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This paper reports a research that estab-
lished the possibility of increasing the effective-
ness of the method of figurative transformations 
to minimize partially defined Boolean functions. 
The method makes it possible, without loss of 
functionality, to reduce the complexity of the 
minimization procedure, compared to sorting out 
binary definitions of partially defined Boolean 
functions. The interpretation of the result is that 
the 2-(n, b)-design, 2-(n, x/b)-design systems 
are a reflection of logical operations. Therefore, 
the identification of such combinatorial systems 
in the truth table of logical functions directly and 
unambiguously establishes the location of logi-
cal operations for equivalent transformations of 
Boolean expressions. This, in turn, implicates 
an algorithm for simplifying Boolean functions, 
including partially defined Boolean functions. 
Thus, the method of figurative transformations 
simplifies and speeds up the procedure for mini-
mizing partially defined Boolean functions, com-
pared to analogs. This indicates that the visual- 
matrix form of the analytical method still has the 
prospect of increasing its hardware capabilities, 
including in terms of minimizing partially defined 
Boolean functions.

It has been experimentally confirmed that the 
method of figurative transformations increases the 
efficiency of minimizing partially defined Boolean 
functions, compared with analogs, by 100–200 %.

There is reason to argue about the possibility 
of increasing the efficiency of minimizing partial-
ly defined Boolean functions in the main and poly-
nomial bases by the specified method. The effec-
tiveness of the method, in particular, is ensured 
by carrying out all operations of generalized glu-
ing of variables for dead-end disjunctive normal 
forms (DNF), followed by the use of implicant 
tables; optimal combination of a sequence of logi-
cal operations for gluing variables
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1. Introduction

When making digital devices, situations arise when the 
Boolean function is not defined on all sets of variables. To 
overcome this type of uncertainty when creating an analy
tical model of a digital device, the procedure for identifying 
a function on indefinite sets is used. This redefinition is 
a  powerful degree of freedom and a resource for qualitative 
optimization of partially defined Boolean functions.

There are two ways to redefine a function:
– f1(x1, x2, … xn) on all undefined sets, the output func-

tion f(x1, x2, … xn) is redefined by unities;

– f0(x1, x2, … xn) on all undefined sets, the output func-
tion f(x1, x2, … xn) is redefined by zeros.

Then Quine theorem, at the moment, derives the follow-
ing statement: the minimum disjunctive normal form (DNF) 
of a non-fully defined Boolean function is defined as the 
disjunction of the shortest implicant of the function. These 
implicants together cover all the minterms of the perfect 
disjunctive normal form (PDNF) of the function, and among 
the selected simple implicants there are no redundant [1]. 

Boolean functions are a special case of not fully defined 
functions. Non-fully defined Boolean functions can be rep-
resented using fully defined Boolean functions, which are 
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obtained using appropriate redefinition (sorting through 
all possible substitutions 0 or 1 instead of «–» don′t care – 
indifferent or indefinite value) [2]. Then the procedure for 
minimizing a partially defined Boolean function should be 
carried out on each defined function and the optimal result 
should be selected.

With an increase in the number of indefinite sets, the 
set of fully defined Boolean functions increases significantly. 
For seven, for example, indefinite sets of variables, there are 
27 = 128 different ways of binary redefinition of partially de-
fined Boolean functions, and, therefore, the complexity of the 
function minimization procedure will increase. 

Thus, a relevant aspect of theoretical research into mini-
mizing partially defined Boolean functions by the method of 
figurative transformations is:

– to reduce the number of techniques for binary redefini-
tion of partially defined Boolean functions;

– to identify opportunities to improve the procedure for 
minimizing and expanding the apparatus for the synthesis of 
digital components based on partially defined Boolean func-
tions for their use in digital technologies. 

Particularly relevant are theoretical studies on minimiz-
ing partially defined Boolean functions aimed at improving 
such factors as:

– visual-matrix methods of minimizing partially defined 
Boolean functions of the main and polynomial basis;

– the cost of technology to minimize partially defined 
Boolean functions;

– ensuring the reliability of the obtained result of mini-
mizing partially defined Boolean functions.

2. Literature review and problem statement

A new approach to minimizing Boolean expressions is 
considered in [3]. Despite the fact that the proposed method 
is general, attention is paid to exclusion functions or ESOP. 
A procedure has been developed that converts the problem 
from the region of Boolean algebra to the classical algebraic 
region. The resulting problem becomes a nonlinear, integer 
program, and to solve it, an original technique of branching 
and connections with several relaxations has been developed. 
The proposed procedure is especially suitable for minimizing 
incompletely defined Boolean functions, which is a complex 
problem in the Boolean domain. Numerical examples are 
given to demonstrate the feasibility of the approach and per-
formance, and possible future directions are described. The 
resulting nonlinear problems can sometimes be very complex, 
but their complex solutions can solve open ESOP problems.

The algorithm for minimizing Boolean functions that have 
a small part of the defined sets of variables is discussed in [4]. 
Unlike other well-known minimization algorithms, the deve
loped algorithm uses the strategy of «start from a large one», 
gradually reducing the value of the term until a simple impli-
cant is generated. This approach allows for a very quick solu-
tion to the problem, even for examples with several hundred 
input variables and several hundred minterms with defined 
initial values. The software version of the algorithm pro-
vides better results (according to the criterion of execution 
time and minimization of the original function) compared  
to modern ESPRESSO. As with most heuristic and itera-
tive algorithms, it is impossible to estimate the time com-
plexity of completing an algorithm. In this regard, work [4] 
reports the average time that is required to perform one  

pass of the considered algorithm for different sizes of the 
input truth table.

The method of minimizing Boolean functions, which is 
based on nonlinear mixed integer programming, is presen
ted in [5]. Experimental results show that the method pro-
duces the same or better results compared to other methods 
available in the literature. However, other methods do not 
guarantee a minimum solution. The main advantages of the 
proposed method of minimization are that the presented me
thod guarantees obtaining a minimum function and can also 
be used to minimize incompletely defined Boolean functions. 

To confirm the theoretical calculations of the method 
reported in [5], it is advisable to provide a demonstration 
example of simplifying a partially defined Boolean function 
by at least 4 variables. 

Work [5] also states that all experimental examples were 
launched on a server with free access NEOS, which imple-
ments deterministic algorithms. However, the NEOS free ac-
cess service limits the maximum calculation time to 8 hours, 
which is not enough to fully complete some of the examples. 
Therefore, for such examples, no definitive solution has been 
found, but instead the best has been found.

In programs where ROBDD has a great impact on the 
quality of the result (e.g., logical synthesis for FPGA im-
plementations), there is a significant need for methods to 
minimize ROBDD dimensionality for incompletely defined 
functions. Minimization of ROBDD dimensionality for in-
completely defined logical functions is discussed in [6]. The 
minimization method uses the symmetry properties of the 
ROBDD structure. However, the resulting ROBDD dimen-
sionality is highly dependent on the order of the variable. The 
decisive point and problem are to position symmetric vari-
ables side by side and consider them as a fixed block. In this 
regard, there is a need to determine the necessary variable for 
the specified procedure. However, symmetric groups for par-
tially defined Boolean functions are not fixed unambiguously. 
Therefore, there is a problem in determining the optimal 
division of variables into symmetric groups. There are two 
difficulties for dividing input variables into symmetric groups:

– first, how to find large sets of candidates of variables 
for symmetric groups (it must be borne in mind that it is 
impossible to check each subset of variables whether it is 
a symmetric group);

– secondly, how to combine symmetric groups in separa
ted input variables for the case of simplification of partially 
defined Boolean functions.

Work [6] ends with experimental results confirming the 
effectiveness of the presented method. The procedure im-
proves the symmetric dimensions of ROBDD by 51 % and, in 
combination with a slightly modified version, by 70 %.

Generalized rules for simplifying conjuncterms in a poly-
nomial theoretical-set format are discussed in [7]. These rules 
are based on the proposed theorems for different initial condi-
tions for the transformation of paired conjuncterms, the Hem-
ming distance between which can be arbitrary. These rules 
can be used to minimize arbitrary logical functions (including 
partially defined Boolean functions) with n variables in a poly-
nomial theoretical-set format. The advantages of the proposed 
rules for simplifying functions are illustrated with examples.

The vast majority of functions and their systems mini-
mized by the proposed method in [7] showed the best results. 
This is due to the fact that conjuncterms with a Hemming 
distance d ≥ 3 are involved in the transformation process. 
Note that the theory is focused on conclusions about the  
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inexpediency of further minimization in the polynomial for-
mat of Boolean functions if the distance between an arbitrary 
pair of its conjuncterms was d ≥ 3. When applying the theo-
rems [7] to the function f, which is given not by two, but by 
a larger number of conjuncterms of different ranks, between 
arbitrary pairs for which there is a different distance d, it is 
quite possible to further simplify it. This is explained by the 
fact that the set of transformed PTMFs Y ⊕ , with which the 
selected pair with a distance of d ≥ 3 is replaced, may contain 
elements that, with other elements of the given function f, 
will form pairs with a distance of d < 3. Moreover, despite the 
increase in the power of the newly formed set, after applying 
the corresponding rules of theorems [7] to pairs with small d, 
it is possible to obtain a minimal PTMF Y ⊕ .  As a result, the 
chance of effectively simplifying the set of conjuncterms in-
creases. This, in turn, makes it possible to reduce the cost of 
implementing the minimized function.

The search procedure for such elements is combinatorial 
in nature. After each replacement of a selected pair of conjunc-
terms of a given PTMF Y ⊕ by a certain set of formed PTMFs Y ⊕ ,, 
a new set is obtained in which the distance d between the new 
pairs must be determined. Having selected from them the ele
ments with the minimum d, it is necessary to apply the rules 
of the corresponding theorem and build a new set again, etc.

Synthesis from partial specifications of logical cir-
cuits (LSFPS) is reported in [8]. LSFPS is a problem of finding 
a hardware implementation of partially defined Boolean func-
tions. Logical synthesis from partial specifications (LSFPS) 
introduces the additional concept of «don′t know» to terms 
that are not in the specifications. The exact solution of LSFPS 
is a logical scheme of the optimal size of the corresponding 
problem, in which indefinite sets of variables are invalid. In 
practice, specification information may not be sufficient to 
determine the exact functionality, then the goal is to maximize 
the accuracy of the scheme over an available subset of indefi-
nite sets. Therefore, to the traditional goal of minimizing the 
size of the scheme, the goal of maximizing the accuracy of the 
scheme when evaluated by a subset of indefinite sets is added. 
The problem is relevant because effective solutions can lead 
to hardware-friendly machine learning models that do not 
rely on black box approaches. LSFPS directly corresponds to 
the problem of automatic generation of optimal topologies for 
binary neural networks. In addition, the combination of an 
accurate solution with modern methods of logical synthesis 
will unlock unprecedented optimization capabilities. Previ-
ous work has proven the effectiveness of approximate logical 
synthesis (ALS) for the design of circuits with their sufficient 
accuracy. Nevertheless, these methods sacrifice the accuracy of 
the specifications, which excludes them from legitimate candi-
dates for LSFPS. Paper [8] proposes the restoration of accuracy, 
which consists in the procedure for comparing the approximate 
version of the scheme with the new one, which satisfies the 
exact functionality of the specifications. Experimental testing 
showed a decrease in the number of gates by 17.38 % and 
a decrease in the depth of the logic scheme by 12.02 %. Using 
the procedure to restore the accuracy of the scheme based on 
decomposition gives an accuracy of 95.73 %, which exceeds the 
current ALS level at which the accuracy is 92.76 %.

Taking into account the extensive research into logical 
synthesis for high-performance systems, it is necessary to 
investigate its potential role in the development of machine 
learning techniques with hardware in mind. It is worth not-
ing that some tasks of machine learning allow for formulation 
as a fundamental problem of logical synthesis.

The problem of finding an approximate Boolean scheme 
from a set of examples is considered in [9]. Many computer 
programs are inherently error-resistant. This reduces the 
accuracy of calculations in order to achieve greater efficiency 
for chip area, computational performance, and/or power con-
sumption. In recent years, a number of automated methods 
have been proposed for approximate calculations; however, 
most of these methods require full knowledge of the exact 
or «golden» description of the scheme. At the same time, 
there is a significant interest in the synthesis of calculations 
based on examples, the form of training under management. 
Paper [9] presents the relationship between the controlled 
learning of Boolean schemes and the existing work on the 
synthesis of incompletely defined Boolean functions. It has 
been demonstrated that when viewed through the prism of 
machine learning, the latter work provides good learning ac-
curacy but low test accuracy. The article compares with pre-
vious work from the 1990s, which uses reciprocal information 
to guide the search process, striving for a good generalization. 
By combining this early work with the current approach to 
logical function learning, a scalable and efficient machine 
learning approach for Boolean schemes can be achieved in 
terms of area/latency/test error compromise. The results 
of this study indicate that the proposed technique has the 
potential to create Boolean schemes with high accuracy 
from large training sets of examples with a large number of 
primary input data. However, this method is limited to only 
1-biton output. New research is needed that will take into 
account word-level search that will help to effectively search 
for logical meanings of the scheme with multi-bit outputs.

Methods of simplification of partially defined Boolean 
functions, which are considered in sources [3–9], mainly 
use theoretical objects of related theory, such as Hemming 
weights, ordered binary decision diagrams (ROBDD), the 
transformation of a problem from the domain of Boolean 
algebra into a classical algebraic region, methods for finding 
approximate Boolean schemes, large training sets of examples 
with a large number of primary input data, ways to restore 
the accuracy of a logical scheme, machine learning tech-
niques, as well as software. A mandatory technological point 
for the implementation of these algorithms and methods is 
the need for automated calculations.

The method of figurative transformations is based on 
binary combinatorial systems with repeated 2-(n, b)-design, 
2-(n, x/b)-design, which are part of the binary structures 
of truth tables and provide unambiguous detection of the 
location of equivalent transformations to simplify Boolean 
functions. The set place of equivalent transformations impli-
cates the algorithm for minimizing Boolean functions. This, 
in turn, makes it possible to reduce the complexity of the 
simplification procedure without loss of functionality, com-
pared with algorithms and methods for simplifying partially 
defined Boolean functions discussed in works [3–9]. By qua
lification, the method of figurative transformations belongs  
to the visual-matrix form of the analytical method [10] and 
does not exclude the manual technique of minimizing partial-
ly defined Boolean functions.

Thus, the algorithms and methods created by the soft-
ware for them, which cover the general procedure for sim-
plifying partially defined Boolean functions [3–9] and the 
method of figurative transformations, occupy different ap-
proaches (principles of minimization). Therefore, they imply 
different perspectives regarding the possibility of algorithmic 
minimization of partially defined Boolean functions.
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Combinatorial systems of 2-(n, b)-design, 2-(n, x/b)-de-
sign are a representation of logical operations, the detection 
of which simplifies and speeds up the procedure for minimiz-
ing partially defined Boolean functions compared to analogs. 
This indicates that the visual-matrix form of the analytical 
method still has the prospect of increasing its hardware ca-
pabilities, including in terms of minimizing partially defined 
Boolean functions.

And this is reason to believe that the software and techno-
logical base, which is represented by algorithms and methods 
with theoretical objects of related theories, [3–9], is insufficient 
to conduct theoretical research on the optimal minimization 
of partially defined Boolean functions. This predetermines the 
need for research with equivalent figurative transformations to 
minimize partially defined Boolean functions. 

In applied terms, the method of figurative transforma-
tions will provide an expansion of the possibilities of the 
technology for designing digital components based on par-
tially defined Boolean functions in the main { , , ¬} and 
polynomial { , ⊕, 1} bases.

3. The aim and objectives of the study

The aim of this work is to extend the method of figurative 
transformations to minimize disjunctive normal forms (DNF), 
conjunctive normal forms (CNF), and polynomial normal 
forms (PNF) of the partially defined Boolean functions in the 
Boolean and Reed-Muller bases. This will make it possible to 
simplify, increase the minimization performance of partially 
determined Boolean functions in the main and polynomic ba
ses, using the algebraic apparatus of these bases.

To accomplish the aim, the following tasks have been set:
– to determine the optimal combination of the se-

quence of logical operations of gluing variables – simple and  
super-gluing in the initial truth table of a partially given 
Boolean function;

– to establish direct implication between the detection of 
locations of equivalent transformations by the combinatorial 
systems of 2-(n, b)-design, 2-(n, x/b)-design and the algo-
rithm for minimizing Boolean functions; 

– to analyze the result of simplification of a partially 
defined Boolean function by the method of figurative trans-
formations and an example of minimization by the heuristic 
method in order to compare the cost of implementing the 
resulting minimum function;

– to conduct a comparative analysis of the results of 
simplification of partially defined Boolean functions of the 
main basis by the method of figurative transformations and 
minimization methods borrowed from other authors in order 
to compare the cost of implementing the minimum function 
and the number of procedural steps;

– to analyze the result of simplification of a partially 
defined Boolean function in the Reed-Muller basis by the 
method of figurative transformations and an example of mi
nimizing partially defined Boolean functions by the method 
of decoupling conjuncterms in order to compare the cost of 
implementing the minimum function.

4. The study materials and methods

Minimization of dead-end DNF (DCNF), in particular, is 
possible by carrying out all operations of generalized gluing 

of DDNF variables (DCNF). The next step is to use impli-
cant tables to detect unnecessary simple implicants and to 
select term functions with a minimum number of inversions. 

Example 1. It is required, by the method of figurative 
transformations, to minimize the DNF of a partially defined 
Boolean function specified in binary form:

f(x1, x2, x3, x4) = (1– –0010010–01– –1).	 (1)

Solution: 

f x x x x

x x x x f

DeDNF

No.

1 2 3 4

1 2 3 4

0 1

5 1

8 1

12 1

0 0 0 0

1 0 0 0

0 1 0 1

1 1 0 0

, , ,( ) =

= 115 1

1

2

10

13

14

1

1
1 1 1 1

1 1 0 1

1 1 1 0

0 0 0 1
0 0 1

0 0 1 0

1 0 1 0

0 0
1 2 3 4

−
−
−
−
−

=

x x x x f

11 1 1

. 	 (2)

The first matrix in expression (2) represents the 
truth table of the partially defined DNF of the function 
f(x1, x2, x3, x4) (1). The last matrix in expression (2) rep-
resents the dead-end DNF of the function f(x1, x2, x3, x4) (1) 
which takes the following form:

f x x x x x x x x x x xDeDNF 1 2 3 4 1 2 1 3 4 2 4, , , .( ) = + + 	 (3)

The dead-end DNF (3) contains four inversions. To re-
duce the number of inversions, we shall carry out all possible 
operations of generalized gluing of variables in DDNF (3) 
followed by the use of an implicant table (Table 1) to identify 
unnecessary simple implicants and select simple implicants 
with a minimum number of inversions:

f x x x x

x x x x f

x x x x

DeDNF 1 2 3 4

1 2 3 4

1 2 3 4

0 0 1

0 0 1 1

1 1 1

1 0

0 0

0 0 1

0 0

, , ,( ) =

= =

00

1 1

1 0 1

.

Table 1

Implicant table of the function f (x1, x2, x3, x4) DNF (1)

No. x1 x2 x3 x4 f 1– –0 –0–0 0–01 000– 11– – –101

0 0 0 0 0 1 – • – • – –

5 0 1 0 1 1 – – • – – •

8 1 0 0 0 1 • • – – – –

12 1 1 0 0 1 • – – – • –

15 1 1 1 1 1 – – – – • –
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Table 1 demonstrates that simple implicants 1– –0, 000– are  
redundant. Among the simple implicants 0–01 and –101 you 
need to choose the latter since it contains fewer inversions. 
Then the function (1) MDNF will take the following form:

f x x x x x x x x x x xMDNF 1 2 3 4 1 2 2 3 4 2 4, , , .( ) = + + 	 (4)

The minimum DNF (4) contains three inversions, which 
is one less inversion compared to the dead-end DNF (3).

Identity in Boolean algebra is defined as the equality of 
two expressions, which holds on the entire set of values of 
variables.

The peculiarity of using identities for partially defined 
Boolean functions is that an arbitrary identity can hold for 
one partially defined Boolean function and not hold for an-
other partially defined Boolean function.

For a partially defined Boolean function f(x1, x2, x3, x4), 
given in canonical form:

f x x x x

m d

1 2 3 4

3 5 6 9 12 15 1 2 8 11

, , ,

, , , , , , , , ,

( ) =

= ( ) + ( )∑∑ 	 (5)

which contains a total of 6 minterms and 4 indefinite sets of 
variables, the following two identities hold:

1.  x x x x x x x x x x1 3 4 2 4 1 3 4 2 4⊕ ⊕ + = ⊕ ⊕ ⊕ . 	 (6)

Verification of identity (6) on the defined sets of variables 
of function (5) is given in Table 2.

Table 2

Verification of identity (6) on the defined sets 	
of function (5) variables

No. x1 x2 x3 x4 x x x x x1 3 4 2 4⊕ ⊕( ) + f x x x x x1 3 4 2 4⊕ ⊕ ⊕ f

0 0 0 0 0 0 0 0 0 01 3 4 2 4⊕ ⊕( ) + 0 0 0 0 0 01 3 4 2 4⊕ ⊕ ⊕ 0

1 0 0 0 1 – – – –

2 0 0 1 0 – – – –

3 0 0 1 1 0 1 1 0 11 3 4 2 4⊕ ⊕( ) + 1 0 1 1 0 11 3 4 2 4⊕ ⊕ ⊕ 1

4 0 1 0 0 0 0 0 1 01 3 4 2 4⊕ ⊕( ) + 0 0 0 0 1 01 3 4 2 4⊕ ⊕ ⊕ 0

5 0 1 0 1 0 0 1 1 11 3 4 2 4⊕ ⊕( ) + 1 0 0 1 1 11 3 4 2 4⊕ ⊕ ⊕ 1

6 0 1 1 0 0 1 0 1 01 3 4 2 4⊕ ⊕( ) + 1 0 1 0 1 01 3 4 2 4⊕ ⊕ ⊕ 1

7 0 1 1 1 0 1 1 1 11 3 4 2 4⊕ ⊕( ) + 0 0 1 1 1 11 3 4 2 4⊕ ⊕ ⊕ 0

8 1 0 0 0 – – – –

9 1 0 0 1 1 0 1 0 11 3 4 2 4⊕ ⊕( ) + 1 1 0 1 0 11 3 4 2 4⊕ ⊕ ⊕ 1

10 1 0 1 0 1 1 0 0 01 3 4 2 4⊕ ⊕( ) + 0 1 1 0 0 01 3 4 2 4⊕ ⊕ ⊕ 0

11 1 0 1 1 – – – –

12 1 1 0 0 1 0 0 1 01 3 4 2 4⊕ ⊕( ) + 1 1 0 0 1 01 3 4 2 4⊕ ⊕ ⊕ 1

13 1 1 0 1 1 0 1 1 11 3 4 2 4⊕ ⊕( ) + 0 1 0 1 1 11 3 4 2 4⊕ ⊕ ⊕ 0

14 1 1 1 0 1 1 0 1 01 3 4 2 4⊕ ⊕( ) + 0 1 1 0 1 01 3 4 2 4⊕ ⊕ ⊕ 0

15 1 1 1 1 1 1 1 1 11 3 4 2 4⊕ ⊕( ) + 1 1 1 1 1 11 3 4 2 4⊕ ⊕ ⊕ 1

Table 2 demonstrates that the left and right parts of iden-
tity (6) on the defined sets of variables of function (5) take 
the same value, so identity (6) holds for a partially defined 
function (5).

2.  x x x x x x x x x x x x1 3 4 2 4 1 3 1 3 4 2 4⊕ ⊕ ⊕ ⊕( ) = ⊕ ⊕ ⊕ . 	 (7)

Verification of identity (7) on the defined sets of variables 
of function (5) is given in Table 3.

Table 3

Verification of identity (7) on the defined sets 	
of function (5) variables

No. x1 x2 x3 x4 x x x x x x x1 3 4 2 4 1 3⊕ ⊕ ⊕ ⊕( ) f x x x x x1 3 4 2 4⊕ ⊕ ⊕ f

0 0 0 0 0 0 0 0 0 0 0 01 3 4 2 4 1 3⊕ ⊕ ⊕ ⊕( ) 0 0 0 0 0 01 3 4 2 4⊕ ⊕ ⊕ 0

1 0 0 0 1 – – – –

2 0 0 1 0 – – – –

3 0 0 1 1 0 1 1 0 1 0 11 3 4 2 4 1 3⊕ ⊕ ⊕ ⊕( ) 1 0 1 1 0 11 3 4 2 4⊕ ⊕ ⊕ 1

4 0 1 0 0 0 0 0 1 0 0 01 3 4 2 4 1 3⊕ ⊕ ⊕ ⊕( ) 0 0 0 0 1 01 3 4 2 4⊕ ⊕ ⊕ 0

5 0 1 0 1 0 0 1 1 1 0 01 3 4 2 4 1 3⊕ ⊕ ⊕ ⊕( ) 1 0 0 1 1 11 3 4 2 4⊕ ⊕ ⊕ 1

6 0 1 1 0 0 1 0 1 0 0 11 3 4 2 4 1 3⊕ ⊕ ⊕ ⊕( ) 1 0 1 0 1 01 3 4 2 4⊕ ⊕ ⊕ 1

7 0 1 1 1 0 1 1 1 1 0 11 3 4 2 4 1 3⊕ ⊕ ⊕ ⊕( ) 0 0 1 1 1 11 3 4 2 4⊕ ⊕ ⊕ 0

8 1 0 0 0 – – – –

9 1 0 0 1 1 0 1 0 1 1 01 3 4 2 4 1 3⊕ ⊕ ⊕ ⊕( ) 1 1 0 1 0 11 3 4 2 4⊕ ⊕ ⊕ 1

10 1 0 1 0 1 1 0 0 0 1 11 3 4 2 4 1 3⊕ ⊕ ⊕ ⊕( ) 0 1 1 0 0 01 3 4 2 4⊕ ⊕ ⊕ 0

11 1 0 1 1 – – – –

12 1 1 0 0 1 0 0 1 0 1 01 3 4 2 4 1 3⊕ ⊕ ⊕ ⊕( ) 1 1 0 0 1 01 3 4 2 4⊕ ⊕ ⊕ 1

13 1 1 0 1 1 0 1 1 1 1 01 3 4 2 4 1 3⊕ ⊕ ⊕ ⊕( ) 0 1 0 1 1 11 3 4 2 4⊕ ⊕ ⊕ 0

14 1 1 1 0 1 1 0 1 0 1 11 3 4 2 4 1 3⊕ ⊕ ⊕ ⊕( ) 0 1 1 0 1 01 3 4 2 4⊕ ⊕ ⊕ 0

15 1 1 1 1 1 1 1 1 1 1 11 3 4 2 4 1 3⊕ ⊕ ⊕ ⊕( ) 1 1 1 1 1 11 3 4 2 4⊕ ⊕ ⊕ 1

Table 3 demonstrates that the left and right parts of iden-
tity (7) on the defined sets of variables of function (5) take 
the same value, so identity (7) holds for a partially defined 
function (5). 

5. Results of minimization of partially defined Boolean 
functions by the method of figurative transformations

5. 1. Optimal combination of a sequence of different 
methods of logical operations for gluing variables

The efficiency of minimizing partially defined Boolean 
functions (as well as fully defined) by the analytical method 
depends on combining the sequence of logical operations 
using different methods of gluing variables – simple and 
super-gluing in the first, and, in some cases, in the second 
binary matrix [11]. In [11] it is also demonstrated that the 
sequence of logical operations of super-gluing of variables 
and simple gluing of variables is not always optimal. For 
example, for the perfect disjunctive normal form (PDNF) of 
the function f(x1, x2, x3, x4):

f x x x x1 2 3 4

0 0 1 1

1 0 1 1

0 1 1
0 1 0 1

1 1 0 1

1 0 1
1 0 0 0
1 0 0 1

1 0 0

1 1 1 0
1 1 1 1

1

, , ,( ) = =

11 1

, 	 (8)
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the optimal start of minimization is the logical operation of 
simple gluing of variables. Despite the fact that logical func-
tions, like (8), do not happen often, in general, it is necessary 
to identify an optimal combination of a sequence of logical 
operations using different techniques of gluing variables – 
simple and super-gluing.

In the initial combination of a sequence of logical opera-
tions of super-gluing and simple gluing of variables, redun-
dant simple implicants can be detected using an implicant 
table. This gives a choice in favor of the specified sequence 
of logical operations and provides unambiguous algorithm 
for minimizing Boolean functions. In particular, the ope
ration of super-gluing variables for function (8) gives the 
following result:

  f x x x x1 2 3 4

0 0 1 1

0 1 0 1

1 0 0 0

1 1 1 0

0 0 1 1

0 1 0
1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

, , ,( ) =

= =
11

1 0 0 0

1 1 1 0

0 1 1

1 0 1

1 0 0

1 1

1 1 1

1 1

= . 	 (9)

Detection of redundant simple implicants for the re-
sult of simplification (9) is carried out using an implicant  
table (Table 4).

Table 4

Implicant table

Implicant 
Implicant

0011 0101 1000 1001 1011 1101 1110 1111

–011 • – – – • – – –

–101 – • – – – • – –

1–1 – – – • • • – •

100– – – • • – – – –

111– – – – – – – • •

Behold Table 4 ‘til comprehending that the simple im-
plicant 1– –1 covers the most minterms of the PDNF of 
the original function – 1001, 1011, 1101, 1111, but is still 
redundant. Finally, we get the minimum function that coin-
cides with the result of simplification (8):

fMDNF = =

0 1 1

1 0 1

1 0 0

1 1 1

0 1 1

1 0 1

1 0 0

1 1 1
1 1

.

Thus, the initial combination of the sequence of logical 
operations of super-gluing of variables and simple gluing of 
variables in the first, and, in some cases, in the second binary 
matrix, with the possible use of an implicant table to detect 
unnecessary simple implicants, provides unambiguousness 
and sufficient efficiency of the algorithm for minimizing 
Boolean functions.

Another option to simplify expression (9) may be as follows:

  f x x x x1 2 3 4

0 1 1

1 0 1

1 0 0

1 1 1

0 1 1

1 0 1

1 0 0

1 1

1 0 0 1

1 1 0 1

1 0 1 1

1 1 1 1

, , ,( ) =

= =

11 1 1

0 1 1

1 0 1

1 0 0

1 1 1

= .
	 (10)

The result of simplification (10) coincides with the result 
of simplification (8) but is less obvious.

5. 2. Detection of locations of equivalent transfor-
mations using combinatorial systems of 2-(n, b)-design, 
2-(n, x/b)-design 

There are two types of uncertainty for the system in prac-
tice (Fig. 1): by input and output (either the input action 
cannot come from the outside, or the system′s response to the 
input action is unimportant).

A partially defined Boolean function can be represented 
by a set of fully defined Boolean functions, which are ob-
tained using the corresponding redefinition (sorting through 
all possible substitutions 0 or 1 instead of «–») (Fig. 2). Then 
the procedure for minimizing a partially defined Boolean 
function should be carried out on each defined function and 
the optimal result should be selected.

x 1 x 2 x 3 y
0 0 0 1
0 0 1 ‒
0 1 0 0
0 1 1 1
1 0 0 ‒
1 0 1 1
1 1 0 0
1 1 1 0

Uncertainties
Don't Care

 
Fig. 1. Uncertainties in the system

x 1 x 2 x 3 y x 1 x 2 x 3 y
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 1 0 1 1 1

x 1 x 2 x 3 y 1 0 0 0 1 0 0 1
0 0 0 1 1 0 1 1 1 0 1 1
0 0 1 ‒ 1 1 0 0 1 1 0 0
0 1 0 0 1 1 1 0 1 1 1 0
0 1 1 1
1 0 0 ‒ x 1 x 2 x 3 y x 1 x 2 x 3 y
1 0 1 1 0 0 0 1 0 0 0 1
1 1 0 0 0 0 1 1 0 0 1 1
1 1 1 0 0 1 0 0 0 1 0 0

0 1 1 1 0 1 1 1
1 0 0 0 1 0 0 1
1 0 1 1 1 0 1 1
1 1 0 0 1 1 0 0
1 1 1 0 1 1 1 0  

Fig. 2. A partially defined Boolean function f (x1, x2, x3) 	
is represented by a set of 22 = 4 fully defined Boolean 

functions f (x1, x2, x3)
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As the number of indefinite sets increases, the set of fully 
defined functions increases significantly. For six, for example, 
indefinite sets of variables, there are 26 = 64 different ways of 
binary redefinition of partially defined Boolean functions, 
and, therefore, the complexity of the function minimization 
procedure will increase.

To reduce the number of techniques of binary redefini-
tion of partially defined Boolean functions, it is necessary to 
choose a binary configuration that will provide conditions 
for super-gluing operations of variables and/or simple glu-
ing of variables. It will also include defined sets of variables 
and some indefinite sets of variables, in particular. For  
a number of partially defined Boolean functions, their op-
timal minimization will require the use of all indefinite sets 
of variables.

Example 2. The partially defined Boolean function 
f(A, B, C, D) is given by the truth table (Table 5). It is re-
quired to find the minimum DNF [12].

Table 5

Truth table of a partially defined Boolean 	
function f (A, B, C, D)

No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

x3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

x4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

f 1 0 – – 1 0 – 0 0 0 0 – 1 0 0 0

Solution:

f A B C D

A B C D f

DeDNF , , ,( ) =

=
−
−

0 1

4 1

12 1 1 0 0 1

2

3 0 0 1 1

6

0 0 0 0

0 1 0 0

0 0 1 0

0 1 1 00

0 0

11 1 0 1 1

0 1

12 1 1 0 0 1

3 0 0 1 1

11 1 0 1 1

0 0 0 1

12 1 0 0

−
−

=

−
−

=

=

A B C D f

A B C D f

11

3 0 0 1 1

11 1 0 1 1

−
−

. 	 (11)

The first matrix of expression (11) represents the 
truth table of the partially defined DNF of the function 
f(A, B, C, D) (Table 5). Blocks 0, 4, 2, 6, highlighted in red, 
are subject to super-gluing the variables [13]. The result of 
logical operations of the first matrix is written to the second 
matrix of expression (11).

The minimal DNF takes the form: 

f A B C D AD BC D, , , .( ) = + 	 (12)

We note that the undefined sets of variables 3, 11 
were not used during the simplification of the function 
f(A, B, C, D) (Table 5) by the method of figurative trans-
formations. This ultimately reduced the overall complexity 
of simplifying the function. The result of minimization (12) 
coincides with [12].

Combinatorial systems of 2-(n, b)-design, 2-(n, x/b)-de-
sign, which are part of the binary structures of truth tables, 
provide unambiguous detection of locations of equivalent 
transformations to simplify Boolean functions. The set place 
of equivalent transformations implicates the algorithm for 
minimizing Boolean functions. Thus, the 2-(n, b)-design, 
2-(n, x/b)-design systems have an information capacity, 
which makes it possible to replace the binary definition of 
partially defined Boolean functions with an effect, such as 
in Fig. 2, with a method of figurative transformations. This, 
in turn, makes it possible to reduce the complexity of the 
minimization procedure without loss of functionality, com-
pared to sorting out binary redefinitions of partially defined 
Boolean functions. 

The location of equivalent transformations using the 
2-(n, b)-design systems will be demonstrated by an example 
of minimizing the DNF of a partially defined Boolean func-
tion given by binary form [1]:

f(x1, x2, x3, x4) = (1– – 0 – 01 – – 10–0 – 1–).	 (13)

Solution: 

Table 6

Truth table of the partially defined DNF of 	
the function f (x1, x2, x3, x4) (13)

No. x1 x2 x3 x4 f

0 0 0 0 0 1

6 0 1 1 0 1

9 1 0 0 1 1

14 1 1 1 0 1

1 0 0 0 1 –

2 0 0 1 0 –

4 0 1 0 0 –

7 0 1 1 1 –

8 1 0 0 0 –

11 1 0 1 1 –

13 1 1 0 1 –

15 1 1 1 1 –

Blocks 0, 9, 1, 8 (highlighted in green) and blocks 6, 14, 
7, 15 (highlighted in orange), each of which makes up a com-
plete combinatorial system of 2 (2, 4)-design, are subject to 
the operation of super-gluing the variables [13]. The result 
of these logical operations is recorded in the following ma-
trix (Fig. 3).
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No. x1 x2 x3 x4 f 
–  0 0  1 
–  1 1  1 

 
Fig. 3. The result of minimizing 	

the function f (x1, x2, x3, x4) (13)

Since the undefined sets of variables 2, 4, 11, 13 of the 
function f(x1, x2, x3, x4) (Table 6) do not represent the loca-
tion of equivalent transformations, they are not used and are 
not displayed in the matrix in Fig. 3. This ultimately reduces 
the overall complexity of simplifying the DNF of the partially 
defined function (13). The minimum DNF of function (13) 
takes the following form:

f x x x xMDNF = +2 3 2 3. 	 (14)

The result of minimization (14) coincides with [1].
For eight indefinite sets of variables, there are 28 = 256 

different ways of binary redefinition of a partially defined 
Boolean function (13). Unlike the binary redefinitions of the 
example under consideration, only two combinatorial sys-
tems of 2-(2, 4)-design establish the location of the required 
equivalent transformations. This reduces the complexity of 
the minimization procedure, compared to sorting out the 
redefined functions, gives the result of simplification without 
losing the functionality of a given Boolean function and pro-
vides the efficiency of replacing binary definitions with the 
method of figurative transformations.

The location of equivalent transformations using a par-
tially balanced combinatorial system of 2-(n, x/b)-design is 
demonstrated by the minimization of the CNF of the partial-
ly defined Boolean function (M0, M~) in Example 4.

5. 3. An exact and heuristic method for minimizing par-
tially defined Boolean functions

Using the exact method of minimizing Boolean functions, 
it is possible to assess the quality of heuristic methods, and 
even determine the direction of creation of the heuristic 
method [14].

Example 3. It is required, by the method of figurative 
transformations, to simplify the DNF of a partially defined 
function f(x1, x2, x3, x4, x5, x6), which is represented by the 
Carnot map [15].

d
e

0 1 0 1

0 1

1 1 1 0 0

0

1 0 0 1

0 0

0 1 1 0

1 0 1 1

a c

f

b  
Fig. 4. Partially defined Boolean function of six variables 

(Carnot map)

Solution:

F x x x x x x

x x x x x x f

1 2 3 4 5 6

1 2 3 4 5 6

4 1
6 1

13

0 0 0 1 0 0
0 0 0 1 1 0
0 0

, , , , ,( ) =

=

No.

11 1 0 1

1 0 0 0 0 1

1 0 0 1 0

1
24 1
26 1
27 1
33 1
34 1
37

0 1 1 0 0 0
0 1 1 0 1 0
0 1 1 0 1 1

1 0 0 0 1 0
11

1 1 0 0 0 1
1 1 0 1 0 1

0 0 0 0 0 1

1
46 1
47 1
49 1
53 1
0
1
2

1 0 1 1 1 0
1 0 1 1 1 1

0 0 0 0 0 0

0 0

−
−

00 0 1 0
5
8 0 0 1 0 0 0
9

10 0 0 1 0 1 0
11 0 0 1 0 1 1
12 0 0 1 1 0 0
1

0 0 0 1 0 1

0 0 1 0 0 1

−
−
−
−
−
−
−

55 0 0 1 1 1 1
16
17
18

19

0 1 0 0 0 0
0 1 0 0 0 1
0 1 0 0 1 0

0 1 0 0
1 2 3 4 5 6

−
−
−
−

No. x x x x x x f

11 1
20 0 1 0 1 0 0
21
22 0 1 0 1 1 0
25
28 0 1 1 1 0 0
29

0 1 0 1 0 1

0 1 1 0 0 1

0 1 1 1 0 1

−
−
−
−
−
−
−

332
36
38
39 1 0 0 1 1 1
40 1 0 1 0 0 0
41
42 1

1 0 0 0 0 0
1 0 0 1 0 0
1 0 0 1 1 0

1 0 1 0 0 1

−
−
−
−
−
−

00 1 0 1 0
45
48 1 1 0 0 0 0
50 1 1 0 0 1 0
51 1 1 0 0 1 1
52 1 1 0 1 0 0
57

1 0 1 1 0 1

1 1 1 0

−
−
−
−
−
−

00 1

1 1 1 1 0 1

59 1 1 1 0 1 1
60 1 1 1 1 0 0
61
62
63

1 1 1 1 1 0
1 1 1 1 1 1

1 2

−
−
−
−
−
−

=

=

No. x x xx x x x f x x x x3 4 5 6 1 2 3 4

0 0 0 1
1
1
1
1
1

0 1
0 1 0 0 0
0 1 0 1 0
0 1 0 1 1
1 1 1 1

−
−
−
−
−
−

=

No. xx x f

x x x x x x f

5 6

1 2 3 4 5 6

0 0 0 1
0 1 1

0 1 0 0 1
0 1 0 1 0 1
0 1 0 1 1
1 1 1 1 1

−
−
−
−
−
−

=

=

No.
−−
−
−
−
−
−
− −

=

0 0 0 1
0 1 1

0 1 0 0 1
0 1 0 1 0 1
0 1 0 1 1
1 1 1 1 1
0 1 0 1

1 2 3 4 5 6No. x x x x x x f

−−
−
−
−
−
−

=

=
−
−

0 0 0 1
0 1 1

0 1 0 1
0 1 0 1 0 1
0 1 0 1 1
1 1 1 1 1

0 0 0 1
1 2 3 4 5 6No. x x x x x x f

00 1 1
0 1 0 1
1 1 1 1 1

−
−

.
	

	 (15)

The first matrix of expression (15) represents the 
truth table of the partially defined DNF of the function 
f(x1, x2, x3, x4, x5, x6) (Fig. 4).
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Blocks 13, 33, 37, 49, 53, 1, 5, 9, 17, 21, 25, 29, 41, 45, 57, 
61, which are highlighted in red and make up the complete 
combinatorial system of 2-(4, 16)-design, and blocks 4, 6, 34, 
0, 2, 32, 36, 38, which are highlighted in blue and make up the 
complete combinatorial system of 2-(3, 8)-design, as well as 
blocks 46, 47, 62, 63, which are highlighted in green and make 
up the complete combinatorial system of 2-(2, 4)-design, are 
subject to the operation of super-gluing the variables [13]. 
Blocks 24, 16 (highlighted in purple), and 26, 18 (high-
lighted in dark blue), as well as blocks 27, 19 (highlighted 
in brown), are subject to the operation of super-gluing the 
variables. The result of these logical operations is written to 
the second matrix of expression (15). In the second matrix of 
expression (15), undefined sets of variables are not displayed 
because they do not participate in the further simplification 
of the function.

As a result, the minimum function is obtained:

f x x x x x x x x x x x xMDNF = + + +2 3 6 5 6 1 2 4 1 3 4 5, 	 (16)

which contains two literals less than simplification using the 
heuristic method [15].

The cost of implementing the obtained minimum func-
tion (16) by the method of figurative transformations is 
k k kl inθ = 4 12 6, where kθ, kl, kin – the number of conjunc-
terms, literals, and inverters, respectively. 

The minimum function obtained by the heuristic me
thod [15] is:

f ef b c f c e a cd a cd eMDNF = + + + + ,

with an implementation cost k k kl inθ = 5 14 8.

5. 4. Minimization of partially defined Boolean func-
tions of the main basis 

Example 4. It is required to obtain the minimum ortho
gonal disjunctive normal form (MODNF) of the partially 
defined function f(x1, x2, x3, x4, x5), which is given by the 
matrices M1 and M0 [14], by the method of figurative trans-
formations.

M

No.

1

1 2 3 4 5

0 0 1 0 1 1

0 1 1 0 0 2

1 0 0 1 0 3

0 0 1 1 1 4

1 0 0 1 1 5

1 0 1 1 0 6

1 1 0 1 0 7

=

x x x x x

11 1 1 0 0 8

1 1 1 1 0 9

,  M0

1 2 3 4 5

0 0 1 1 0

0 1 0 1 0

0 1 0 1 1

0 1 1 0 1

1 0 1 1 1

1 1 0 1 1

=

x x x x x

.

The matrix M1 represents the domain of the Boolean 
argument space where the function has the value 1. The ma-
trix M0 represents the domain of the Boolean argument space 
where the function takes the value of 0. The region in which 
the value of the function is undefined (the rest of the Boolean 
space) is denoted by the symbol M~. The classic method of 
minimizing a partially defined function involves finding all 
the maximum intervals on the set M1

M~ and covering the 
elements of the set M1 with them [14].

Solution.
Minimization of the DNF of the function (M1, M~) and 

obtaining MODNF.

F x x x x x

x x x x x f

1 2 3 4 5

1 2 3 4 5

5 1
7 1

12 1
18

0 1 0 10
0 0 1 1 1
0 1 1 0 0
1

, , , ,( ) =

=

No.

00 0 1 0
1 0 0 1 1

0 0 0 0 0
0 0 0 0

1
19 1
22 1
26 1
28 1
30 1
0
1

1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

−
11

0 0 0 1 0
0 0 0 1 1

2
3

4 0 0 1 0 0
8 0 1 0 0 0
9 0 1 0 0 1

14 0 1 1 1

1 2 3 4 5

−
−
−

−
−
−

No. x x x x x f

00
15 0 1 1 1 1
16
17
20
21 1 0 1 0 1
24
25 1 1 0 0 1

1 0 0 0 0
1 0 0 0 1
1 0 1 0 0

1 1 0 0 0

−
−
−
−
−
−
−
−−
−
−

=

=

−
−
−
−
−

29 1 1 1 0 1
31 1 1 1 1 1

1
1
1
1

0 0 1 1
1 1 0
0 0

1 0 1 0
1 1

1 2 3 4 5No. x x x x x f

00 0 1

0 0 1 1
1 1 0 1
0 0 1

1 0 0 1
1 0 0 1

1 2 3 4 5

1 2 3 4 5

=

−
−
−
−
−

=

=

No.

No.

x x x x x f

x x x x x ff
x x x x x f

−
−
−
−
−
− −

=

−
−
−

0 0 1 1
1 1 0 1
0 0 1

1 0 0 1
1 0 0 1
1 1 0

0 0 1 1
1 1 0 1
0

1 2 3 4 5No.

00 1
1 0 0 1
1 0 1

0 0 1 1
1 1 0 1
0 0 1

1 0 1

1 2 3 4 5

−
−

=

=
−
−
−
−

No. x x x x x f

. 	 (17)

The first matrix of expression (17) represents the 
truth table of the partially defined DNF of the function 
f(x1, x2, x3, x4, x5) (M1, M~).

Blocks 18, 19, 0, 1, 2, 3, 16, 17, which are highlighted in 
red and make up the full combinatorial system of 2-(3, 8)-de-
sign, and blocks 12, 28, 30, 14, which are highlighted in 
blue and make up the complete combinatorial system of 
2-(2, 4)-design, are subject to the operation of super-gluing 
of variables [13]. Blocks 5, 7 (highlighted in green) and  
22, 20 (highlighted in brown), as well as blocks 26, 24 (high-
lighted in magenta), are subject to the operation of simple 
gluing of variables. The result of these logical operations 
is written to the second matrix of expression (17). In the 
second matrix of expression (17), the undefined sets of vari-
ables are not displayed because they do not participate in the 
further simplification of the function.

A minimal but not orthogonal DNF was obtained:

f x x x x x x x x x xMDNF = + + +1 2 5 2 3 5 2 3 1 5.	 (18)
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The procedure of orthogonalization of the minimal func-
tion (18) by the method of figurative transformations [16] 
takes the following form:

f

x x x x
x x x x

x x x

MODNF =

= = =

=

1 2 3 5
1 2 3 5

1 2 3

0 0 1
1 1 0
0 0

1 0

0 0 0 1
0 0 1 1

1 1 0
0 0

1 0

xx
x x x x

x x x x

5
1 2 3 5

1 2 3 5

0 0 1 1
1 1 0
0 0

1 0

0 0 1 1
1 1 0
0 0 0
0 0 1

1 0

0 0 1 1
1 1 0

0 0 0

= =

= 00
1 0 0 0

0 0 1
1 0

0 0 1 1
1 1 0

0 0 0 0
0 0 1

1 0

0 0 1 1
0 1 1 0
1 1 1 0

1 2 3 5

1 2 3 5

= =

=

x x x x

x x x x

00 0 0 0
0 0 1

1 0

0 0 1 1
0 1 1 0
0 0 0 0

0 0 1
1 0

1 2 3 5

=

x x x x

. 	 (19)

Detection of redundant simple implicants in the last 
matrix of expression (19) is carried out using an implicant 
table (Table 7).

Table 7
Implicant table

No. x1 x2 x3 x4 x5 f 001–1 011– 0 000 – 0 – 00 – 1 1– – – 0

5 0 0 1 0 1 1 • – – – –

7 0 0 1 1 1 1 • – – – –

12 0 1 1 0 0 1 – • – – –

18 1 0 0 1 0 1 – – – – •

19 1 0 0 1 1 1 – – – • –

22 1 0 1 1 0 1 – – – – •

26 1 1 0 1 0 1 – – – – •

28 1 1 1 0 0 1 – – – – •

30 1 1 1 1 0 1 – – – – •

Behold Table 7 ‘til comprehending that the simple impli-
cant «000–0» is redundant. Finally, the MODNF takes the 
following form:

f

x x x x
x x x x

MODNF =

= =

1 2 3 5
1 2 3 50 0 1 1

0 1 1 0
0 0 0 0

0 0 1
1 0

0 0 1 1
0 1 1 0

0 0 1
1 0

. 	 (20)

MODNF (20), obtained by the method of figurative 
transformations, contains 13 literals. The MODNF obtained 
on the basis of the smallest dominant independent set [14] is 
represented, in particular, in the form:

f

x x x x x

MODNF

No.

=

=
−

− −
− −

− −

1 2 3 4 5

0 0 1 1 2

1 1 0 5

1 0 0 8

0 0 1 12

. 	 (21)

MODNF (21) contains 13 literals whose simple impli-
cants are orthogonal; remaining uncovered is the defined 
minterm with M1 – «11010».

Minimization of the CNF of the function (M0, M~) and 
obtaining MODNF. 

The truth table of the partially defined CNF of the func-
tion f(x1, x2, x3, x4, x5) (M0, M~) [14] takes the following 
form (Table 8): 

Table 8

Truth table of a partially defined CNF of the function (M0, M~)

No. x1 x2 x3 x4 x5 f

6 0 0 1 1 0 0

10 0 1 0 1 0 0

11 0 1 0 1 1 0

13 0 1 1 0 1 0

23 1 0 1 1 1 0

27 1 1 0 1 1 0

0 0 0 0 0 0 –

1 0 0 0 0 1 –

2 0 0 0 1 0 –

3 0 0 0 1 1 –

4 0 0 1 0 0 –

8 0 1 0 0 0 –

9 0 1 0 0 1 –

14 0 1 1 1 0 –

15 0 1 1 1 1 –

16 1 0 0 0 0 –

17 1 0 0 0 1 –

20 1 0 1 0 0 –

21 1 0 1 0 1 –

24 1 1 0 0 0 –

25 1 1 0 0 1 –

29 1 1 1 0 1 –

31 1 1 1 1 1 –

Blocks 10, 11, 13, 8, 9, 14, 15, which make up a partially 
balanced combinatorial system of 2-(3, 7/8)-design [13], are 
subject to the operation of incomplete super-gluing of va
riables [16]. Blocks 6, 2, and 27, 25, as well as blocks 23, 21, 
are subject to the operation of simple gluing of variables. The 
results of the specified logical operations are included in the 
following matrix (Fig. 5).
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No. x1 x2 x3 x4 x5 f 
‒ 0 0  1 0 0 
‒ 0 1 0   0 
‒ 0 1   1 0 
‒ 1 0 1  1 0 
‒ 1 1 0  1 0 
‒ 0 1  1  ‒ 

 
Fig. 5. Simplification of the function (М0, M~)

In the matrix in Fig. 5 other undefined sets of variables 
are not shown because they do not participate in the further 
simplification of the function.

To continue simplifying the function, semi-gluing opera-
tions of variables are used (Fig. 6):

x x x x x x x x x x x x x1 2 4 5 1 2 4 1 4 5 1 2 4+ = + ;

x x x x x x x x x x x x x1 2 3 1 2 3 5 1 2 3 2 3 5+ = + .

No. x1 x2 x3 x4 x5 f 
‒ 0   1 0 0 
‒ 0 1 0   0 
‒ 0 1   1 0 
‒ 1 0 1  1 0 
‒  1 0  1 0 
‒ 0 1  1  ‒ 

 
Fig. 6. Simplification of the function (М0, M~)

The final step of simplifying the function (M0, M~) is the 
operation of generalized gluing of variables (Fig. 7):

x x x x x x x x x x x x x x x1 4 5 1 2 5 1 2 4 1 4 5 1 2 5+ + = + .

Fig. 7. Completing the simplification of the function (М0, M~)

No. x1 x2 x3 x4 x5 f 
‒ 0   1 0 0 
‒ 0 1 0   0 
‒ 0 1   1 0 
‒ 1 0 1  1 0 
‒  1 0  1 0 

 

The detection of redundant simple implicants in the last 
matrix is carried out using the implicant table (Table 9).

Table 9
Implicant table

No. x1 x2 x3 x4 x5 f 0– –10 010 – – 01– –1 101 – 1 – 10 – 1

6 0 0 1 1 0 0 • – – – –

10 0 1 0 1 0 0 • • – – –

11 0 1 0 1 1 0 – • • – –

13 0 1 1 0 1 0 – – • – –

23 1 0 1 1 1 0 – – – • –

27 1 1 0 1 1 0 – – – – •

Behold Table 9 ‘til comprehending that the simple impli-
cant «010 – –» is redundant. Finally, we get MCNF:

f

x x x x x
x x x x x

MCNF =

= =

1 2 3 4 5
1 2 3 4 50 1 0

0 1 0

0 1 1

1 0 1 1

1 0 1

0 1 0

0 1 1

1 0 1 1

1 0 1

.

The transformation MCNF→ MDNF→ MODNF gives 
the minimal orthogonal disjunctive normal form. For this 
purpose, we open the MCNF brackets. For CNF, when tran-
sitioning from binary to algebraic form, according to Nelson′s 
method [17], the values of the variables are inverted.

x x x x x x

x x x x x x x

x x x x x

1 4 5 1 2 5

1 2 3 5 2 3 5

1 1 2 1

+ +( ) + +( ) ×

× + + +( ) + +( ) =

=
+ + 55 1 4

2 4 4 5 1 5 2 5

1 2 1 3 1 5 2 3

+ +

+ + + +









 ×

×
+ + + +

x x

x x x x x x x x

x x x x x x x x x
( 22 5

2 3 3 5 2 5 3 5 5

1 2 4 4 5 2 5

x

x x x x x x x x x

x x x x x x x

x

+

+ + + + +









 =

= + + +( ) ×

× 11 2 1 3 2 3 2 3 5

1

0 0

0 0

0 1

0 0

0 1

1 1

0 0

0

1

0 0

0 1

0 1

1 1

0 0

0

x x x x x x x x+ + + +( ) =

= =

= =

= xx x x x x x x x x x x x

x x x x x x x x x x

1 4 5 2 5 1 3 2 3 2 3 5

1 2 3 1 2 3 1 5 1

+ +( ) + + +( ) =

= + + + 33 4 5 2 3 4 5

2 3 4 5 4 5 1 2 3 5 2 3 5

1 1 1

1 0 0

1 0

0 1

x x x x x x

x x x x x x x x x x x x x

+ +

+ + + + =

=
00 0

1 1 0 0

0 0 0 0

0 0

0 0 1 1

0 0 1

1 1 1

1 0 0

1 0

0 0

0 0 1 1

0 0 1

1 1 1

1 0 0

1 0

0 0

0 0 1

0 0 1

1

= =

= =

11 1

1 0 0 0

1 0 0 1

1 0

0 0

0 0 1

0 0 1

1 1 1

1 0

0 0

0 0 1

0 0 1

= .	 (22)
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Detection of redundant simple implicants in the last 
matrix of expression (22) is carried out using the implicant 
table (Table 10).

Table 10
Implicant table

No. x1 x2 x3 x4 x5 f 111– – 1– – – 0 – – – 00 00 – – 1 – 00 –1

5 0 0 1 0 1 1 – – – • –

7 0 0 1 1 1 1 – – – • –

12 0 1 1 0 0 1 – – • – –

18 1 0 0 1 0 1 – • – – –

19 1 0 0 1 1 1 – – – – •

22 1 0 1 1 0 1 – • – – –

26 1 1 0 1 0 1 – • – – –

28 1 1 1 0 0 1 • • • – –

30 1 1 1 1 0 1 • • – – –

From the review of Table 10 it can be seen that the simple 
implicant «111 – –» is redundant. Finally, we get MDNF:

f

x x x x x
x x x x x

MDNF =

= =

1 2 3 4 5
1 2 3 4 51 1 1

1 0

0 0

0 0 1

0 0 1

1 0

0 0

0 0 1

0 0 1

.

By the method of figurative transformations, we carry 
out the transformation of MDNF into MODNF [16]:

f

x x x x x x x x x x

MODNF =

= =

1 2 3 4 5 1 2 3 4 5

1 0

0 0

0 0 1

0 0 1

1 0

0 0 0

0 0 1 1

0 0 1

.
	 (23)

MODNF (23), obtained by the method of figurative 
transformations contains 12 literals and coincides with the 
MODNF obtained on the basis of the smallest maximum 
independent set [14].

To obtain minimal orthogonal DNFs, you can use both 
the method of finding the smallest dominant independent 
set and the method of finding the smallest maximal in-
dependent set [14]. For a partially defined Boolean func-
tion (M1, M0), MODNF (23) is simpler by one literal com-
pared to MODNF (20). This means that the minimization of 
orthogonal DNFs should be carried out by the two specified 
methods and the best result should be chosen.

Possible thesauruses of methods for obtaining MODNF 
are given in Table 11.

Table 11

Thesauruses of methods for obtaining MODNF

No. of 
entry

Thesaurus for obtaining 
MODNF by a method 
that uses intervals of 
the argument space

Thesaurus for  
obtaining MODNF  

by the method of figurative  
transformations

1
Finding the smallest do
minant independent set

Minimization of the DNF of a par-
tially defined function, transforma-
tion of MDNF→MODNF

2
Finding the smallest ma
ximum independent set

Minimization of the CNF of a par-
tially defined function, the trans-
formation of MCNF→MODNF

Example 5. It is required, by the method of figurative 
transformations, to simplify the DNF of a partially defined 
function f(x1, x2, x3, x4) [18]:

f(x1, x2, x3, x4) = (1– – 0 – 10010 – 01– – 1).	 (24)

Solution:

f

x x x x f

MDNF

No.

=

=
−

1 2 3 4

0 1

5 1

8 1

12 1

15 1

1 0 0 0 1

2

0 0 0 0

1 0 0 0

1 1 0 0

0 1 0 1

1 1 1 1

00 0 1 0

4

10 1 0 1 0

13

14

1

1

0 1 0 0

0 0

1 1 0 1

1 0 1

1 1 1 0

1

1 2 3 4

−
−
−
−
−

=

=

−
−
−

No. x x x x f

11 1 1

1 0 0 0 1

2 0 0 1 0

10 1 0 1 0

0 0 1

1 0 1

1 1 1 1

1 0 0 0 1

2 0

1 2 3 4

−
−
−

=

=

−
−
−

−

No. x x x x f

00 1 0

10 1 0 1 0

0 0 1

1 0 1

1 1 1

1 0 0 0 1

2 0 0 1 0

10 1 0 1 0

1 2 3 4

−
−

=

=

−
−
−

−
−
−

No. x x x x f

. 	 (25)
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The first matrix of expression (25) represents the 
truth table of the partially defined DNF of the function 
f(x1, x2, x3, x4) (24).

The blocks 0, 8, 12, 4, which are highlighted in red and 
make up the complete combinatorial system of 2-(2, 4)-de-
sign, are subject to the operation of super-gluing of va
riables [13]. Blocks 5, 13 (highlighted in blue), and 15, 
14 (highlighted in green) are subject to the operation of 
simple gluing of variables. We write the result of the specified 
logical operations to the second matrix of expression (25).

As a result, the minimum function is obtained:

f x x x x x x x x x x1 2 3 4 1 2 2 3 3 4, , , ,( ) = + +

which contains one less inversion compared to the simplifica-
tion using VBA MS Excel [18]. We note that the undefined 
sets of variables 1, 2, 10 were not used during the minimization 
of function (24). This ultimately reduced the overall complex-
ity of simplifying the given partially defined function (24).

Example 6. It is required, by the method of figura-
tive transformations, to simplify the partially defined  
Boolean function F(x1, x2, x3, x4), which is given in canoni-
cal  form [19]:

F x x x x

m d

1 2 3 4

4 5 6 9 11 12 13 14 0 1 3 7

, , ,

, , , , , , , , , , .

( ) =

= ( ) + ( )∑∑ 	 (26)

In total, function (26) contains 8 minterms and 4 sets of 
undefined variables.

Solution.
The truth table of the DNF of a partially defined function 

f(x1, x2, x3, x4) (26) takes the following form (Table 12). 

Table 12

Truth table of DNF of the partially defined 	
function f(x1, x2, x3, x4) (26)

No. x1 x2 x3 x4 f

4 0 1 0 0 1

5 0 1 0 1 1

6 0 1 1 0 1

9 1 0 0 1 1

11 1 0 1 1 1

12 1 1 0 0 1

13 1 1 0 1 1

14 1 1 1 0 1

0 0 0 0 0 –

1 0 0 0 1 –

3 0 0 1 1 –

7 0 1 1 1 –

Blocks 4, 6, 12, 14 and 5, 9, 13, 1, which make up the com-
plete combinatorial system of 2-(2, 4)-design, are subject to 
the operation of super-gluing of variables [13]. Blocks 11, 3 
are subject to the operation of simple gluing of variables. The 
result of these logical operations is written to the following 
matrix (Fig. 8).

For the final simplification of the DNF of function (26), 
we use the semi-gluing operation of the variables (Fig. 9).

No. x1 x2 x3 x4 f 
–   0 1 1 
–  0 1 1 1 
–  1  0 1 
0 0 0 0 0 – 
7 0 1 1 1 – 

 
Fig. 8. Simplification of the disjunctive normal form 	

of the function F(x1, x2, x3, x4) (26)

Fig. 9. Completing the simplification of the disjunctive normal 
form of the function F(x1, x2, x3, x4) (26)

No. x1 x2 x3 x4 f 
–   0 1 1 
–  0  1 1 
–  1  0 1 
0 0 0 0 0 – 
7 0 1 1 1 – 

 

Further simplification of the DNF of a partially defined 
function (26) is no longer possible. The minimum DNF of  
a partially defined function (26) is:

f x x x x x xMDNF = + +2 4 2 4 3 4. 	 (27)

The result of minimization (27) of the DNF of the partial-
ly defined function (26) by the method of figurative trans-
formations (MFT) coincides with the software implemen-
tation of Quine-McCluskey in C [19], however, the MFT 
is significantly simpler. We note that the undefined sets of 
variables 0,  7 were not used during the minimization of func-
tion (26). This ultimately reduced the overall complexity of 
simplifying a given partially defined function.

Simplification of the CNF of the partially defined func-
tion f(x1, x2, x3, x4) (Table 13).

Table 13

The truth table of the CNF of a partially defined 	
function f (x1, x2, x3, x4) (26)

No. x1 x2 x3 x4 f

2 0 0 1 0 0

8 1 0 0 0 0

10 1 0 1 0 0

15 1 1 1 1 0

0 0 0 0 0 –

1 0 0 0 1 –

3 0 0 1 1 –

7 0 1 1 1 –

According to Nelson′s method, to minimize the CNF 
of function (26), the values of the variables are inverted,  
Table 13 [17] (Fig. 10).

Blocks 2, 8, 10, 0, which make up the complete combina-
torial system of 2-(2, 4)-design are subject to the operation 
of super-gluing of variables [13]. To blocks 15, 7, we apply 
the operation of simple gluing of variables. The result of 
these logical operations is written to the following ma-
trix (Fig. 11).
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No. x1 x2 x3 x4 f 
2 1 1 0 1 0 
8 0 1 1 1 0 
10 0 1 0 1 0 
15 0 0 0 0 0 
0 1 1 1 1 – 
1 1 1 1 0 – 
3 1 1 0 0 – 
7 1 0 0 0 – 

 
Fig. 10. Simplification of the conjunctive normal form 	

of the function F(x1, x2, x3, x4) (26)

Fig. 11. Completing the simplification of the conjunctive 
normal form of the function F(x1, x2, x3, x4) (26) 

No. x1 x2 x3 x4 f 
–  1  1 0 
–  0 0 0 0 
1 1 1 1 0 – 
3 1 1 0 0 – 

 

Further simplification of the CNF of the partially defined 
function (26) is no longer possible. The minimal CNF of the 
partially defined Boolean function (26) takes the form:

f x x x x xMCNF = +( ) + +( )2 4 2 3 4 . 	 (28)

Expression (28) contains one literal less than expres-
sion (27), and therefore the MCNF (28) is simpler com-
pared to MDNF (27). We note that the undefined sets of 
variables 1, 3 were not used during the minimization of the 
CNF of function (26). This ultimately reduced the overall 
complexity of simplifying the CNF of a given function.

Example 7. It is required, by the method of figurative 
transformations, to simplify the DNF of a partially defined 
logical function f(x1, x2, x3, x4), which is given by the Weich 
diagram [20]:

Fig. 12. Partially defined Boolean function f (x1, x2, x3, x4) 
(Weich diagram)

- - 0 1
- 1 - 0
0 0 0 -
- 1 - 1

X1

X2

X3

X4  

Solution.
The Weich diagram for four variables takes the following 

form (Fig. 13).

Fig. 13. Weich diagram for four variables

1100 1101 1001 1000
1110 1111 1011 1010
0110 0111 0011 0010
0100 0101 0001 0000

X4

X2

X1
X3

 

f x x x x

x x x x f

DeDNF

No.

1 2 3 4

1 2 3 4

0 1

5 1

8 1 0 0 0 1

15 1

0 0 0 0

0 1 0 1

1 1 1 1

, , ,( ) =

= 11

2 0 0 1 0

4

11 1 0 1 1

12

13

14

0 0 0 1

0 1 0 0

1 1 0 0

1 1 0 1

1 1 1 0

1 2 3

−
−
−
−
−
−
−

=

No. x x x x44

1 2 3 4

0 1

8 1 0 0 0 1

15 1

2 0 0 1 0

11 1 0 1 1

0 0 0 1

8 1 0 0 1

15 1 1

0 0

1 1

f

x x x x f

−
−

=

=

No.

11

2 0 0 1 0

11 1 0 1 1

0 0 0 1

8 0 0 1

15 1 1 1

2 0 0 1 0

11 1 0 1 1

1 2 3 4

−
−

=

−
−

No. x x x x f

. 	 (29)

The first matrix of expression (29) represents the 
truth table of the partially defined DNF of the function 
f(x1, x2, x3, x4) (Fig. 12). Undefined sets of variables «0010», 
«1011» of the last matrix of expression (29) do not partici-
pate in further minimization. Then the algebraic representa-
tion for the last matrix of expression (29) will take the form:

f x x x x x x x x x xDeDNF 1 2 3 4 1 2 1 3 3 4, , , ,( ) = + + 	 (30)

which coincides with [20].
In an attempt to optimize the dead-end DNF (30), we 

shall carry out all possible operations of generalized gluing of 
variables, followed by the use of an implicant table (Table 14) 
to identify simple implicants with fewer inversions:

f x x x x

x x x x
x x x x

DeDNF 1 2 3 4

1 2 3 4
1 2 3 4

0 0

0 0

1 1

1 0

0 0

0 0

1 1

, , ,

.

( ) =

= =

From the review of Table 14 it can be seen that among 
the simple implicants – 10 –, 0 – 0 –, – – 00, and 11 – –, it is 
necessary to choose – 10 –, – – 00 and 11 – – because they 
contain fewer inversions. 

Table 14

Implicant table of DNF of the function f (x1, x2, x3, x4) (Fig. 12)

No. x1 x2 x3 x4 f –10 – 0 – 0 – – – 00 11– –

0 0 0 0 0 1 – • • –

5 0 1 0 1 1 • • – –

8 1 0 0 0 1 – – • –

15 1 1 1 1 1 – – – •
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Then the MDNF of the function (Fig. 12) will take the form:

f x x x x x x x x x xMDNF 1 2 3 4 1 2 2 3 3 4, , , .( ) = + + 	 (31)

The minimal DNF (31) contains one less inverter com-
pared to (30) and passes verification for the DNF and CNF 
of the given function (Fig. 12).

Example 8. It is required to simplify the DNF of a partially 
defined function f(x1, x2, x3, x4), which is given as follows [21]:

f x x x x1 2 3 4

1

0 1 2 4 6 7 8 9 11 13 14 15

, , ,

, , , , , , , , , , , .* * * * * * * *

( ) =

= ∨( ) 	 (32)

In expression (32), the decimal numbers of the sets  
on which the function is not defined are represented with  
a sign � �∗ .

Solution:

f x x x x

x x x x f

DeDNF

No.

1 2 3 4

1 2 3 4

0 1

6 1

9 1

14 1

0 0 0 0

0 1 1 0

1 0 0 1

1 1 1 0

, , ,( ) =

=
11

2 0 0 1 0

4 0 1 0 0

7

8

11 1 0 1 1

13 1 1 0 1

15

0 0 0 1

0 1 1 1

1 0 0 0

1 1 1 1

1 2

−
−
−
−
−
−
−
−

=

= x x xx x x x x x x x x x x x x x

x x x x x x x x x x x

3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3

+ + + +

+ + + xx x x x x

x x x x x x x x x x x x

x x x x x

4 1 2 3 4

2 3 1 4 1 4 2 3 1 4 1 4

2 3 1 4 1

+

+( ) + +( ) +

+ +

=

=

xx x x x x x x

x x x x x x x x

x x x x

4 2 3 1 4 1 4

1 4 1 4 2 3 2 3

1 4 1 4

( ) + +( ) =

= +( ) +( ) +

+ +( ) xx x x x

x x x x x x x x x x x x

x x x

2 3 2 3

2 3 2 3 1 4 1 4 1 4 1 4

2 3

+( ) =

= +( ) +( ) + +( )( ) =

= + 22 3 1 4 1 4 1 4 1 4

2 3 2 3 1 4 4 1 4 4

x x x x x x x x x

x x x x x x x x x x

( ) + + +( ) =

= +( ) +( ) + +( ))( ) =

= + = ⊕x x x x x x2 3 2 3 2 3. 	 (33)

The matrix of expression (33) represents the truth table of 
a partially defined DNF of the function f(x1, x2, x3, x4) (32). 
In turn, the DNF of the partially defined function (32) is 
singular [16]. In this regard, the minimum function can be 
obtained in a polynomial basis:

f x xMPNF = ⊕2 3.	 (34)

The expression x x x x2 3 2 3+  represents the minimum 
function in the main basis, coinciding with [21]. 

Thus, the minimum function (34) in the polynomial  
basis is two literals simpler than the minimum function of 
the main basis.

5. 5. Minimization of partially defined Boolean func-
tions in the Reed-Muller basis

Example 9. It is required to minimize the partially de-
fined Boolean function f(x1, x2, x3, x4) in the Reed-Muller 
basis [22] using the method of figurative transformations:

Y

Y

1 1
3 5 6 9 12 15

1 2 8 11

= { }
= { }







, , , , , ,

, , , ,~ ~
	 (35)

where the symbols Y1 and Y~ denote sets of binary minterms 
and sets of undefined variables of a partially defined function 
f(x1, x2, x3, x4), respectively [22].

Solution.
In the ideal polynomial set-theoretic form (PSTF) [22], 

function (35) will take the following form:

Y

Y

⊕ ⊕

⊕

= ( ) ( ) ( ) ( ) ( ) ( ){ }
= ( )

0011 0101 0110 1001 1100 1111

0001

, , , , , ;



,, , , .0010 1000 1011( ) ( ) ( ){ }






⊕

	(36)

Since function (36) is singular [16], minimization (36) 
can be performed in DNF or PNF. The simplest procedure 
for minimizing function (36) in DNF with the transition to 
a mixed basis [16] and with the subsequent transition to the 
Reed-Muller basis. Minimization of the DNF of a partially 
defined function (36) (Table 15).

Blocks 3, 9, 1, 11, which make up the complete combina-
torial system of 2-(2, 4)-design are subject to the operation of 
super-gluing of variables [13]. To blocks 6, 2 and 12, 8, the ope
ration of simple gluing of variables is applied. The result of these 
logical operations is written to the following matrix (Fig. 14).

Table 15
Truth table of the DNF of a partially defined 	

function f (x1, x2, x3, x4) (36)

No. x1 x2 x3 x4 f

3 0 0 1 1 1

5 0 1 0 1 1

6 0 1 1 0 1

9 1 0 0 1 1

12 1 1 0 0 1

15 1 1 1 1 1

1 0 0 0 1 –

2 0 0 1 0 –

8 1 0 0 0 –

11 1 0 1 1 –

No. x1 x2 x3 x4 f 
–  0  1 1 
– 0 1 0 1 1 
– 0  1 0 1 
– 1  0 0 1 
– 1 1 1 1 1 

 
Fig. 14. Simplification of the disjunctive normal form 	

of the function f (x1, x2, x3, x4) (36)
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The final step in simplifying function (36) is the opera-
tion of semi-gluing of variables (Fig. 15).

No. x1 x2 x3 x4 f 
–  0  1 1 
– 0  0 1 1 
– 0  1 0 1 
– 1  0 0 1 
– 1  1 1 1 

 
Fig. 15. Completion of simplification of the disjunctive 

normal form of function f (x1, x2, x3, x4) (36)

Further simplification of the DNF of function (36) is no lon-
ger possible. The abbreviated function (36) in a mixed basis is:

f x x x x x x x x

x x x x x

abbreviated = ⊕( )+ ⊕( )+ =

= ⊕ ⊕ +

1 3 4 1 3 4 2 4

1 3 4 2 4.

To obtain the minimum function in the Reed-Muller 
basis, we apply identity (6):

f

x x x x x x x x

x x x x x

x x x x

MPNF =

= ⊕( )+ ⊕( )+ =

= ⊕ ⊕ + =

= ⊕ ⊕ ⊕

1 3 4 1 3 4 2 4

1 3 4 2 4

1 3 4 22 4 1 3 2 4x x x x x= ⊕ ⊕ . 	 (37)

The result of minimizing (37) the DNF of a partially 
defined function (36) by the method of figurative transfor-
mations coincides with [22].

Minimization of PNF of a partially defined function (36):

f x x x x

x x x x f

MPNF

No.

1 2 3 4

1 2 3 4

3 1

5 0 1 0 1 1

6 0 1 1 0 1

9 1

12

0 0 1 1

1 0 0 1

, , ,( ) =

= 11 1 0 0

1 0 0 0

1

15 1 1 1 1 1

1

2 0 0 1 0

8

11

3 1

5 0

0 0 0 1

1 0 1 1

0 1
1 2 3 4

−
−
−
−

=

=

No. x x x x f

11 0 1 1

6 1

12 1

15 1 1 1 1 1

3 0 1 1

5 1 0 1 1

6 1 0 1

12 1 0 1

15 1 1

0 1 0

1 0 0

1 2 3 4

=

No. x x x x f

11 1

3 1 1

5 1 1 1 1

6 1 0 1

12 1 1

15 1 0 1 1

3 1 1

5 0 1

1 2 3 4 1 2 3 4

=

= =

No. No.x x x x f x x x x f

11 1

6 1 1

12 1 1

15 1 0 1 1

. 	 (38)

The first matrix of expression (38) represents the truth table 
of the partially defined DNF of the function f(x1, x2, x3, x4) (36).

Blocks 3, 9, 1, 11, which are highlighted in red and make 
up the full combinatorial system of 2-(2, 4)-design, are sub-
ject to the operation of super-gluing of variables [13]. To 
blocks 6, 2 (highlighted in blue) and blocks 12, 8 (highlighted  
in green), the operation of simple gluing of variables is ap-
plied. The result of these logical operations is reflected in 
the second matrix of expression (38). As a result, a shortened 
function in the Reed-Muller basis was obtained:

f x x x x x x x x xabbreviated = ⊕ ⊕ ⊕ ⊕1 3 4 1 2 4 2 3 4. 	 (39)

To minimize the reduced function (39), we apply identity (7):

f

x x x x x x x x x

x x x x x x x

x x

MPNF =

= ⊕ ⊕ ⊕ ⊕ =

= ⊕ ⊕ + ⊕( ) =

= ⊕

1 3 4 1 2 4 2 3 4

1 3 4 2 4 1 3

1 3 ⊕⊕ ⊕ = ⊕ ⊕x x x x x x x4 2 4 1 3 2 4. 	 (40)

The result of minimizing (40) PNF of a partially defined 
function (36) by the method of figurative transformations 
coincides with [22].

6. Discussion of results of minimization of partially defined 
Boolean functions by the method of figurative transformations

The mathematical apparatus for minimizing Boolean 
functions by the method of figurative transformations was 
considered in works [10, 12, 13, 16, 17, 23, 24], etc. 

The technology of minimizing Boolean functions using 
figurative transformations is given in Table 16.

Table 16

Technology for minimizing Boolean functions using figurative 
transformations

1 Binary combinatorial systems with repeated 2-(n, b)-design, 
2-(n, x/b)-design

2 Verbal and figurative representation of information

3 The logical operation of super-gluing variables

4 Logical operation of incomplete super-gluing of variables

5 Hermeneutics of logical operations on binary equivalents of 
logical functions

6 Protocols of figurative transformations
7 A sign of the minimum logical function,
8 Minimizing Boolean functions on a complete truth table
9 Algorithm of the analytical method and its automation

10 The spread of the analytical method to other logical bases

11 Algebra of equivalent transformations in the class of perfect 
normal forms of functions of Schaeffer algebra

12 Algebra of equivalent transformations in the class of perfect 
implicative normal forms

13 Algorithms for simplifying Boolean functions using logical ope
rations of absorption and super-gluing of variables

14 Logic operations stack

15
Algorithms for simplifying the PNF of a Boolean function by 
inserting the same conjuncterms, followed by a super-gluing 
operation of variables

16 Singular function

17 Algebra of equivalent transformations in the class of polyno-
mial normal forms of Boolean functions

18 Mixed basis
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New components of minimization for partially defined 
Boolean functions are given in Table 17.

Table 17

New components of minimization technology using figurative 
transformations for partially defined Boolean functions

1
Combining a sequence of logical operations of super- and simple 
gluing of variables with the possible use of an implicant table to 
detect unnecessary simple implicants

2

Dead-end DNF can be simplified by carrying out all operations 
of generalized gluing of variables, followed by the use of an im-
plicant table:
– to identify unnecessary simple implicants,
– to select simple implications with a minimum number of in-
versions

3
Identification of the location of equivalent transformations us-
ing combinatorial systems of 2-(n, b)-design, 2-(n, x/b)-design

Table 18 gives the results of minimizing partially defined 
Boolean functions borrowed from the works of other authors 
and by the method of figurative transformations.

Table 18

Comparative table of examples of minimization of partially 
defined Boolean functions borrowed from the works of other 

authors and by the method of figurative transformations

Exam
ple 

number

Number 
of input 
variables

The name of the 
minimization 

method

The result of 
minimization

Method of 
figurative 
transfor-
mations

3 6
Heuristic  

method [15]
14 literals 12 literals

4 5

Method of finding 
the smallest do
minant indepen-

dent set [14]

MODNF 
13 literals (not 

all defined 
minterms are 

covered)

MODNF 
13 literals

4 5

Method for find-
ing the smallest 
maximum inde-
pendent set [14]

The results of minimization 
are the same

5 4
VBA  

MS Excel [18]
4 inversions

3 inver-
sions

6 4

Software im-
plementation of 
Quine-McClus-

key in C [19]

MDNF  
6 literals

MDNF  
6 literals 
MCNF  

5 literals

7 4
Weich dia-
gram [20]

4 inversions
3 inver-

sions

8 4
Quine-McClus-
key method [21]

MDNF  
4 literals

MDNF  
4 literals 
MCNF  

2 literals

9 4
Conjuncterm 

decoupling  
method [22]

The results of minimization 
are the same

Table 18 gives a representative sample of examples of 
simplification of partially defined Boolean functions. The 
method of figurative transformations demonstrates the best 
or the same result. 

The construction of a strictly minimal DNF for an ar-
bitrary Boolean function from n variables is a challenging 
combinatorial problem, which is practically solved only for 

a relatively small n (maximum 12) [15]. There are some 
methods, such as the Carnot map, which become difficult to 
consider when the number of variables is taken more than 
six, and the Quaint-McCluskey method, which overcomes 
the shortcomings of Carnot maps but becomes complex with 
a large number of variables. The search time for the optimal 
function, in this case, increases by 22n, where n is the bit 
depth of the Boolean function. In this regard, approximate 
methods, in particular heuristic, have become widespread, 
which makes it possible to use a computer to find close to the 
optimal solution in an acceptable time [25]. However, tradi-
tional heuristic-based logical synthesis has many problems as 
computing power continues to grow and new computational 
paradigms emerge. With an increase in computing power, 
logical optimization is increasingly looking for accurate solu-
tions, rather than suboptimal ones [26]. 

A new graphical method suitable for minimizing the 
logical functions of five or more variables is proposed in [27]. 
Paper [28] reports a set of rules that simplify minimization 
using the Xiao map [27] and demonstrates that the Xiao 
map method has advantages over the Quine–McCluskey 
algorithmic method. 

Example 10. It is required, by the method of figurative 
transformations, to simplify the 6-bit Boolean function 
F(A,B,C,D,E,F), which is given in canonical form [28]:

F mA,B,C,D,E,F( ) = Σ
0 2 5 6 8 10 14 16 17 18

21 22 24 26 30 3

, , , , , , , , , ,

, , , , , 44 37 38

42 46 49 50 53 54 58 62

, , ,

, , , , , , ,

,














Solution:

F A B C D E F

A B C D E F

, , , , ,( ) =

=

No.

0

2

5

6

8

0 0 0 0 0 0

0 0 1 0

0 0 0 0 1 0

0 0 0 1 1 0

0 0 0 1 0 1

00 0

0 1 0 0 0 0

10

14

16

17 0 1 0 0 0 1

18

21

22

0 0 1 0 1 0

0 0 1 1 1 0

0 1 0 0 1 0

0 1 0 1 1

0 1 0 1 0 1

00

0 1 1 0 1 0

0 1 1 1 1 0

1 0 0 0 1 0

1 0 0 1 1

24

26

30

34

37

38

0 1 1 0 0 0

1 0 0 1 0 1

No. A B C D E F

00

1 0 1 0 1 0

1 0 1 1 1 0

1 1 0 0 1 0

1 1 0 1 1 0

1 1 1 0 1 0

42

46

49 1 1 0 0 0 1

50

53

54

58

1 1 0 1 0 1

662

0

2

5

17 1 0 0 0 1

0 0 0 0

2 1 0

5

1 1 1 1 1 0

1 0

0 0 0 0

0 1 0 1

=

= =

No. No.A B C D E F A B C D E F

00 1 0 1

17 1 0 0 1

. 	 (41)

The result of simplifying (41) the 6-bit Boolean function 
F(A,B,C,D,E,F) coincides with [28] but the simplification 
technique of figurative transformations is simpler.

A feature of the proposed solutions is the use of combi-
natorial systems of 2-(n, b)-design, 2-(n, x/b)-design within 
the truth table of a given partially defined Boolean func-
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tion (PDBF). In contrast to the representation of PDBF as 
a set of fully defined Boolean functions, which are obtained 
using the appropriate redefinition (sorting through all possi-
ble substitutions 0 or 1 instead of «–»), the use of the specified 
combinatorial systems makes it possible to reduce the num-
ber of ways to identify PDBF. Such a reduction is possible 
due to the interpretation by the systems of 2-(n, b)-design, 
2-(n, x/b)-design of logical operations for the equivalent 
transformation of PDBF. In this regard, it becomes possible to 
determine such a binary configuration within the truth table 
of a given PDBF, which provides an implication algorithm 
for simplifying the function, through logical operations of su-
per-gluing of variables and/or simple gluing of variables. The 
established configuration contains the defined sets of vari-
ables and some of the indefinite sets of variables, in particular. 
With this technique of simplifying PDBF, not necessarily all 
indefinite sets of variables will be required. Thus, the principle 
of minimization of PDBF is established, which reduces the 
complexity and increases the productivity of the procedure 
for minimizing a given PDBF, compared in particular with the 
transformation of the problem from the field of Boolean alge-
bra into the classical algebraic domain, methods for finding 
approximate Boolean schemes, large training sets of examples 
with a large number of primary input data, ways to restore the 
accuracy of the logical scheme, machine learning techniques.

The application of the obtained result makes it possible  
to improve and expand the technology of designing electro
nic components and devices for their use in digital technolo
gies, which are based on the use of Boole and Reed-Muller 
logical bases.

The visual form of 2-dimensional binary matrices al-
lows for a manual way to simplify partially defined Boolean 
functions using a mathematical editor, for example, Math 
Type 7.4.0 (USA): examples 1, 2, 3, 4 (minimization of DNF), 5, 
7, 8, 9 (minimization of PNF), or using MS Word tables: exam
ples 4 (minimization of CNF), 6, 9 (minimization of DNF).

The use of MFT to minimize partially defined functions 
in the Boolean and Reed-Muller bases deduces, to a certain 
extent, the problem of simplifying partially defined Boolean 
functions to the level of a well-researched problem in the 
class of disjunctive-conjunctive normal forms (DCNF) of 
Boolean functions. The limitation of using the method of fi
gurative transformations are cases when the switching func-
tion is represented in a mixed basis. In this case, the function 
must be represented by one logical basis.

The weak side of the method under consideration is in 
its small practical application to minimize partially defined 
Boolean functions, followed by the design and manufacture 
of appropriate computational components. The negative 
internal factors of MFT are associated with additional time 
spent on establishing protocols for simplifying partially de-
fined logical functions in the Boolean and Reed-Muller bases, 
followed by the creation of a library of protocols illustrating 
the corresponding figurative transformations.

The prospect of further research may be the development 
of a synergistic method for simplifying Boolean functions 
based on the visual-matrix form of representation.

7. Conclusions

1. With the optimal combination of the sequence of logi-
cal operations of super-gluing and simple gluing of variables 
in the initial truth table, redundant simple implicants can 

be detected using an implicant table. The effectiveness of 
this procedure is demonstrated by the following examples: 
example 3 – minimization of a 6-bit Boolean function, exam-
ple 4 – minimization of a 5-bit Boolean function, example 8 – 
minimization of a 4-bit Boolean function. Minimization 
efficiency in these examples gives grounds for choosing in 
favor of using a sequence of logical operations of super-glu-
ing and simple gluing of variables. Thus, the 2-(n, b)-design 
system and the sequential alternation of logical operations 
of super-gluing of variables (if such an operation is possible) 
and simple gluing of variables in the first, and, in some cases, 
in the second binary matrix, with the possible use of an impli-
cant table to detect unnecessary simple implicants, provides 
unambiguousness and sufficient efficiency of the algorithm 
for minimizing Boolean functions, including partially defined 
Boolean functions.

2. Combinatorial systems of 2-(n, b)-design, 2-(n, x/b)-de-
sign, which are part of the binary structures of truth tables, 
provide unambiguous detection of the location of equivalent 
transformations to simplify Boolean functions. The set place 
of equivalent transformations implicates the algorithm for 
minimizing Boolean functions. Thus, the 2-(n, b)-design, 
2-(n, x/b)-design systems have an information capacity, 
which makes it possible to replace the binary redefinition of 
partially defined Boolean functions with an effect, such as in 
Fig. 2, with the method of figurative transformations. This, in 
turn, makes it possible to reduce complexity and speed up the 
minimization procedure without loss of functionality, com-
pared to brute force binary redefinitions of partially defined 
Boolean functions. The interpretation of the result is that the 
2-(n, b)-design, 2-(n, x/b)-design systems are a reflection of 
logical operations. Therefore, the detection of combinatorial 
systems in the truth table of Boolean functions directly and 
unambiguously indicates logical operations for equivalent 
transformations of Boolean expressions.

3. The differences in the result of minimizing a partially 
defined Boolean function by six variables by the heuristic 
method and the method of figurative transformations are 
demonstrated by example 3 – minimization of a 6-bit Boolean  
function. The cost of implementing the minimum function 
obtained by the method of figurative transformations is:  
4 conjuncterms, 12 literals, 6 inverters. The cost of imple-
menting the minimum function obtained by the heuristic 
method is: 5 conjuncterms, 14 literals, 8 inverters. Thus, the 
implementation of the minimum function obtained by the 
method of figurative transformations is simpler.

4. The effectiveness of the method of figurative transfor-
mations to minimize partially defined Boolean functions in 
the main basis is demonstrated by the following examples:

– Example 4 – minimizing a 5-bit partially defined Boolean 
function. The results of minimizing the CNF of a given func-
tion are the same. In the compared example, two methods 
are used to obtain a minimum orthogonal DNF. One of them 
reduces this task to obtaining the smallest dominant set in 
a graph by covering its vertices with their closed circles, 
the other to obtaining the maximum independent set via  
a lexicographic brute force. The method of figurative trans-
formations uses a table of truth of a given function and 
the transformation of the obtained minimum function into 
a  minimal orthogonal DNF. The mathematical apparatus and 
the technique of minimizing the method of figurative trans-
formations is simpler.

– Example 5 – minimizing a 4-bit partially defined Boolean 
function. The cost of implementing the minimum function 
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obtained by the method of figurative transformations is one 
less inverter. In the compared example, the software in the 
form of an MS Excel spreadsheet is used. The method of 
figurative transformations, to a certain extent, does not use 
automation to simplify functions, and is therefore simpler.

– Example 6 – minimizing a 4-bit partially defined Boolean  
function. The results of minimizing the DNF of a given func-
tion are the same. The compared example uses software writ-
ten in C. Thus, minimizing a given function by the method of 
figurative transformations is much simpler.

– Example 7 – minimizing a 4-bit partially defined Boolean 
function. The cost of implementing the minimum function 
obtained by the method of figurative transformations is one 
less inverter. The result is achieved by carrying out all logical 
operations of generalized gluing of variables in the dead-end 
disjunctive normal form of a given function.

– Example 8 – minimizing a 4-bit partially defined Boolean 
function. The results of minimizing the DNF of a given func-
tion are the same for the main basis. The cost of implementing 
the minimum function in the polynomial basis obtained by the 
method of figurative transformations is two literals less. Thus, 
the minimum function in a polynomial basis is two literals 
simpler than the minimum function of the main basis.

5. The polynomial basis algebraic apparatus { , ⊕, 1} makes 
it possible to introduce a method of figurative transforma-
tions to minimize partially defined Boolean functions. Since  
a partially defined Boolean function can be singular, this 
makes it possible to choose the basis of minimization – basic 
or polynomial. The ability to choose a logical basis expands 
the options for simplifying the Boolean function, which 
increases the effectiveness of the procedure for minimizing 
partially defined Boolean functions.

The result of minimizing a partially defined Boolean 
function by four variables by the method of decoupling con-

juncterms and by the method of figurative transformations is 
demonstrated by example 9 – minimization of a 4-bit partial-
ly defined Boolean function. The results of minimizing the 
PNF of a given function are the same. Minimization of par-
tially defined Boolean functions by the method of decoupling 
conjuncterms consists of two stages. At the 1st stage, the pro-
cedure for breaking the specified conjuncterms using a split-
ting matrix is implemented and a set of coverage is obtained. 
At the 2nd stage, the procedure of iterative simplification of 
pairs of conjuncterms of the coverage set obtained at stage 
1 is carried out on the basis of generalized rules of theorems 
and a minimum function is formed for a given partially de-
fined function f. The method of figurative transformations to 
minimize the PNF of partially defined Boolean functions uses 
a truth table of a given function and the rules of equivalent 
transformations in a polynomial basis.

Conflicts of interest

The authors declare that they have no conflicts of interest 
in relation to the current study, including financial, personal, 
authorship, or any other, that could affect the study and the 
results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

All data are available in the main text of the manuscript.

References

1.	 Savel′ev, A. Ya. (1987). Prikladnaya teoriya cifrovyh avtomatov. Moscow: Vysshaya shkola, 272. Available at: https://vdoc.pub/

documents/-4o35jbu52gg0

2.	 Prihozhiy, A. A. (2013). Chastichno opredelyonnye logicheskie sistemy i algoritmy. Minsk: BNTU, 343. Available at: https://rep.

bntu.by/handle/data/37237

3.	 Papakonstantinou, K. G., Papakonstantinou, G. (2018). A Nonlinear Integer Programming Approach for the Minimization of Boolean 

Expressions. Journal of Circuits, Systems and Computers, 27 (10), 1850163. doi: https://doi.org/10.1142/s0218126618501633 

4.	 Fi er, P., Hlavi cka, J. (2000). Efficient minimization method for Incompletely defined Boolean functions. Conference: 4th Int. 

Workshop on Boolean Problems (IWSBP). Available at: https://www.researchgate.net/publication/260987269_Efficient_minimi-

zation_method_for_incompletely_defined_Boolean_functions

5.	 Dimopoulos, A. C., Pavlatos, C., Papakonstantinou, G. (2022). Multi-output, multi-level, multi-gate design using non-linear pro-

gramming. International Journal of Circuit Theory and Applications, 50 (8), 2960–2968. doi: https://doi.org/10.1002/cta.3300 

6.	 Scholl, C., Melchior, S., Hotz, G., Molitor, P. (1997). Minimizing ROBDD sizes of incompletely specified Boolean functions by 

exploiting strong symmetries. Proceedings European Design and Test Conference. ED & TC 97. doi: https://doi.org/10.1109/

edtc.1997.582364 

7.	 Rytsar, B. (2015). The Minimization Method of Boolean Functions in Polynomial Set-theoretical Format. Conference: Proc.  

24th Inter. Workshop, CS@P′2015. Rzeszow, 130–146. Available at: https://www.researchgate.net/publication/298158364_The_

Minimization_Method_of_Boolean_Functionns_in_Polynomial_Set-theoretical_Format

8.	 Costamagna, A., De Micheli, G. (2023). Accuracy recovery: A decomposition procedure for the synthesis of partially-specified Boolean 

functions. Integration, 89, 248–260. doi: https://doi.org/10.1016/j.vlsi.2022.12.008 

9.	 Boroumand, S., Bouganis, C.-S., Constantinides, G. A. (2021). Learning Boolean Circuits from Examples for Approxi-

mate Logic Synthesis. Proceedings of the 26th Asia and South Pacific Design Automation Conference. doi: https://doi.org/ 

10.1145/3394885.3431559 

10.	 Solomko, M. (2021). Developing an algorithm to minimize boolean functions for the visual-matrix form of the analytical method. 

Eastern-European Journal of Enterprise Technologies, 1 (4 (109)), 6–21. doi: https://doi.org/10.15587/1729-4061.2021.225325 



Mathematics and Cybernetics – applied aspects 

25

11.	 Riznyk, V., Solomko, M., Tadeyev, P., Nazaruk, V., Zubyk, L., Voloshyn, V. (2020). The algorithm for minimizing Boolean functions 

using a method of the optimal combination of the sequence of figurative transformations. Eastern-European Journal of Enterprise 

Technologies, 3 (4 (105)), 43–60. doi: https://doi.org/10.15587/1729-4061.2020.206308 

12.	 Minimizatsiya nepovnistiu vyznachenykh lohichnykh funktsiy. Available at: https://studfile.net/preview/14499737/page:17/

13.	 Riznyk, V., Solomko, M. (2017). Application of super-sticking algebraic operation of variables for Boolean functions minimization 

by combinatorial method. Technology Audit and Production Reserves, 6 (2 (38)), 60–76. doi: https://doi.org/10.15587/2312-

8372.2017.118336 

14.	 Pottosin, Yu. V. (2021). Minimization of Boolean functions in the class of orthogonal disjunctive normal forms. Informatics, 18 (2), 

33–47. doi: https://doi.org/10.37661/1816-0301-2021-18-2-33-47 

15.	 Zakrevskij, A. D., Toropov, N. R., Romanov, V. I. (2010). DNF-implementation of partial boolean functions of many variables. Infor-

matics, 1 (25), 102–111. Available at: https://inf.grid.by/jour/article/view/461/419

16.	 Solomko, M., Batyshkina, I., Khomiuk, N., Ivashchuk, Y., Shevtsova, N. (2021). Developing the minimization of a polynomial nor-

mal form of boolean functions by the method of figurative transformations. Eastern-European Journal of Enterprise Technologies,  

2 (4 (110)), 22–37. doi: https://doi.org/10.15587/1729-4061.2021.229786 

17.	 Riznyk, V., Solomko, M. (2018). Minimization of conjunctive normal forms of boolean functions by combinatorial method. Techno

logy Audit and Production Reserves, 5 (2 (43)), 42–55. doi: https://doi.org/10.15587/2312-8372.2018.146312 

18.	 Sdvizhkov, O. A. (2012). Diskretnaya matematika i matematicheskie metody ekonomiki s primeneniem VBA Ehcel. Moscow: 

DMK, 212. Available at: https://www.studmed.ru/sdvizhkov-o-a-diskretnaya-matematika-i-matematicheskie-metody-ekonomi-

ki-s-primeneniem-vba-excel_9edfd48c895.html

19.	 Huang, J. (2014). Programing implementation of the Quine-McCluskey method for minimization of Boolean expression. arXiv.  

doi: https://doi.org/10.48550/arXiv.1410.1059

20.	 Matematychna lohika ta dyskretna matematyka (2020). Kremenchuk, 61. Available at: http://document.kdu.edu.ua/metod/ 

2020_2182.pdf

21.	 Novytskyi, I. V., Us, S. A. (2013). Dyskretna matematyka v prykladakh i zadachakh. Dnipropetrovsk, 89. Available at: https://sau.

nmu.org.ua/ua/osvita/metod/Discrete_Math(Novitskiy_Us_NMU_SAU).pdf

22.	 Rytsar, B. Ye. (2015). A New Method of Minimization of Logical Functions in the Polynomial Set-theoretical Format. 2. Minimi-

zation of Complete and Incomplete Functions. УСиМ, 4, 9–30. Available at: http://dspace.nbuv.gov.ua/handle/123456789/87235

23.	 Solomko, M., Batyshkina, I., Voitovych, I., Zubyk, L., Babych, S., Muzychuk, K. (2020). Devising a method of figurative transforma-

tions for minimizing boolean functions in the implicative basis. Eastern-European Journal of Enterprise Technologies, 6 (4 (108)), 

32–47. doi: https://doi.org/10.15587/1729-4061.2020.220094 

24.	 Solomko, M., Tadeyev, P., Zubyk, L., Babych, S., Mala, Y., Voitovych, O. (2021). Implementation of the method of figurative trans-

formations to minimizing symmetric Boolean functions. Eastern-European Journal of Enterprise Technologies, 4 (4 (112)), 23–39. 

doi: https://doi.org/10.15587/1729-4061.2021.239149 

25.	 Zakrevskiy, A. D. (1981). Logicheskiy sintez kaskadnyh shem. Moscow, 414. 

26.	 Chu, Z., Pan, H. (2023). Survey on Exact Logic Synthesis Based on Boolean SATisfiability. Journal of Electronics & Information 

Technology, 45 (1), 14–23. doi: https://doi.org/10.11999/JEIT220391

27.	 Yong-Xin, X. (1987). Xiao map for minimization of boolean expression. International Journal of Electronics, 63 (3), 353–358.  

doi: https://doi.org/10.1080/00207218708939138 

28.	 Osuagwu, C. C., Anyanwu, C. D., Agada, J. O. (1989). Fast Minimization on the Xiao Map Using Row Group Structure Rules. 

Nigerian Journal of Technology, 13 (1), 51–61. Available at: https://www.ajol.info/index.php/njt/article/view/123260


