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of bands of the photographed substance, hyperspectral imaging 
delivers a great density of spectral data [4, 5]. The majority of 
contemporary hyperspectral sensors also have a high spatial 
resolution, allowing the images to be used for a variety of pur-
poses, including agriculture, geosciences, biomedical imaging, 
molecular biology, astronomy, and surveillance.

Therefore, research and further analysis on the develop-
ment of processing the hyperspectral images to determine the 
proportion of material or end-member contributions in each 
pixel, making it beneficial for the identification or detection of 
materials are relevant.

2. Literature review and problem statement

The data is acquired via aerial devices like satellites, which 
can collect massive volumes of data and transfer it to ground 
stations for processing. In the study [6], an FPGA for the 
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In the hundreds of bands of the 
photographed substance, hyperspectral 
imaging delivers a great density of spectral 
data. This allows the images to be used 
for a variety of purposes, including 
agriculture, geosciences, and biomedical 
imaging. Previous work didn’t discuss the 
best classifier with sufficient ground truth 
classes. This work presents the application of 
maximum abundance classification (MAC) 
for classifying a variety of areas over 
hyperspectral images. The allocation of 
an end-member throughout hyperspectral 
images can be described with abundance 
maps. Since each pixel's abundance values 
represent the proportion of each end-member 
that is present in that pixel, the pixels in a 
hyperspectral image will be classified in this 
study by determining the highest abundance 
rate of every pixel and allocating it to the 
corresponding end-member category. The 
ground truth classes are represented by 
nine end-members in the test data: Bitumen, 
Shadows, Self-Blocking Bricks, Bare Soil, 
highlighted Metal area, Gravel, Meadows, 
Trees, and Asphalt. By uniformly distributing 
the range of wavelength over the amount of 
spectral domains, we initially determine the 
central wavelength for each band to visualize 
loaded data and the end-member signatures 
of nine ground truth classes. Next, we 
estimate the end-members abundance maps. 
Finally, we classify the Max Abundance of 
every pixel to present a color-coded image, 
the overlaid, and the classified hyperspectral 
image areas over their category labels. The 
result demonstrates that brick, bare soil, 
trees, and asphalt zones have all been 
correctly identified in the photographs, 
which is beneficial for the identification or 
detection of materials
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1. Introduction

Hyperspectral imaging provides a data cube by using a 
hyperspectral camera. This data can be represented by a book. 
Red, green, and blue are the three colors that digital or mobile 
phone cameras use to capture the target, replicating human 
vision [1]. These hues which are actually wide wavelength 
channels are equivalent to the amount of data that is being col-
lected. Tens to hundreds of wavelength-specific narrow color 
channels are used to record the target. It is essential to specify 
the number of wavelengths that are employed according to the 
sort of considered hyperspectral camera during covering the 
whole target region, where the target is traced in 220 wave-
lengths [2]. This is the amount of data that each wavelength of 
the hyperspectral image will contain and is displayed as a layer 
of cubic data. This cubic data provides a great deal of specific 
information about the target, much of it comes from wave-
lengths that are invisible to the human eye [3]. In the hundreds 
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the images to be used for a variety of purposes, including 
agriculture, geosciences, biomedical imaging, molecular 
biology, astronomy, and surveillance.

To achieve this aim, the following objectives are ac-
complished:

– to identify the names of classes of every end-member 
with its associated column for the signatures matrix and 
visualize their profiles;

– to generate abundance maps of the end-members 
using the full constrained least squares (FRLS)  method;

– to apply the maximum abundance classifier and 
show its pixels classified color-coded image.

4. Materials and methods

4. 1. Object and hypothesis of the study
The object of this work is to present an application of 

maximum abundance classification (MAC) for classifying a 
variety of areas over hyperspectral images. The allocation of an 
end-member throughout hyperspectral images can be described 
with abundance maps. The distribution of an end-member 
throughout a hyperspectral image is described by an abundance 
map. There are two types of pixels in the image: pure pixels and 
mixed pixels. Each pixel’s abundance values represent the pro-
portion of each end-member that is present in that pixel. 

limited L1/2 NMF (L1/2-NMF) algorithm was devised and 
implemented on Altera Family FPGAs. However, no specific 
outcomes have been published. The noise condition of the  
HJ-1A hyperspectral pictures was analyzed using a method 
known as residual local standard deviations. In [7], they an-
alyzed the noise state of the HJ-1A hyperspectral images by 
using the graduated standard deviation method. They also 
suggested a way to reduce the dimensions of the HJ-1A images, 
by converting Maximum Break Noise (OMNF). However, 
they did not touch upon the nine categories of earthly truth. 
The research [8] dealt with the encoding of the spectral-spatial 
properties of hyperspectral photo categorization in the internet 
of things satellite system, but their experimental results showed 
up only on three HSI datasets. The research [9] examined a 
deep learning matrix approach to classify hyperspectral satel-
lite images, propose an Initiation-Inspired Architecture (IIA) 
and combine it with existing HybridSN architectures. How-
ever, the results provided a significant decrease in the develop-
ment of image processing. The paper [10] describes a system for 
transmitting hyperspectral satellite pictures through wireless 
channels. A low-complexity Karhunen-Loève 1D transfor-
mation (KLT) employing a spectral patterning relationship 
aggregation technique was developed using the suggested 
scheme. Although this method has the potential to improve 
image quality, it cannot process large-resolution images. The 
hyperspectral satellite images were used to detect the effects 
of hydrocarbon pollution in the Amazon 
forests through the interest of the study [11], 
where the vegetation cover indicators were 
applied to the hyperspectral Hyperion sat-
ellite images. However, their method using 
hyperspectral satellite imagery did not con-
tribute to the development of hyperspectral 
satellite image processing. The study [12] 
was concerned with comparing hyperspec-
tral images and satellite images to detect the 
concentration of chlorophyll in coastal ar-
eas, through the traditional satellite image. 
Their method of comparing hyperspectral 
and satellite imagery did not provide insight 
into its development. As a result, they did 
not touch upon the use of the Maximum 
Abundance Classifier with the Nine Classes 
of Earthly Truth. 

It is therefore important to know the strat-
egy that achieves the best way to develop hy-
perspectral satellite image processing, which 
is important in a variety of our daily demands. 
As a result, it is necessary to develop satellite 
hyperspectral image processing with an ef-
fective classifier of sufficient ground truth  
classes.

3. The aim and objectives of the study

The aim of the study is to develop 
satellite hyperspectral image processing 
using a maximum abundance classifier 
with nine ground truth classes for clas-
sifying a variety of areas over hyper-
spectral images. This will make hyper-
spectral imaging possible to deliver a 
great density of spectral data and allows 

Load test data (hyperspectral data cube signatures’ matrix), (spectral bands, 
wavelengths ranging, and geometric resolution) 

Compute central wavelength for each spectral band by evenly spacing the 
wavelength range across the number of spectral bands

Create a hypercube object using the hyperspectral data 
cube and the central wavelengths

Estimate an RGB image from the hyperspectral data 

Visu alize RGB 

 Create a table of class name for 
each end-member and 
corresponding column of sig 

 Plot the end-
member  signatures 

Create abundance maps for the 
end-members using the 
estimateAbundanceLS function 

Select full constrained least squares (FCLS) 

Display the abundance maps 

Perform Maximum Abundance Classification 

Find the channel number of the largest abundance value of each pixel 

Display a color coded image 

Segment the classified regions and overlay each of them on 
the RGB image estimated from the hyperspectral data cube. 

Start 

For i = 1: size (abundanceMap, 3) 
segmentImg(matchIdx==i) = 1; 
overlayImg(:,:,:,i) = imoverlay(rgbImg,segmentImg);     
segmentImg = zeros(size(matchIdx)); 

end 

End

Display the classified and the overlaid hyperspectral 
image regions along with their class names 

Fig.	1.	Flowchart	of	the	methodology	steps



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/2 ( 121 ) 2023

16

By determining each pixel’s greatest abundance value and 
designating it to the corresponding end-member class, we 
will categorize the pixels in this work’s hyperspectral imag-
es. MATLAB-based functions are employed to perform the 
proposed approach that is limited to the use of ground truth 
classes with nine end-members in the test data including Bi-
tumen, Shadows, Self-Blocking Bricks, Bare Soil, highlighted 
Metal area, Gravel, Meadows, Trees, and Asphalt.

4. 2. Dataset 
This work adopts testing a dataset from Pavia Uni-

versity, which includes ground truth classes represented 
by nine end-members in the test data: Bitumen, Shadows, 
Self-Blocking Bricks, Bare Soil, highlighted Metal area, 
Gravel, Meadows, Trees, and Asphalt.

4. 3. Loading and Visualizing Data
The considered loaded data includes an array (pavi-

aU) [13, 14], which represents the hyperspectral cubic data, 
signatures’ matrix for nine end-members obtained from 
the hyperspectral data. This cubic data has wavelengths of 
ranges between 430 nm to 860 nm, 103 spectral bands, a 
spatial resolution for every band image of 610-to-340, and a 
numerical resolution of 1.3 m.

Therefore, the loading and visualizing dataset include:
1) computing the center wavelength for each spectral band;
2) creating a hypercube object;
3) plotting the end-member signatures.
In this stage, the central wavelengths are calculated for 

every spectral band by evenly distributing the range of wave-
lengths over several spectral bands. Next, a hypercube object 
is generated by central wavelengths and the hyperspectral 
cubic data. Then an RGB image for hyperspectral cubic data 
is estimated. Then the parameter value of the contrast stretch-
ing is set to true for improving the obtained RGB contrast. 

4. 4. Estimating Abundance Maps
Utilize the estimateAbundanceLS 

function to create abundance maps for the 
end-members and choose the full restricted 
least square method (FRLS). The task uses 
the spatial dimensions as input data and 
returns the abundance charts as 3-D arrays. 
Every channel represents the end-members 
abundance map from the appropriate sig-
nature features. The input data in this work 
has spatial dimensions of 610 by 340 and 
nine end-members. As a result, the generated 
abundance map measures 610 by 340 by 9.

5. Results of developing satellite 
hyperspectral image processing

5. 1. Identifying the names of classes 
and visualizing their profiles

Visualization of the obtained Red-
Green-Blue (RGB) image is shown in Fig. 2. 

As mentioned earlier, the tested data 
includes an end-member signatures matrix 
that categorizes ground truth data into 
nine classes. A table for the names of class-
es of every end-member with its associated 

column for the signatures matrix is listed in Table 1, while 
the plotting of the end-member profiles is shown in Fig. 3.

Fig.	2.	Visualization	for	the	obtained	Red-Green-Blue	image	

Table	1

End-members	with	their	associated	column	in	the	signatures	
matrix

Column of sig End-member category name

1 {‘Shadows’}

2 {‘Self-blocking bricks’}

3 {‘Bitumen’}

4 {‘Bare soil’}

5 {‘Painted metal sheets’}

6 {‘Trees’}

7 {‘Gravel’ }

8 {‘Meadows’}

9 {‘Asphalt’}

 
  

 

 
  

Fig.	3.	Plotting	of	the	end-member	profiles
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Therefore, every feature of sig contains the end-member 
a ground truth class signature.

5. 2. Estimating Abundance Maps
Visualization of the abundance maps is shown in Fig. 4.
These results estimate the abundance maps using the 

FRLS method for the end-member classes including Shad-
ows, Self-blocking bricks, Bitumen, Bare soil, Painted metal 
sheets, Trees, Gravel, Meadows, and Asphalt.

5. 3. Performing Maximum Abundance Classifi- 
cation

An image of the color code with the highest abun-
dance rate for the pixels classified is shown in Fig. 5, 
while Fig. 6 visualizes the application of Maximum 
Abundance Classification maps for Shadows, Self-block-
ing bricks, Bitumen, Bare soil, Painted metal sheets, 
Trees, Gravel, Meadows, and Asphalt end-member  
classes.

 

 

 

 

a                                                                  b                                                                  c

d                                                                  e                                                                  f

g                                                                  h                                                                  i 

Fig.	4.	Visualization	of	the	abundance	maps	using	the	full	restricted	least	square	method,	an	abundance	of:		
a ‒ shadows;  b ‒ self-blocking	bricks; c ‒ bitumen; d ‒ bare	soil; e ‒ painted	metal	sheets; f ‒ trees;		

g ‒ gravel;	h ‒ meadows; i ‒ asphalt
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Fig.	5.	An	image	of	color	code	with	the	highest	abundance	rate	for	the	pixels	classified 

 
 

 

a                                                                 b                                                                 c

d                                                                 e                                                                 f 

 
g                                                                 h                                                                 i 

Fig.	6.	Visualization	of	applying	Maximum	Abundance	Classification	maps	for:	a ‒	shadows;	b ‒	self-blocking	bricks;		
c ‒	bitumen;	d ‒	bare	soil;	e ‒	painted	metal	sheets;	f ‒	trees;	g ‒	gravel;	h ‒	meadows;	i ‒	asphalt
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These figures show the overlaid hyperspectral images with 
classified areas over their associated class names that accu-
rately classified the brick, asphalt, bare soil, and tree regions.

6. Discussion of the results of developing satellite 
hyperspectral image processing

An estimate for the hyperspectral data RGB image is 
shown in Fig. 1, where the contrast of this image has been 
improved using the central wavelengths and hyperspectral 
data cube. The tested data includes an end-member signa-
tures matrix that categorizes ground truth data into nine 
classes. A table for the names of classes of every end-member 
with its associated column for the signatures matrix is listed 
in Table 1, while the plotting of the end-member profiles is 
shown in Fig. 2, where each end-member has its own profile. 
Fig. 3 visualized the results of estimating the abundance 
maps using the FRLS method for the end-member classes 
including Shadows, Self-blocking bricks, Bitumen, Bare 
soil, Painted metal sheets, Trees, Gravel, Meadows, and 
Asphalt. The function uses the spatial dimensions as input 
data and returns the 3-D array abundance maps. As a result, 
the generated abundance map measures 610 by 340 by 9. In 
contrast, the results of the overlaid hyperspectral image and 
classified areas over their associated class names show that 
the Maximum Abundance Classification can accurately clas-
sify the brick, asphalt, bare soil, and tree regions as shown 
in Fig. 5.

As a comparison with other techniques, the developed 
satellite hyperspectral image processing with maximum 
abundance classifier performs better with such images of 
9-dimensional data when compared with the K-means clus-
tering [15] and the spectral matching [16] that were applied 
for datasets with smaller end-members.

The use of a dataset from Pavia University with only 
nine end-member category names limits the applicability of 
the developed solutions. This will motivate us to test this 
technique on a wider range of end-members’ applications.

The disadvantage of the proposed solution is the com-
plexity of the classifier model, which is increased with the 
number of classes. This can be eliminated by expanding the 
application of this method over a more modern dataset with 
larger end-members in the future.

7. Conclusions

1. The obtained results of the tested data showed that 
nine end-members have been categorized and their asso-
ciated profiles have been plotted. These profiles demon-
strated that each end-member class has its own signature. 
All end-members with class signatures vary from about 
700‒2,500 during the change from 60 to 80 in band number.

2. The developed model generated abundance maps 
for the end-members using the full constrained least 
squares (FRLS) method with relative accuracy and the cre-
ated abundance map measures 610 by 340 by 9.

3. The visualization of the overlaid hyperspectral image 
and classified areas over their associated class names show 
that the Maximum Abundance Classification can classify 
five regions accurately including the brick, asphalt, bare soil, 
and tree.
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