center of mass of the system with the relative 
motion of the manipulator. 

Paper [3] reports the results of the study of the dynam-
ics and control of cosmic M with friction in the joints. To 
describe joint friction, the Coulomb, Stribek, and Lugre 
friction models are considered. The dynamic equation of the 
system is built by a recursive method based on the principle 
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of variation in the speed of Jourdain. An active controller 
has been developed to track the trajectory of the system. 
The reliability of the proposed dynamic model is verified by 
comparing the results of numerical modeling and the results 
obtained from the ADAMS software. A link has been estab-
lished between joint friction and low-speed movement in the 
process of tracking the trajectory. It is proved that friction 
in the joints of M changes the dynamic characteristics of the 
mechanical system and reduces the accuracy of control. The 
materials provided indicate that for the synthesis of effective 
control, it is necessary to apply mathematical models taking 
into account the relationship of the dynamic parameters of 
the mechanical system.

Paper [4] considered the technology of telerobotics for 
remote control of space M. Implementation of telerobotics 
makes it possible for M to copy the movements of the oper-
ator. Commands on M drive are formed simultaneously by 
the encoders of the control device. It is indicated that the 
optimality of the generated trajectory of M links depends 
on the professional training of the operator. However, no 
criteria have been established for assessing the compliance 
of movements of M and operator movements. It is also not 
determined whether the M mathematical model takes into 
account the relationship of the dynamic parameters of a 
mechanical system.

Paper [5] reports the design of a multifunctional service 
platform (MFMP). The MFMP model was built in accor-
dance with the maintenance requirements of the Thermo-
nuclear Test Reactor (CFETR). The mathematical model 
MFMP is constructed using the Newton-Euler method. The 
equivalent driving force of each drive is determined using an 
equivalent inverse Jacobi matrix. The accuracy of the model 
is tested by modeling in the ADAMS software environment. 
Based on the Newton-Euler method and the improved virtu-
al principle of operation, a control system with stability con-
trol has been developed. The presented mathematical model 
is not applicable for AMR with M since the dynamic features 
of the mechanical system are not taken into account. But the 
presented methods of compiling and checking the accuracy 
of the mathematical model should be used. 

Paper [6] reports a remote control system of M with five 
degrees of mobility. M is mounted on a movable chassis and is 
used as a robot – a savior. The operator remotely controls M 
using the computer interface, which displays the movement 
of the robot and records the current values of the character-
istics of M. The FPGA controller controls M servo drives 
and exchanges data with the computer through a wireless 
module. To provide remote control over M in real time an 
interactive mixed programming interface VC and MATLAB 
has been built. The mathematical model of the robot-savior 
is constructed using software, so it is difficult to assess 
how much the relationship between dynamic parameters 
and control channels is taken into account. In addition, the 
developed system does not provide feedback from M to the 
operator, that is, it cannot be used to manipulate fragile or 
explosive objects.

Paper [7] reports a symbolic algorithm for obtaining the 
equation of motion of N-link M installed on a mobile plat-
form. The kinematic scheme of M contains rotary-prismatic 
connections. To build the kinematic and dynamic equations 
of motion of the system, the Gibbs-Appel recursive formula 
is used. To increase the computational efficiency of the pro-
posed algorithm, all mathematical operations are performed 
using matrices 3×3 and 3×1 only. It should be noted that the 

nonholonomic characteristics of a moving platform compli-
cate the control equation. In addition, the proposed model 
does not make it possible to separate the effects of dynamic 
parameters on the interconnection of control channels. 

In [19], a mobile wheeled platform with two manipula-
tors is considered. The authors believe that the increase in 
the number of relationships between manipulators and the 
mobile platform, as well as the non-holonomic limitations 
of the mobile base, make manual derivation of motion equa-
tions almost impossible. To build a mathematical model of 
dynamics, an automatic system approach is proposed. To 
avoid calculating the “Lagrange multipliers” associated with 
nonholonomic constraints, motion equations are derived 
according to the Gibbs-Apelle recursive formula. To increase 
efficiency, all mathematical operations are implemented with 
matrices 3×3 and 3×1. The application of the proposed meth-
od for a wheeled platform with two manipulators demon-
strates the possibility of building equations of motion but 
does not reflect the relationship of control channels.

In [20], pseudo symbolic dynamic modeling (PSDM) 
was presented to build simplified dynamic models of M, the 
design of which contains up to 7 degrees of mobility. The 
presented algorithm makes it possible to generate code in 
real time, simulate dynamics, and increase the efficiency of 
the model by eliminating minimally important elements. In 
addition, the authors of [20] developed an implementation of 
the algorithm in the MATLAB environment, which is pub-
licly available. But in [20] the issues remained unresolved, 
related to the expediency and validity of the exclusion of 
minimally important elements. 

In [21], a virtual model of kinematics and dynamics of M 
in MATLAB&SIMULINK was developed. The presented 
model uses a PID controller, and the dynamics equations 
are obtained by the Lagrange-Euler method. Work [22] con-
siders the dynamic modeling of spatial three-link M using 
symbolic and numerical methods. To derive the equations of 
dynamics in the form of a space of states, an algorithm based 
on the Newton-Euler method is proposed. The algorithm 
is implemented in the Maple system, the simulation was 
carried out in MATLAB&SIMULINK. The mathematical 
models proposed in [20–22] do not reflect the relationship of 
the dynamic parameters of the mechanical system.

The above review of the literature proves that the ap-
plication of the Newton-Euler method makes it possible to 
build a mathematical model to describe the three modes 
of motion of AMR with M. When overcoming the conse-
quences of man-made and natural disasters, AMR with M 
performs technological operations in an a priori indefinite 
external environment. The working space of the AMR ma-
nipulator may be limited (for example, the width of the slot). 
The microprocessor of the control system should synthesize 
commands into executive drives in real time to take into 
account changes in workspace. This necessitates a change in 
the orientation of AMR in vertical planes, narrowing the set 
of values of the generalized coordinates of M, reducing the 
size of the working space of M, reducing the number of valid 
configurations of M. Mathematical modeling in real time 
will determine the optimal strategy for moving the manip-
ulator with the controlled movement of the AMR platform. 
Taking into account the relationship of the dynamic param-
eters of the mechanical system could make it possible:

– to preserve the functionality and ensure the orienta-
tion of AMR in vertical planes despite the movement of the 
manipulator;



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/7 ( 120 ) 2022

34

– to identify reserves to reduce energy consumption and 
increase the stability of AMR of a variable configuration when 
operating under a priori uncertain environmental conditions;

– to improve the efficiency and survivability of 
AMR of a variable configuration in overcoming the 
consequences of man-made and natural disasters.

Analysis of the literature [3–22] suggests that it 
is expedient to conduct a study to build a mathemat-
ical model of AMR of the changing configuration, 
taking into account the relationship of the dynamic 
parameters of the system. 

3. The aim and objectives of the study 

The aim of this study is to build a mathematical 
model of the dynamics of AMR of variable configura-
tion, taking into account the relationship of dynamic 
parameters of a mechanical system. This will make 
it possible to identify reserves to reduce energy con-
sumption, increase stability, improve the efficiency 
and survivability of AMR of a variable configuration.

To accomplish the aim, the following tasks have 
been set:

– to build the equation of motion of the center of 
mass of the AMR system of variable configuration 
along the trajectory, taking into account the rela-
tionship of the dynamic parameters of the mechan-
ical system;

– to establish the influence of the relationship of the dy-
namic parameters of the mechanical system on the equation of 
angular motion of AMR of the variable configuration;

– to determine the relationship of the dynamic parame-
ters of the mechanical system when the manipulator moves 
relative to the AMR platform.

4. Materials and research methods

4. 1. Object and hypothesis of research
The object of this study is the dynamics of AMR with 

the manipulator. The main hypothesis is the relationship 
of the dynamic parameters of the mechanical system. The 
peculiarities of the dynamics of AMR with the manipulator 
are due to the change in the position of the center of mass of 
the system with the relative movement of the manipulator 
and the commensurate of the non-diagonal and diagonal 
elements of the inertia tensor calculated relative to the axes 
of the base coordinate system. 

While building a mathematical model, the following as-
sumptions were accepted:

– the density of the AMR platform and the density of 
movable structural elements does not change over time; 

– all links of the manipulator are absolutely rigid;
– the elements of kinematic pairs are absolutely rigid;
– the drive elements in the hinges are absolutely rigid;
– there is no elastic connection between the moving ele-

ments and the AMR platform.

4. 2. The design of an autonomous mobile robot of 
variable configuration

The design scheme of AMR with the manipulator is 
shown in Fig. 1. The structure consists of an all-wheel drive 
AMR 4-wheel platform, and an anthropomorphic manipula-

tor composed of a ring rotating around a vertical axis, and 
rod links – hands connected by rotary kinematic pairs of the 
fifth class. 

In the assumption that all links are absolutely solid bod-
ies, AMR with a manipulator is a dynamic system of non-de-
formed bodies with non-holonomic stationary connections. 

4. 3. Coordinate systems
To build a mathematical model, I shall introduce the 

right-hand Cartesian coordinate systems. In Fig. 1, the fol-
lowing notation is used:

– АXYZ – inertial coordinate system;
– СXСYСZС – movable base coordinate system. The 

reference point is connected to the point C – the center 
of mass of the platform. The axes are parallel to the main 
central axes of the inertia of the AMR platform. The СZC 
axis is perpendicular to the plane of the platform movement, 
coincides with the local vertical, and is directed upwards to 
the manipulator ring, СXС located in the plane of movement 
of the platform and directed towards the movement, the СYС 
axis is located in the plane of movement of the platform and 
complements the coordinate system to the right-hand one;

– ОX0Y0Z0 – movable coordinate system. The reference 
point is connected to the point O – the center of mass of 
the system of bodies. The axes are parallel to the axes of the 
coordinate system СXСYСZС;

– О1X1Y1Z1 – connected movable coordinate system. 
The reference point is connected to the point О1 – the center 
of mass of the ring (docking node). The axes coincide with 
the main central axes of the inertia of the ring. In the initial 
position of the manipulator ring the axes of the coordinate 
systems О1X1Y1Z1 are parallel to the axes of the coordinate 
system СXСYСZС;

– ОiXiYiZi (for i=2, 3, 4) – connected moving coordinate 
systems. The reference point is connected to the point Оi – 
the center of the i-th kinematic pair. The ОiXi axes coincide 
with the longitudinal axes of the rod links of the manipula-
tor’s hand, in the initial position of the links of the manipu-

Fig. 1. Scheme of coordinate systems for constructing a mathematical 
model of an autonomous mobile robot with a manipulator
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lator the axes of the coordinate systems ОiXiYiZi are parallel 
to the axes of the coordinate system СXСYСZС;

– МXМYМZМ – movable base coordinate 
system. The reference point is connected 
to the point M – the center of mass of the 
manipulator. In the initial position of the 
manipulator, the axes of the МXМYМZМ

coordinate systems are parallel to the axes of 
the coordinate system СXСYСZС. 

4. 4. Theoretical methods
The conclusions, scientific assumptions, 

and recommendations formulated in this pa-
per are based on the fundamental positions of 
linear algebra, theoretical mechanics, and the 
theory of differential equations. The construc-
tion of a mathematical model was carried out 
according to the Nyton-Euler method.

The resulting mathematical model con-
tains:

– an equation of motion of the center of 
mass of the AMR system of variable config-
uration along the trajectory in the inertial 
coordinate system;

– an equation of angular motion of AMR 
of variable configuration in the inertial coor-
dinate system;

– an equation of motion of the manipula-
tor with respect to AMR.

To construct the equation of motion of 
the center of mass of AMR of a variable con-
figuration along the trajectory in the inertial 
coordinate system, the theorem on the center of mass of a 
solid was applied [23, 24].

To derive the equation of angular motion of AMR with a 
movable manipulator, a theorem on the change in the kinetic 
moment of a system of solids was employed [23, 24].

To compile the equation of motion of the manipulator 
relative to the AMR platform, the theorem on the moments 
of the amount of motion was applied [23, 24].

In the transformations of equations, the concept of a lo-
cal derivative in the designated coordinate system is applied. 

5. The results of research of the mathematical model of 
the dynamics of an autonomous mobile robot of variable 

configuration 

5. 1. Equation of motion of the center of mass of an 
autonomous mobile robot of variable configuration along 
the trajectory

Applying the theorem on the motion of the center of mass 
of a solid [23, 24], the following is recorded for the manipula-
tor and platform in the inertial coordinate system

2

2
,M

M j
j

d r
m F

dt
⋅ =∑    (1)

2

2
,C

C i
i

d r
m F

dt
⋅ =∑    (2)

where ,j
j

F∑ i
i

F∑  are the sums of the external forces and 

forces О1 in the hinge (Fig. 2), acting on the elementary 

masses of the manipulator mj and platform mi and reduced to 
their centers of mass.

Given that M C CMr r p= +  and v=i∪j, equations (1) and (2) 
were added:

( )

22

2 2

2 2 2

2 2 2

22

2 2
,

CM
M C

C CM C
M M C

CMY
M C M v

v

d rd r
m m

dt dt
d r d p d r

m m m
dt dt dt

d pd r
m m m F

dt dt

⋅ + ⋅ =

= ⋅ + ⋅ + ⋅ =

= + ⋅ + ⋅ =∑

or 

2 2

2 2
.C CM

M v
v

d r d p
m m F

dt dt
⋅ + ⋅ =∑    (3)

Considering 1 1 ,CM CO O Mp p p= +  then 

1 1 ,CM CO O Mdp dp dp
dt dt dt

= +    (4)

where 1COp  – the radius-vector of point O1 relative to the 
center of mass of the platform of point C; 1O Mp  – radi-
us-vector of the center of mass of the manipulator of point 
M relative to O1.

Suppose that the coordinate system CXCYCZC moves rel-
ative to the inertial coordinate system AXYZ at an angular 
velocity ,Ω  and the coordinate system О1X1Y1Z1 moves rel-
ative to the coordinate system CXCYCZC with angular veloc-
ity 1.w  Applying local derivatives, the following is received: 

1 0 1
1 1,CO CO

CO CO

dp d p
p p

dt dt
= +Ω× =Ω×


   (5)

Fig.	2.	Estimation	scheme	for	an	autonomous	mobile	robot	with	a	manipulator
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where 0d
dt



is the operator of the local derivative in the coor-

dinate system СXСYСZС; ,Ω  – angular velocity of the coor-
dinate system СXСYСZС relative to the inertial coordinate 
system AXYZ.

Using the rule of adding vectors and the concept of a 
local derivative, the following is recorded

( )

1 0 1
1

1 1
1 1 1

1 1
1 1 ,

O M O M
O M

O M
O M O M

O M
O M

dp d p
p

dt dt

d p
w p p

dt

d p
w p

dt

= +Ω× =

= + × +Ω× =

= + +Ω ×







		   (6)

where 0d
dt



 is the operator of the local derivative in the  

coordinate system СXСYСZС; 0d
dt



– operator of the local de- 

rivative in the coordinate system O1X1Y1Z1; Ω  –– angular 
velocity of the coordinate system СXСYСZС relative to the 
inertial coordinate system AXYZ; 1w  – angular velocity 
of the coordinate system O1X1Y1Z1 relative to the coordi-
nate system СXСYСZС (or relative to the coordinate sys-
tem ОX0Y0Z0).

Substituting expressions (5) and (6) into formula (4):

( )1 1
1 1 1

1 1
1 1 ,

CM O M
CO O M

O M
CM O M

dp d p
p w p

dt dt

d p
p w p

dt
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=Ω× + + ×





the following expression for the second derivative is recorded

( ) ( )
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1 12
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Thus, after the transformations 
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	  (7)

If one considers the intervals of movement of AMR with 
a fixed manipulator, then the relative speed and acceleration 
of the center of mass of the manipulator is zero, that is, 

1 0;w =  1 1 0;
d w
dt

=


 1 1 0;O Md p
dt

=


 
2
1 1

2
0.O Md p

dt
=



Under these conditions, expression (7) takes the form:
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If one considers the intervals of movement of AMR at 
which the angular velocities are much smaller than linear ve-
locities, in expression (7) one can neglect terms that contain 
the product of angular velocities as second-order small ones. 
In this case, expression (7) takes the form:
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(9)

For the specified intervals 
of movement of AMR, equa-
tion (3) takes the form:
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– when moving AMR with a fixed manipulator:
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 	 (10)

– when moving AMR with limited angular velocities:
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– when moving AMR with the manipulator movable 
relative to the platform:
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If one takes into account the ratio M OM C COm p m p⋅ = ⋅ and 

CM CO OMp p p= +  (Fig. 3), then
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So, from the equation of moving the center of mass of 
AMR with a fixed manipulator (10), after substituting for-
mulas (13), the following is obtained:
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If AMR moves at limited angular velocities, then after 
substituting formulas (13), the following is obtained from 
equation (11):
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 		  (15)

For the sections of the trajectory on which AMR moves 
with a movable manipulator, taking into account formu-
las (13), (12) is recorded in the form:
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	 (16)

Equation (16) is the equation of motion of the center of 
mass of AMR of a variable configuration along a trajectory 
in an inertial coordinate system in a general case. There are 
some cases of the equation of motion of the center of mass of 
AMR; (14) – if the manipulator does not move, (15) – if the 
system moves at a limited angular velocity.

5. 2. The equation of angular motion of an autono-
mous mobile robot with a movable manipulator

Using the theorem on the change in the kinetic moment 
of the system of solids, the following is recorded for the ma-
nipulator:

,M
j j j

j

d
r m v M

dt
× =∑  

where ;j
j

dr
v

dt
=

,j M
j j j j j

j j

dvd
r m v r m M

dt dt
× + × =∑ ∑

Fig. 3. Estimation scheme: O – center of mass of the 
system; M – the center of mass of the manipulator; 	

C – the center of mass of the platform of an autonomous 
mobile robot

pCM 

pOM 

pCO 
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where mj is the mass of the j-th elementary part of the manipu-
lator; jr  – radius-vector of the j-th elementary part of the ma-
nipulator relative to the beginning of the inertial coordinate 
system (Fig. 2); jv  – linear velocity of the j-th point of the 
manipulator relative to the beginning of the inertial coordi-
nate system; MM  – the main vector of the moment of exter-
nal forces and forces in the hinges acting on the manipulator, 
relative to the beginning of the inertial coordinate system. 

Since 0,j j j

d
r m v

dt
× =  as a vector product of collinear  

vectors, then

.j M
j j

j

dv
r m M

dt
× =∑

Fig. 2 shows that 0j Ojr r p= +  hence 

0 ,j j M
j Oj j

j j

dv dv
r m p m M

dt dt
× + × =∑ ∑

where 0r  is the radius-vector of point O relative to the begin-
ning of the inertial coordinate system; Ojp  – radius-vector of 
the j-th elementary part of the manipulator relative to point O.

Based on the theorem on the change in the amount of 
motion of the manipulator, the following is recorded:

,M
j j

j

d
m v F

dt
=∑

where МF  is the main vector of external forces and forces in 
hinges acting on the manipulator. 

Then:
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Taking into account that , we obsess: 
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where 0
MM  is the main vector of the moment of external 

forces and forces in the hinges acting on the manipulator, 
relative to point O.

Fig. 2 shows that 0 ,oj
j

dp
v v
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= +  where 0ν  is the linear 

velocity of point O relative to the beginning of the inertial 
coordinate system, then
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Formula (18) takes into account that ,M
Oj j OM

j

p m p m=∑   

where OMp  is the radius-vector of the center of mass of the 
manipulator of point M relative to the center of mass of the 
system of point O; mM – mass of the manipulator.

Applying the theorem on the change of the kinetic mo-
ment, for the casing (platform) of the AMR, the following 
is recorded

,C
i i i

i

d
r m v M

dt
× =∑

where mi is the mass of the i-th elementary part of AMR 
body; ir – radius- vector of the i-th elementary part of 
AMR body relative to the beginning of the inertial system; 

iv  – linear velocity of the i-th point of AMR relative to the 
beginning of the inertial coordinate system; CM  – the main 
vector of the moment of external forces and forces in the 
hinges acting on AMR hull relative to the beginning of the 
inertial coordinate system. 

Fig. 2 shows that 0i Oir r p= +  hence 

0 ,Ci i
i Oi i

i i

dv dv
r m p m M

dt dt
× + × =∑ ∑

where 0r  is the radius-vector of point O relative to the begin-
ning of the inertial coordinate system; Oip  – radius-vector of 
the i-th elementary part of the platform relative to the center 
of mass of the system of point O.

Take into account that ,C
Oi i OC

i

p m p m=∑  where Oip is  

the radius-vector of the i-th elementary part of AMR hous-
ing relative to point O; OCp – radius-vector of the center of 
mass of the hull of AMR relative to the point O; mC – mass of 
AMR body. After transformations, the following is obtained:
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where 0
CM  is the main vector of the moment of external 

forces and forces in the hinges acting on AMR hull relative 
to point O.

Adding (17) and (18), the following is obtained:
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where 0M  is the main vector of the moment of external 
forces relative to the center of mass of the system of point O. 
Since 0,M C

OM OCp m p m+ =  as the static moment of mass mM 
and mC relative to the center of mass of the system, equa-
tion (19) can be written as:

2 2

02 2
.Oj Oi

Oj j Oi i
j i

d p d p
p m p m M

dt dt
× + × =∑ ∑ 	  (20)
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The derivatives 
2

2
Ojd p

dt
 and 

2

2
Oid p

dt
 were derived using the  

concept of a local derivative: 

0 ,Oj Oj
Oj

dp d p
p

dt dt
= +Ω×


where 0d
dt



 is the operator of the local derivative in the co- 

ordinate system СXсYсZс; Ω  – angular velocity of the co-
ordinate system СXсYсZс relative to the inertial coordinate 
system AXYZ.

Fig. 2 shows that 1 1 ,Oj OO O jp p p= +  where 1OOp  is the 
radius-vector of the center of the kinematic pair (docking 
node) O1 relative to the point O; 1O jp  is the radius-vector 
of the j-th elementary part of the manipulator relative to the 
hinge O1, then

( ) 0 10 1
1 1 .Oj O jOO

OO O j j

dp d pd pd
p p p

dt dt dt dt
= + = + +Ω×





Using the rule of adding vectors and the concept of a 
local derivative, the following is recorded

0 10 1 ,Oj O jOO
Oj

dp d pd p
p

dt dt dt
= + +Ω×



  

0 1 1 1
1 1 ,O j O j

O j

d p d p
w p

dt dt
= + ×

 

where 1d
dt



 is the operator of the local derivative in the  

coordinate system O1X1Y1Z1, O1X1Y1Z1, 1w  is the angular 
velocity of the coordinate system O1X1Y1Z1 relative to the 
coordinate system OXYZ.

By analogy, the following is obtained

1 1 2 1 2 2 2
2 2

2 2
2 2 ,

O j O O O j
O j

O j
O j

d p d p d p
w p

dt dt dt

d p
w p

dt

= + + × =

= + ×

  



2 2 3 2 3 3 3
3 3

3 3
3 3 ,

O j O O O j
O j

O j
O j

d p d p d p
w p

dt dt dt

d p
w p

dt

= + + × =

= + ×

  



3 3 4 3 4 4 4
4

4 4
4 4

4

,

O j O O O j
O j

O j
O j

d p d p d p
w p

dt dt dt

d p
w p

dt

= + + × =

= + ×

  



where 2d
dt



 is the operator of the local derivative in the coordi-

nate system O2X2Y2Z2; 2w  – angular velocity of the coordinate 
system O2X2Y2Z2 relative to the coordinate system O1X1Y1Z1; 

3d
dt



 – operator of the local derivative in the coordinate sys-

tem O3X3Y3Z3; 3w  – angular velocity of the coordinate sys-
tem O3X3Y3Z3 relative to the coordinate system O2X2Y2Z2; 

4d
dt



 – operator of the local derivative in the coordinate system 

O4X4Y4Z4; 4w  – angular velocity of the coordinate system 
O4X4Y4Z4 relative to the coordinate system O3X3Y3Z3.

Taking into account

2 1 2 3 2 3 4 3 4 4 4 0,O O O O O O O jd p d p d p d p

dt dt dt dt
= = = =

   

 

after the substitution, the following is obtained

0 1
4 4 3 3

2 2 1 1 ,

Oj OO
O j O j

O j O j Oj

dp d p
w p w p

dt dt
w p w p p

= + × + × +

+ × + × +Ω×



( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 2
0 1 0 1

0 4 4

4 4

0 3 3

3 3

0 2 2

2 2

0 1 1

1 1

0
.

Oj OO OO

O j

O j

O j

O j

O j

O j

O j

O j

Oj

Oj

d p d p d p
dt dt dt

d w p
w p

dt

d w p
w p

dt

d w p
w p

dt

d w p
w p

dt

d p
p

dt

= +Ω× +

×
+ +Ω× × +

×
+ +Ω× × +

×
+ +Ω× × +

×
+ +Ω× × +

Ω×
+ +Ω× Ω×

 











	 (21)

By analogy, record for oip

0 10 1 ;Oi O iOO
Oi

dp d pd p
p

dt dt dt
= + +Ω×



( )

( )

2 22
00 10 1

00 1 ,

OidOi O iOO

OiOO
Oi

pd p d pd p
dt dt dt dt

d pd p
p

dt dt

Ω×
= + + +

+Ω× +Ω× +Ω× Ω×







		  (22)

where 0d
dt



 is the operator of the local derivative in the coor-

dinate system СXСYСZС; Ω  – angular velocity of the coor-
dinate system СXСYСZС relative to the inertial coordinate 
system AXYZ.

Since the design of AMR platform can provide for the 
linear movement of points relative to the coordinate system 
СXСYСZС (for example, for a tracked chassis), then, in a gen-
eral case, 

0 0Oid p
dt

≠
  

and 

0 1 0.O id p
dt

≠
  

Substituting (21) and (22) in (20), the following is ob-
tained:
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( )

( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

2
0 4 40 1 0 1

4 4

0 3 3

3 3

0 2 2

2 2

0 1 1

1 1

0

2
0 1

O jOO OO

O j

O j

O j

Oj j
O jj

O j

O j

O j

Oj

Oj

OO

Oi i

d w pd p d p
dt dt dt

w p

d w p
w p

dt
p m d w p

w p
dt

d w p
w p

dt

d p
p

dt

d p

p m

 ×
 +Ω× + +
 
 +Ω× × + 
 

× + +Ω× × + 
 × + ×
 + +Ω× × +
 
 × + +Ω× × + 
 
 Ω×
+ +Ω× Ω× 
 

+ ×

∑



 











( ) ( )

2
0 10 1

0 1
0

0

.

O iOO

O i

i

Oi
Oi

d pd p
dt dt dt

d p
M

dt

d p
p

dt

 
+Ω× + 

 
  +Ω× + = 
 
 Ω×
 + +Ω× Ω×
  

∑







 	(23)

Let’s simplify equation (23):
1) In a general case, 

2
0 1 0 1 0,

Oj j Oi i
j i

OO OO

p m p m

d p d p
dt dt

 
× + × × 

 
 

× +Ω× =  
 

∑ ∑
 

 

because 

0,Oj j Oi i
j i

p m p m× + × =∑ ∑

as a static moment of mass relative to the center of mass of 
the system; then equation (23) will take the following form:

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

0 4 4

4 4

0 3 3

3 3

0 2 2

2 2

0 1 1

1 1

0

2
0 1 0 1

0

O j

O j

O j

O j

O j

Oj j O j
j

O j

O j

Oj

Oj

O i O i

Oi i
i

d w p
w p

dt

d w p
w p

dt

d w p
p m w p

dt

d w p
w p

dt

d p
p

dt

d p d p
dt dt

p m
d p

 ×
 +Ω× × +
 
 × + +Ω× × + 
 

×  × + +Ω× × + + 
 
 ×
 + +Ω× × +
 
 

Ω× + +Ω× Ω× 
  

+Ω× +
+ ×

Ω×
+

∑

∑











 

 ( ) ( )
0.

Oi
Oi

M

p
dt

 
 
  = 
 

+Ω× Ω×  

	 (24)

2) If one considers the intervals of movement of AMR with 
a fixed manipulator, then the angular velocities in the kine-
matic pairs of the manipulator are zero 1 2 3 4 0.w w w w= = = =  
Under these conditions, expression (24) takes the form: 

( ) ( )

( ) ( )

0

2
0 1 0 1

0

0

.

Oj

Oj j Oj
j

O i O i

Oi i
i Oi

Oi

d p
p m p

dt

d p d p
dt dt

p m M
d p

p
dt

 Ω× × +Ω× Ω× + 
  
 

+Ω× + 
 + × = 

Ω× 
+ +Ω× Ω×  

∑

∑



 



 	 (25)

3) If one considers the intervals of movement of AMR 
at which the angular velocities are much smaller than linear 
velocities, in expression (24) one can neglect terms that con-
tain the product of angular velocities as small second-order. 
After the mathematical transformations in equation (24), 
the following is obtained: 

( ) ( )

( )

( ) ( )

( )

0 4 4 0 3 3

0 2 2

0 1 1 0

2
00 1 0 1

0.

O j O jd d

O jd
Oj j

j

O j Ojd d

OidO i O i
Oi i

i

w p w p

dt dt

w p
p m

dt

w p p

dt dt

pd p d p
p m M

dt dt dt

 × ×
 + +
 
 × × + + + 
 
 × Ω×
 + +
  
 Ω× + × +Ω× + = 
  

∑

∑

 



 



 

	(26)

Equations (24) to (26) is the equation of angular motion 
of AMR with the manipulator as a system of bodies relative 
to the inertial coordinate system. 

5. 3. The equation of motion of the manipulator rela-
tive to the body of an autonomous mobile robot

Consider the manipulator as a body transferred in space 
by the AMR body. Based on the theorem on the moments 
of the amount of motion, the following is recorded for the 
manipulator:

,M
j j j

j

d
r m v M

dt
× =∑

.j M
j j j j j

j j

dvd
r m v r m M

dt dt
× + × =∑ ∑

Since 0,j j j

d
r m v

dt
× =  as a vector product of collinear 

vectors, then

.j M
j j

j

dv
r m M

dt
× =∑

Fig. 2 shows that 0 1 1j OO O jr r p p= + +  hence 

( )0 1 1 ,j M
OO O j j

j

dv
r p p m M

dt
+ + × =∑  	 (27)

where 0r  is the radius-vector of point O relative to the refer-
ence of the inertial coordinate system; Ojp  – radius-vector 
of the j-th elementary part of the manipulator relative to the 
point O.

From Newton’s theorem on the amount of motion, the 
following is obtained:
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,j M
j

j

dv
m F

dt
=∑

then 

( )0 1 1 ,jM M
OO O j j

j

dv
r p F p m M

dt
+ × + × =∑

or 

1 1.j M
O j j O

j

dv
p m M

dt
× =∑  			   (28)

Formula (28) takes into account that 

( )1 0 1
M M M

O OOM M r p F= − + ×  

is the main moment applied to the manipulator relative to 
the docking node (point О1).

The speed of the elementary mass of the manipulator mj 
is equal to:

( )0 0
0 .

Ojj Oj Oj
j

d r pdr dp dpdr
v v

dt dt dt dt dt

+
= = = + = +

Fig. 2 shows that 1 1 ,Oj OC CO O jp p p p= + +  then 

1 11 .Oj O j O jOC CO OC
dp dp dpdp dp dp
dt dt dt dt dt dt

= + + = + 		 (29)

Equation (29) takes into account that 1 0,COdp
dt

=  since 

1 const.COp =
Calculate the individual terms in equation (29) using the 

concept of a local derivative:

;OC O OC
OC

dp d p
p

dt dt
= +Ω×


1 0 1
1

1 1
1 1 1 .

O j O j
O j

O j
O j O j

dp d p
p

dt dt

d p
w p p

dt

= +Ω× =

= + × +Ω×





The following is obtained after the transformation:

0

1 1
1 1 1 ,

O OC
j OC

O j
O j O j

d p
v v p

dt

d p
w p p

dt

= + +Ω× +

+ + × +Ω×





then 

00

1 1

11
1 1

1
1 .

j OC
OC

O jOC

O j
O j

O j
O j

dv d pdv d d
p

dt dt dt dt dt

d pdp d
dt dt dt

dpdw
p w

dt dt
dpd

p
dt dt

  Ω
= + + × +  

 
 
 +Ω× + +
 
 

+ × + × +

Ω
+ × +Ω×







 	 (30)

Considering 

2
0 0 0 ,OC OC OCd p d p d pd

dt dt dt dt

 
= +Ω×  

 

  

 

and 

1 1 1 1 1 10

2
1 1 1 1 1 1

1 ,

O j O j O j

O j O j O j

d p d p d pdd
dt dt dt dt dt

d p d p d p
w

dt dt dt

   
   = +Ω× =
   
   

= + × +Ω×

  



  

then equation (30) takes the form

2
0 00

2
1 1 1 1

1

1 1 11
1 1

1
1 .

j OC OC
OC

O j O jOC

O j O j
O j

O j
O j

dv d p d pdv d
p

dt dt dt dt dt

d p d pdp
w

dt dt dt

d p dpdw
p w

dt dt dt
dpd

p
dt dt

Ω
= + +Ω× + × +

+Ω× + + × +

+Ω× + × + × +

Ω
+ × +Ω×

 

 





	 (31)

Substitute (31) in (28):

2
0 00

2
1 1 1 1

1

1 1

1 1 1
1

1
1

1
1

.

OC OC

OC
OC

O j O j

M
O j j O

j O j
O j

O j

O j
O j

d p d pdv
dt dt dt

dpd
p

dt dt

d p d p
w

dt dtp m M
d p dw

p
dt dt

dp
w

dt
dpd

p
dt dt

 
+ +Ω× + 

 
 Ω + × +Ω× +
 
 
 + + × + 

× = 
 +Ω× + × + 
 
 
+ × + 
 
 Ω
+ × +Ω× 
 

∑

 



 



Since 

1 1 ,O j j M O M
j

p m m p=∑  

the following is obtained from equation (31): 
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0 00
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2
1 1 1 1

1

1 1

1 1

11
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1
1

.

OC OC
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OC

O j O j

O j
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j O j O

j O j
O j

O j
O j

d p d pdv
dt dt dtm p

dpd
p

dt dt

d p d p
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dt dt

d p

dtm p M
dpdw

p w
dt dt

dpd
p

dt dt

 
+ +Ω× + 

  +
 Ω + × +Ω×
 

 
 + × +
 
 
 +Ω× +
 + × = 
 + × + × + 
 

Ω 
+ × +Ω× 
 

∑

 



 



	 (32)
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Formula (32) is the equation of motion of the manipula-
tor relative to AMR housing in the general case.

6. Discussion of research results 

Using the Newton-Euler method, a mathematical model 
of AMR dynamics of a variable configuration was built. A 
feature of the results obtained is to take into account the rela-
tionship of the dynamic parameters of the mechanical system.

As an example, the structure of AMR with a manipu-
lator, which is designed to overcome the consequences of 
man-made and natural disasters, is considered. The features 
of the dynamics of AMR with the manipulator are due to 
the change in the position of the center of mass of the system 
with the relative motion of the manipulator and the com-
mensuration of the non-diagonal and diagonal elements of 
the inertia tensor, calculated relative to the axes of the base 
coordinate system.

The proposed mathematical model describes three modes:
– controlled movement of the platform along a given 

route with fixed M;
– movement of AMR, provided that the angular veloci-

ties are significantly less than linear velocities;
– M performs technological operations with controlled 

movement of the platform. 
The equations of the mathematical model are derived for 

the specified modes of motion of AMR with M. If one consid-
ers the intervals of movement of AMR at which the angular 
velocities are much smaller than linear velocities, then in the 
equations of dynamics one can neglect terms that contain 
the product of angular velocities, as small second-order. If 
one considers the intervals of movement of AMR with a fixed 
manipulator, then the angular velocities in the kinematic 
pairs of the manipulator are zero. 

The mathematical model of the dynamics of AMR of chang-
ing configuration, taking into account the relationship of the 
dynamic parameters of the mechanical system, contains:

– equation (16) – the equation of motion of the center of 
mass of AMR of a variable configuration along a trajectory 
in an inertial coordinate system in general. In addition, the 
equation of motion of the center of mass of AMR in some 
cases is derived: (14) – if the manipulator does not move, 
and (15) – if the system moves at a limited angular velocity;

– equation (24) – the equation of angular motion of 
AMR of a variable configuration in an inertial coordinate 
system. The equations of angular motion of AMR in some 
cases are given: (25) – if the manipulator does not move, 
and (26) – if the system moves at a limited angular velocity;

– (32) – the equation of motion of the manipulator rela-
tive to the AMR housing in the general case.

The AMR chassis control system provides movement in a 
limited space (work area) along a given trajectory using GPS 
navigation or orientation on a map or beacons. Within the 
working area, static and (or) moving obstacles are possible, 
which must be overcome with the slightest deviation from 
the specified route. The mathematical models of dynamics 
presented in [11–15] provide reliable tracking by the trolley 
of the reference trajectory but the considered design does not 
imply the presence of moving elements (M or attachments). 
In equations (14) to (16), the relationship of the dynamic 
parameters of the system from the direction and magnitude of 
the radius-vector .OCp  is established. The shift of the center 
of mass of the platform relative to the center of mass of the sys-

tem of bodies by the OCp  radius-vector is due to the presence 
of moving elements (M or attachments). The application of 
equations (14) to (16) provides tracking by the AMR platform 
of the reference trajectory in the presence of moving elements 
(M or attachments). This will prevent the occurrence of angu-
lar velocities in the directions perpendicular to the direction 
of movement of the platform, avoid slipping and skidding of 
the platform, and maintain the orientation of AMR with M. 

Remote control of the manipulator provides high quality 
indicators of technological operations both with a non-mov-
ing and mobile chassis. The mathematical models proposed 
in [3–7, 17–19] do not take into account the change in the 
position of the center of mass of the system with the relative 
motion of the manipulator. Models [19–22] do not make it 
possible to separate the influence of dynamic parameters on 
the interconnection of control channels. 

The design of the grip and the kinematic scheme of the 
manipulator provides for the possibility of working with 
fragile or explosive objects. Equations (24) to (26) make it 
possible to establish the influence of dynamic parameters of 

the system on generalized speeds jw  and accelerations jdw

dt
  

in the kinematic pairs of the manipulator. The movable base 
of M causes a change in the working area and an increase 
in the position error of the grip pole. The application of 
equations (24) to (26) provides software adjustment of the 
dynamic parameters of the manipulator when moving the 
AMR platform along the trajectory.

Equation (32) enables control and software adjustment 
of the dynamic parameters of the manipulator and contact 
forces in the grip. The application of equation (32) makes 
it possible to fix the object and ensure its reliable retention 
when moving the AMR platform along the trajectory. 

Adjusting the operation of the control system reduces 
energy consumption, prolong the time of autonomous work, 
and increases the productivity of AMR. 

The limitations of this study are due to the consideration 
of only three modes of movement of AMR with M and the 
assumption that the elements of the kinematic scheme of M 
and the AMR platform are absolutely rigid bodies. For other 
modes of motion of AMR with M, it is necessary to refine the 
mathematical model based on reasonable assumptions and 
simplifications. The limitations of this study must be taken 
into account when trying to apply the developed mathe-
matical model in practice, as well as in further theoretical 
studies. The disadvantage of the study is that the dynamics 
of kinematic pairs are not taken into account. 

Advancing this study is the development of an adaptive 
control system with elements of artificial intelligence. As an 
object of control, AMR with a manipulator is a multi-connected 
system with a cross-internal connection of control channels, 
which is formed by the dynamic parameters of a mechanical 
system. According to the results of mathematical modeling us-
ing the proposed model, it is possible to develop algorithms for 
adaptive control using cross-connection of channels. This will 
reduce the number of responses of the control system, save ener-
gy, and prolong the time of autonomous work of AMR with M.

7. Conclusions 

1. The equation of motion of the center of mass of the 
AMR system with a manipulator along the trajectory along 
the trajectory, taking into account the relationship of the 
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dynamic parameters of the mechanical system, is built. At 
the same time, the influence of the dynamic parameters of the 
system on the direction and magnitude of the radius-vector 

OCp  – the shift of the center of mass of the platform relative to 
the center of mass of the system of bodies – was established. 

2. The influence of the relationship of dynamic parame-
ters of a mechanical system on the equation of angular mo-
tion of AMR of changing configuration has been established. 
This takes into account the commensurate of the non-diag-
onal and diagonal elements of the inertia tensor, calculated 
relative to the axes of the base coordinate system.

3. The interrelation of dynamic parameters of the mechan-
ical system during the movement of the manipulator relative 
to the AMR platform is determined. The influence of system 

parameters on generalized speeds jw  and accelerations jdw

dt
  

in the kinematic pairs of the manipulator has been established. 
Thus, it is possible to control the contact forces in the grip, and 
if necessary, fix the object and ensure that it is held reliably. 
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