
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/9 (121) 2023

6

A MODEL OF DECOY
SYSTEM BASED ON

DYNAMIC ATTRIBUTES
FOR CYBERCRIME

INVESTIGATION
S v i a t o s l a v V a s y l y s h y n

Postgraduate	Student*

V i t a l i i S u s u k a i l o
Corresponding author

Postgraduate	Student*
Е-mail:	vitalii.susukailo@gmail.com

I v a n O p i r s k y y
Doctor	of	Technical	Sciences*

Y e v h e n i i K u r i i
Postgraduate	Student*

I v a n T y s h y k
PhD*

*Department	of	Information	Security
Lviv	Polytechnic	National	University

S.	Bandery	str.,	12,	Lviv,	Ukraine,	79013

The object of research are decoys with dynamic attributes.
This paper discusses the impact of decoys involving block-
chain technologies on the state of information security of the
organization and the process of researching cybercrime. This
is important because most cybercrimes are detected after the
attacker gains access to sensitive data. Through systematic
analysis of the literature focused on assessing the capabilities
of decoy and blockchain technologies, this work identifies the
main advantages of decoys that utilize blockchain technology.
To assess the effectiveness of attacker detection and cyber-
crime analysis, controlled experiments were conducted using
a blockchain-based decoy system that we developed aimed at
determining network performance.

As part of the study reported here, a technique is pro-
posed to detect cybercrime using decoys based on blockchain
technology. This technique is based on the fact that the attri-
butes of the system change dynamically. Such a technique has
made it possible to obtain a system model that solves the task
of detecting decoys by intruders. In addition, the developed
scheme reduces the load in contrast to the conventional fixed
solution.

The results indicate that the response time of services
is significantly reduced in the environment of decoys with
dynamic attributes. For example, Nginx's response time in a
static host is twice as high as dynamic, and an Apache dynam-
ic server can still respond to an intruder's attack even if a
static server fails. Therefore, the results reported in the arti-
cle give grounds to assert the possibility of using the solution
in the infrastructure of information systems at the public and
private levels

Keywords: decoys, cybercrime, security, analysis, decep-
tion, blockchain, Honeypot, Deception, network, cybersecurity

UDC 004.681
DOI: 10.15587/1729-4061.2023.273363

How to Cite: Vasylyshyn, S., Susukailo, V., Opirskyy, I., Kurii, Y., Tyshyk, I. (2023). A model of decoy system based on

dynamic attributes for cybercrime investigation. Eastern-European Journal of Enterprise Technologies, 1 (9 (121)), 6–20.

doi: https://doi.org/10.15587/1729-4061.2023.273363

Received date 02.12.2022

Accepted date 05.02.2023

Published date 28.02.2023

1. Introduction

Despite the significant efforts that organizations are mak-
ing to prevent compromise, the reality is that if cybercrimi-
nals attack a particular organization, they will find a way to
infiltrate the internal infrastructure. It is also important to
investigate and correctly document both the cybercrime and
the evidence base. Making an attacker think that s/he has
access to valuable data is not a new idea in the field of infor-
mation security. The first Honeypot network was developed
back in 1999 as part of the Honeynet project. At that time, the
idea was innovative and effective but over the past 20 years,
the IT infrastructure of companies has become much more
complicated while attackers have gained experience.

Where conventional products seek to respond to a cy-
berattack and isolate it as soon as possible, Honeypots and
next-generation deception systems take a more active stance
on protecting information. They detect not the attack but the
cybercriminals themselves during their work, which makes it
possible to prevent cybercrime, even before it occurs.

Due to the spread of complex attacks on the infrastruc-
ture of information systems, in particular the combination
of exploits and social engineering, the detection time of
an attacker, according to IBM statistics, in 2022 averages
277 days. During this period of time, an attacker can gain
access to confidential information of the organization. This

poses a threat to the reputation of the organization and in
general its existence, and an undetected attacker, having
gained access to state secrets, can be a threat to state secu-
rity. A conventional decoy system can be used to detect an
attacker and study his/her behavior, but the conventional
decoy system is static and can be easily detected by an at-
tacker, as well as its attributes (configuration files, user lists,
software). As part of the study described in this paper, a
technique to detect cybercrime using decoys based on block-
chain technology is proposed. This technique is based on the
fact that the attributes of the system change dynamically.
Such a technique made it possible to obtain technology with
interchangeable elements of the decoy system, which compli-
cates the possibility of detecting decoys. Also, the developed
scheme reduces the load in contrast to the conventional
fixed solution. From a practical point of view, the developed
system makes it possible to reduce the total response time
of information systems services and reduce the load on the
network infrastructure of companies. Therefore, it is now
quite important to use decoys and other technologies that
will direct the attacker to a fake infrastructure node.

Also, in most cases, when an attack is detected, it is cor-
rect to stop it immediately. But with the help of deception,
organizations have the ability to detect a wide range of sus-
picious activities that do not depend on known signatures,
search the database, or compare templates. This allows

Copyright © 2023, Authors. This is an open access article under the Creative Commons CC BY license

INFORMATION AND CONTROLLING SYSTEM

7

Information and controlling system

deception technology to search for suspicious activity, learn
more about the nature of the attack, and better understand
the way in which attackers intend to spread.

2. Literature review and problem statement

Honeypot is designed to attract attackers to exhaust
attacking resources and to protect the real system. There
are new applications of this technology, for example, wireless
networks, social networks, or industrial control networks. It
can be used for denial of service (DoS), distributed denial of
service (DDoS), ransomware, bandwidth attack, and more.
In terms of DoS attacks, honeypot was used to mitigate DoS
on the Internet of Things (IoT) devices. Comparing with the
information of the log library, the system isolates abnormal
requests trapped in honeypot and records the data of the
source of the attack [1]. For a DDoS attack, a honeypot
architecture with an automatic response was proposed [2].
Any suspicious traffic will be forwarded to an isolated hon-
eypot, which further protects the real system. However, in
both papers, the systems did not have dynamic properties,
which makes them vulnerable to repeated attacks.

In addition, it is worth noting that some honeypot schemes
are dynamic. The dynamic property is mainly displayed on
the configuration and deployment. The dynamic honeypot
circuitry has also been considered and it uses Nmap, P0f, and
Snort for active detection and passive recognition of attacks.
Honeyd and some very interactive honeypots are used to
model the network and redirect the network flow accord-
ingly [3]. The dynamic honeypot engine interacts with the
modules mentioned above, dynamically configuring Honeyd,
and providing a customizable interface. To simulate a real
industrial network in real time (i.e., honeypot is a fictitiously
real system), honeypot was dynamically configured, which
allocates unused Honeyd cluster IP addresses [4].

Dynamic control of decoys was also presented in study [5].
According to data collected from routers, firewalls, IDS, and
honeypot, the honeypot configuration is dynamically adjusted
to adapt to the network environment. Another study com-
bined highly interactive honeypot with a low-interactive one.
Adaptive honeynet scheme is implemented by modeling some
operating systems [6]. The key module of this scheme is the
Honeybrid gateway, which contains parts of decision making
and redirection. The first is used to capture and transmit cer-
tain network traffic in Honeyd. The second aims to redirect the
Honeyd stream to a highly interactive software decoy. There
are some works on the dynamic deployment of honeypot that
offer a honeypot deployment automation scheme [7]. To mon-
itor the network, active and passive network flow detection
technologies are used. User configuration information is stored
in a database that can serve as a classification criterion for cre-
ating a new honeynet network, bandwidth limits, and the target
IP range of the network. Honeypot Honeyvers dynamic cir-
cuitry is based on machine learning. The network environment
is scanned, and the equipment is classified to determine the
exact number of honeypots, thus automatically generating in-
formation about the configuration and subsequent deployment
of honeypots [8]. To solve the problem caused by the uneven
deployment of honeynet, a multi-virtual network management
architecture is put forward that generates specific honeynet
information based on different requests. Individual honeynet is
automatically deployed by a set of tools [9].

These dynamic honeypot schemes pretend to fit into the
network environment self-adaptively and focus on attacker
fraud. However, the location of these software decoys is fixed
after determining the configuration or deployment informa-
tion. With the development of anti-honeypot technology, all
these projects are likely to already be found and calculated. Due
to the property of transforming the location in the proposed
scheme of this work, these dynamic configurations of honey-
pots differ from others. In the proposed scheme, even if attack-
ers detect honeypot, they cannot find real nodes and users.

Blockchain technology offers great potential for the
development of various sectors due to a unique combination
of characteristics, such as decentralization, immutability,
and transparency [10]. So far, the technology has attract-
ed the most attention thanks to industry news and media
about the development of crypto currencies. Examples are
Bitcoin, Litecoin, Dash, and Monero, all of which have
excellent market capitalization. However, blockchain is not
limited to crypto currencies. In industry and the public
sector, blockchain-based applications already exist, such as
crowdfunding for tracking goods in supply chains [11], au-
thentication [12], and voting services [13]. Many others are
under development. The Fraunhofer Institute for Scientific
and Technical Trends Analysis (INT) in Germany has pub-
lished a study [14] showing that blockchain is currently most
commonly found in applications used in the financial sector.

The cybersecurity, analytics and detection sector can
also use systems built on blockchain technologies for own
purposes not only to strengthen the security of existing
systems but also to investigate the behavior of attackers and
identify patterns of their behavior.

3. The aim and objectives of the study

The aim of our study is to determine the possibility of
using a decoy system based on the dynamic attributes of the
blockchain. This will increase the efficiency of cybercrime de-
tection and improve system resilience by reducing the load on
the network infrastructure and the response time of services.

To accomplish the aim, the following tasks have been set:
– to analyze the problems of using decoys and deceptions

to protect data in computer networks;
– to develop a decoy system based on blockchain tech-

nology;
– to determine the effectiveness of the decoy system with

dynamic attributes of the blockchain system.

4. The study materials and methods

The object of research are decoys with dynamic attri-
butes built on the basis of blockchain technology. The main
hypothesis of this study is the possibility of mitigating the
risk of detecting a decoy system built on the basis of block-
chain technology with dynamic attributes by an attacker.
During the development of the decoy system model, it was
assumed that a dynamic system should reduce the load on
the service components of the system infrastructure by dis-
tributing the load between its elements. Also, it was assumed
that if the response time of the service of the proposed sys-
tem is reduced, the likelihood of detecting the decoy would
become low.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/9 (121) 2023

8

All these signals tell attackers that the system may
be fake. Also, these systems have several disadvan-
tages:

– one needs to separately configure each fake server;
– Honeypots do not interact with each other and with

elements of real infrastructure. They leave no trace and are
difficult to detect by a hacker;

– Honeypots are generally not integrated into a central-
ized system.

This technology was gradually replaced by another, more
advanced and smarter one – Deception [18].

Social engineering and phishing attacks are an example
of how you can get around any class of solutions, including
decoys.

Many modern attacks begin with the delivery of “decoy”
to the user, such as a phishing email that they open on their
computer. This allows malware to infiltrate the internal net-
work and allows the attacker to proceed to plan and execute
the next stage of the attack [19].

Honeypots are unable to handle a phishing attack the
way users do. Therefore, Honeypots will not be able to
provoke and detect an attack using such a vector. Unlike
Honeypots, next-generation cheating technologies can au-
tomatically change the decoy environment without leaving
it static, as befits a real network in which user and network
data change naturally. At the same time, deception tech-
nologies detect an attacker in just three to four steps in the
network, even if the elements of deception are not deployed
on each node [20].

Next-generation deception technologies provide users
with powerful real-time attack detection and forensic
collection functionality, with virtually no false positives,
and attackers will never know they’re under surveillance.
Decoys are also effective for detecting attackers, but they
have a much lower level of detection of real threats, gener-
ate much more false positives and do not provide forensics
from real nodes that attackers use to attack [21, 22].

Deception refers to the solutions of the Intrusion
Detection System (IDS) class – an intrusion detection
system. The main purpose of such a system is to detect
unwanted attempts to access the network. In other words,
Deception helps detect network attacks. Honeypot is a
separate network resource that does not interact with
anyone but only waits for the attacker to record his/her
actions [23, 24]. On the other hand, Deception technolo-
gies are a centralized system for managing fake network
objects, commonly referred to as traps (decoys). Each trap
is essentially a separate decoy but they are all connected
to a central server. The scheme of Deception technology is
shown in Fig. 2.

During this study, a systematic analysis of the literature
was carried out to determine the optimal components of the
decoy system based on blockchain technology. A prototype
decoy system based on blockchain technology was also de-
signed and a controlled experiment was conducted to test
the load on the developed decoy system.

This study was conducted using the following software:
– Nginx web server (USA), Apache web server (USA),

MySQL database (USA), FTP server VsFTPd (USA) –
used to study the load on the decoy systems;

– Iperf (USA) was used as a network performance mea-
surement service;

– netsniff-ng (USA) – network analyzer;
– Jmeter(USA) served as a tool for load testing;
– Hping (USA) was used to generate open-source net-

work packets.

5. Results of the study of system decoys based on
dynamic attributes

5. 1. Issues of using decoys and snags to protect data
in computer networks

Honeypot can be considered the first embodiment of De-
ception technology, and they appeared in the late eighties – ear-
ly nineties. Honeypot is a network object whose sole purpose
is to attract an attacker and be attacked. When Honeypot is
attacked, it logs it and saves all the actions of the attacker. In
the future, these data help to analyze the path of the attacker.
The second goal of Honeypot is to delay the promotion of
an attacker by the network, forcing him/her to spend time
studying a fake resource [15]. We present the scheme of the
Honeypot system in Fig. 1.

Honeypot can be a full-fledged operating system that
emulates an employee’s workplace or server, or a separate
service. Understanding the abilities of intruders is important
for building a protection system that can detect them [16, 17].

Let’s introduce several ways in which attackers deter-
mine the presence of Honeypots:

– if access to the system seems too simple, possibly fake;
– typically, systems connected to the Internet do not

have unnecessary ports and services; any deviation from this
configuration may indicate a trap;

– if the system still has a default setting, it increases the
likelihood of using Honeypot;

– if there is a lot of free space on the hard disk or very
little software, perhaps it is decoy;

– if the names of the folders are trivial (for example, “Sal-
aries”, “Customer Data”, “Passwords”), it is obvious that the
systems are aimed at luring intruders.

Fig.	1.	Honeypot	system	diagram

9

Information and controlling system

Such solutions usually have a convenient interface for
managing traps. The operator can create traps with the right
set of emulated network services, on the selected subnet,
with the desired method of obtaining an IP address, etc.
Traps and services emulated on them maintain constant
communication with the server. Like Honeypots, Decep-
tion traps do not provide legitimate interaction with the
network (except for interacting with other components of
Deception [25−27]). The trap will notify the server of any
attempts to interact with it: this serves as an attack indi-
cator. In this scenario, the operator can instantly receive a
notification of the event. It will indicate the details of what

happened: the address and port of the source and target, the
protocol of interaction, the response time, and so on. Addi-
tional modules in Deception technology can also provide
manual or automated incident response capabilities (Fig. 3).

The concept of deception may include other things. Some
components help simplify the configuration and automation
of deployment, others make traps more like real network
services, and still others draw the attention of hackers to
fake targets [28, 29]. Some components can perform related
tasks, such as responding to incidents, collecting compro-
mising indicators from workstations, and looking for vulner-
able software [30].

Administrator Control server

Fig.	2.	Cheating	system	scheme

Fig.	3.	Decoy	system	scheme	

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/9 (121) 2023

10

An agent is a program that is installed on real work-
stations or users’ servers. It is able to communicate with
the deception server, execute its commands or transmit
user data to the control center. Among the solutions of the
Deception class are both products containing the agent
and those that do without it (Fig. 4) [31−33].

Tasks for agents may include:
– collection of data on the state of the AWP;
– distribution of decoys;
– emulation of activity in the network;
– response to the incident (manual or automated);
– data collection for forensic science;
– other – according to the needs of customers and the

imagination of the developer.
The activity of agents must be hidden from the person

who works at the computer. First, the user can intention-
ally or accidentally remove the agent or its components.
Secondly, the presence on the workstation of unknown
(or to some extent known – if the user is warned about
it) software can cause a feeling of discomfort. Thirdly,
everything that the user sees will be seen by an attacker
who gained access to this computer [34].

Agency decisions within the framework of deception
should be made in such a way that the user does not see
either the agent or traces of its vital activity (or at least
tries to minimize this). Therefore, agents usually work
in privileged mode, like a driver for Windows or a kernel
module for Linux. This enables, for example, to inter-
cept system calls to ensure secrecy, and also does not
allow the user to remove the agent or prevent its opera-
tion [35, 36].

Decoy is an object that is imperceptibly placed on a
real workstation. The decoy looks like something ordi-

nary and attractive to an attacker (“accidentally” forgot-
ten password file, a saved session, a browser bookmark, a
registry entry, a mounted share, etc.). Honeypot contains
links and data to access a fake network resource. An at-
tacker, having found such a link and authorization data,
of course, wants to check what kind of service it is. It
falls into a trap, and then the signal about the event is
triggered (Fig. 5).

The types and methods of placing the decoy depend
on the type of trap to which the decoy leads. Decoys
can be distributed in several ways. If agents are present
in the deception, they are tasked with scattering de-
coys. In this case, the process can be easily automated:
the control server sends a command to the agent, and
the latter performs the necessary actions to install the
decoy [37].

So, we want to substitute the authorization data into a
decoy that is as similar as possible to the real ones. At the
same time, in each organization, user data looks different.
Everyone has different entry formats (for example, logins
of the form “the first letter of the name-period-surname”
in Latin are often found). Everyone has their own pass-
word policy. For some decoys, you may need a mailing
address, domain address, or something else. The problem
can be solved by maintaining a database of fake network
users. There are different approaches to maintaining such
a database (Fig. 6).

For example, Deception can be integrated with a
traffic analysis system. This makes it possible to rec-
ognize the presence of authorization data in network
traffic, find common features in them, and gener-
ate users similar to real ones according to identified
rules [38].

 Fig.	4.	Scheme	of	the	agent	system

11

Information and controlling system

5. 2. Dynamic system modeling with
honeypots

Analysis of deception systems and its pre-
decessor Honeypot in the previous chapters
showed the prospects for the development and
evolution of this technology and its possibili-
ties for expansion. However, both Deception
and Honeypot are centralized systems that
still have all the disadvantages of a centralized
approach, namely control server. If the main
link is detected, the hacker can adjust his/her
actions. One can level this risk by building a
protection system that will not depend on only
one central node. Blockchain is a multi-node
system in which each node must confirm the
information that goes to one of the links before
letting it into the data stream. The property of
dynamic change and validation of blockchain
nodes can repeatedly strengthen security sys-
tems and prevent the problem of centralized
management. Based on this, it is necessary to
simulate a dynamic distributed management
system using the dynamic properties of the
blockchain and investigate the parameters of
this system. Therefore, we shall introduce a dy-
namic dynamic distributed model of Honeypot
formed by N hosts and four services. As shown
in Fig. 7, there are two participants: a hacker
and a legitimate user who is synchronized
with a real service (that is, the client can save
the location using a real service and knows
the exact location). N hosts make up a private
blockchain, which is a P2P network and does
not open its doors to the outside world [39−41].

Solana (i. e., blockchain platform) serves
as the lower level of the system. N hosts form

a private blockchain that forms the P2P network. By
calculating the hash value of a block, a host in a private
chain can extract a potential block and load it into a chain.
This mechanism ensures the distribution and decentral-
ization of the deployment architecture. The temporary
host executes a service allocation algorithm and sends the
corresponding encrypted information to other hosts. As
shown in Fig. 8, in our system, Host0 block miner (a host
that successfully calculates a particular hash) becomes
the main host in the first block property period. Another
host (Host1) can replace Host0 in the next period. A host
that has more computing power is likely to be an interme-
diate center controller. If a narrowly configured host is
attacked and its performance decreases, it cannot serve as
a central one due to the lack of sufficient computing power,
and other hosts will replace it automatically. Therefore, the
failure of the host Host0 is irrelevant to the entire system
(i. e., the system is functioning normally). Attack logs
recorded by one host are uploaded to the blockchain while
other nodes synchronize these logs in our private chain.
Thus, each node has complete data stored in a secure form
for further analysis of attacks [42–45].

There are only four types of services in this
scheme, and each service has both genuine and fake
attributes (i. e., four genuine services and four rele-
vant (fake) services). Periodic switching of services
is performed for each period.

Fig.	5.	Decoy,	agent,	and	bait	in	the	system

SSH RDP

Fig.	6.	Scheme	of	the	system	of	false	users

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/9 (121) 2023

12

Periodic switching of services is performed for each period.
Comparison of the distribution of services is shown in Fig. 9.

Both types of services are constantly changing. There
are three types of applications in the security system:

– if the service on Host0 is genuine, the service may
become a decoy in the next period. Once converted, the at-

tacker cannot gain access to the real resources of the service
in the present period;

– if the service on Host1 serves as a host service in the
first period, according to the promises of anti-Honeypot
technology, when an attacker discovers that the service is a
trap, s/he will avoid a service that may change to a genuine

 Fig.	7.	Honeypot	dynamic	distributed	system	model

a b

Fig.	8.	Different	main	hosts:	a	–	principal	host	1	in	the	first	period;	b	–	principal	host	2	in	the	second	period

a b

Fig.	9.	Distribution	comparison:	a –	principal	host	before	moving;	b –	principal	host	after	moving

13

Information and controlling system

service in the second period. Thus, it prevents the attacker
from accessing real resources;

– if the service on Host0 is genuine in the second period,
through synchronization with real users, the customer will
only send requests to the real service. Since there are some
fake services (such as Honeypots), any traffic accessing
Honeypots will be marked as an attack record.

Thus, the transformation and movement of services con-
fuses attackers and protects the developed system.

5. 2. 1. Description of host communication in the built
blockchain network

The host that mines the block acts as a non-permanent
centering controller. This central host generates conversion
information that assigns each host to run different ser-
vices (i. e., to run a real service or honeypot service) accord-
ing to the random generation algorithm. The data contains
service numbers and 01 encoding, which will be encrypted
using the 2048-bit RSA encryption algorithm. The encrypt-
ed data is then sent to other hosts, the host of the temporary
center on this private network. Upon arrival at the appro-
priate host, the information is decrypted, and plain text is
received. For encoding 01 – zero is the startup symbol of the
honeypot service, and one represents the real service. Using
the text, a bit comparison is performed, then the specified
service is launched to complete the execution procedure.
For an authorized user, synchronization is performed to
maintain normal operation. By sending the user encrypted
information of the real service, the server can provide a regu-
lar service. In addition, the user can send encrypted “whois”
request data + server name” to actively obtain the desired
address of a particular service. Thus, a valid user can access
real system resources while using the service.

A formal description of the mechanism of decentralized
communication in Fig. 3 is as follows:

– at some point in time, the temporary main host mHostj
asks about a new coin base to the blockchain via the
web3J interface. Coinbase introduces a host that success-
fully mines a block. After that, mHostj generates a command
Commandupdate to update it. Commandupdate has a specific
format. Kpublic(E, N) and Enc1=((Commandupdate)EmodN)
is calculated. An encrypted Enc1 message is sent to every
other host on the private blockchain. After receiving
the message, these hosts from Kprivate(D, N) calculate
Dec1=((Enc1)DmodN). After checking Dec1 in a specific
format, the coinbase will be updated on each host. The
host combined with it acts as a new temporary prin-
cipal host. Meanwhile, j in mHostj changes to the new
value;

– the new main host mHostj has the right to execute the
distribution algorithm. Service numbers and 01 codes are
generated, which direct other hosts to open or close. They are
considered service codes. A CommandchangeSRV message is sent
containing the service codes. Different hosts receive different
CommandchangeSRV messages. ()1

E
changeSrvEnc Command modN=

is calculated and sent to cHosti, which represents the shared
host. cHosti executes Dec2=((Enc2)DmodN) and receives a
simple message. Dec2 is installed and the host will open and
close the corresponding services;

– the client host sends a request command to one of these
servers. The Requestsrv command contains the message: ‘who is
Apache’. Requestsrv is encrypted as enc1=((Requestsrv)emodn)
with the public key kpublic(e, n) and forwarded to the server;

– the server decrypts enc1 messages via its private key
kprivate(d, n). dec1=((enc 1)dmodn) is output and verified.
The server has a set of request messages {R0, R1, R2, R3}. If

1 0,aS dec R= ⊕ = a∈[0, 3], the requested IP address IPr in
enc1=((IPr)emodn) will be returned to the client, and its IP ad-
dress will be added to the main list Listclient={IPc0, IPc1, …, IPcc}.
Otherwise, dec1 value will be ignored;

– after obtaining IPr in dec2=((enc2)dmodn), the client
host will connect to this IP address to obtain real resources.

Due to variables in different periods {T1, T2, T3, Tt}, the real IP
address will be updated to IPf. A host configured with IPr sends
an Updatesrc command to clients in accordance withListclient.
Updated IPf is encrypted as enc3=((Updatesrc)emodn);

– one calculates dec3=((enc)dmodn). There are four com-
mands {C0, C1, C2, C3 that follow a special format in clients. If

3 0,as dec C= ⊕ = ∈ [0, 3], the client connects to the new IPf.
Periodically switching services, the mentioned steps will be
cyclically executed.

5. 2. 2. Dynamic system architecture with honeypots
The system will perform a set of atomic actions, i. e.,

actions={generate, send, receive, wait, open, close, restore,
compromise}. Designations used to model the system de-
scribed in Table 1. System actions and their parameters are
summarized in Table 2.

Table	1	

Designations	used	to	model	the	system

Name Designation

States {sn, sc, sb}

Channels {c1, c2, …, cc}

Hosts {h1, h2, …, hh}

Ports {p1, p2, …, pp}

Identifiers {id1, id2, …, idh}

Services { }1 1, ,..., ,R H R H
s ssrv srv srv srv

Table	2

Description	of	the	system	actions

Function Description

generate(data) host generates data

open(srvi) host opens the service

close(srvi) host closes service

send (data, ci) the host sends data through the channel

receive (data, ci) the host receives data through the channel

compromise() host compromised

recover() host restored

wait (replyi)
the host is waiting for a response after sending

replyi

Services on the host are abstracted by I/O events. The
generate(data) and send (data, ci) events represent the
source data of the services, and the receive event (data, ci)
represents the receipt of data. In terms of security, each host
can operate in normal or compromised mode at the same
time. Normal mode means that the host is running without
malicious data and supports normal operation. However,
the compromised mode indicates that the host is working
in a malicious way and harming itself. The states relating to
the running hosti are divided into two categories: N

iService
for normal mode and C

iService for compromised mode. The

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/9 (121) 2023

14

worst situation is that the host broke down and stopped
working in breakdown mode .B

iService Thus, states consist
of three types {servicen, servicec, serviceb}. The host will
work as the current mode until there is a transition→InterT,
which represents the transition relationship between the
three different modes. Transitions shown in Fig. 10 can be
defined as follows:

,

, : N
a b a

C
b

Service T InterTService Service Service

Service Service

→ ∈ ∧

∧ ∈

,

, : C
b a b

N
a

Service T InterTService Service Service

Service Service

→ ∈ ∧

∧ ∈

,

, : C
b c b

B
c

Service T InterTService Service Service

Service Service

→ ∈ ∧

∧ ∈

.

, : B
c a c

N
a

Service T InterTService Service Service

Service Service

→ ∈ ∧

∧ ∈

Fig.	10.	Transitional	states	of	links

A host consists of five parts hosti=(idi, Portsi, Servicesi,
Statesi→T), where idi is the host ID, Portsi is a set of ports,
Servicesi is a set of services, Statesi is a set of states i→T is a
set of transition relations given in Table 3.

Table	3

Transient	dependences	of	link	states

Transition Designation

→Table IntraT InterT→ ∪ →

→IntraT
{normal state – normal state}

{attacked state – attacked state}
{compromised – compromised}

→InterT

{attacked state – normal state}
{compromised – normal state}
{compromised – normal state}

{compromised – attacked state}

Since the data transmitted between hosts guarantee the
normal operation of the system, they play an important role
in security analysis. It is assumed that each piece of data is
generated by only one host. The data can be harmful and
contain some commands that lead to malicious activity. A
host that creates malicious data is considered hacked. They
are described as follows:

() ()

' ,:

generate data

C

malicious data s

Tables service Service

= ∃

→ ∈

→

()
'

' .

, :

i

C

C

compromised h s

Table IntraTs service Service

service Service

= ∀ →

→ ∈ ∧
∧ ∈

Host hi with normal behavior is in normal mode nor-
mal(hi)=compromised(hi). It is assumed that if an ordinary
host receives malicious data, it will enter compromising mode,
further compromising itself. To simulate the spread of unau-
thorized data during an attack, the following is obtained:

1 1

.

, :

,

compromise
i

i i i

i

service

Table InterTService Service Service

Table IntraTservice
− − →

→
→ ∃
→

In order for the compromised host not to intercept the
data transmitted during communication, the communica-
tion channel must be protected:

()
() ()

()

() ()()

, , , ,j i j i

accept data

i j

secure c

h h connectedState h h c States

s

InterTs compromised h compromised h

=

= ∀ ∧

∧¬∃ →

→ ∧ ∨′ .

The system consists of h hosts, as indicated in Table 1.
All states in these hosts illustrate the general state of the sys-
tem, i. e., 1 2system h h hhService Service Service Service= ∪ ∪ ∪
Continuous authorized behavior of each host (for example,
sending data through a channel) ensures the normal func-
tioning of the system. Any hosts communicate with each
other by sending and receiving data through communication
channels:

() (), , , , .i jhost send c data host receive c data→

This indicates that sharing a single channel allows you to
both connect and transfer shared data. Data exchange can be
carried out only when it is connected through one communi-
cation channel. So, we define the following statement:

()
() ()

,

.

, ,i j

connect c connect c
j i i j

connected host host c States

host host host host

=

= ∃ → ∧ →

During the communication process, the behavior of hosti

and hostj is shown in Fig. 11.
The hosti generates data and sends data to hostj via the

communication channel. After receiving the data from hosti,
hostj can decide whether to accept or reject this data. Once
hostj receives and accepts malicious data, it becomes com-
promised:

(), ,ihost generate data

() (), , , , ,i jhost send c data host receive c data→

() (), , .j jhost accept data host discard data∨

15

Information and controlling system

If: () ().malicious data accept data∧

Then: , .jhost compromise

Thus: ().jcompromisedState h

A regular host serves as a legal part of the system and
ensures the normal functioning of its services for users. As
mentioned above, {compromised – normal state} indicates
that a compromised host becomes common during the re-
covery action:

If: ().jcompromisedState host

Then: , .jhost recover

Thus: ().jnormalState host

The system abstracts and focuses on data transmission
for subsequent analysis of security attacks.

5. 3. Analysis of the effectiveness of decoys with
dynamic attributes of the blockchain system against De-
ception solutions

Determining the effectiveness of a decoy system with
dynamic attributes of a blockchain system involves assessing
whether a dynamic decoy system can reduce the burden on
the infrastructure of the decoy system, which would ensure
the availability of the system during significant loads and
provide time for information security specialists to detect an
attacker and collect evidence of cyberbullying. Evaluation
should be carried out according to the following criteria:
data transfer rate, bandwidth, and response time of software
services to blockchain systems. It is also necessary to compare
the reaction of the proposed system to DOS attacks and re-
quests for services by existing solutions, such as static decoys.

To evaluate the performance of the network with decoys
on the blockchain system against Deception solutions, an
assessment of network performance and the response time
of static hosts and dynamic servers (that is, the proposed
scheme) during a SYN DDoS attack is carried out. The
implementation of the prototype system is carried out in Py-
thon, Java, and Solidity (that is, in the blockchain program-
ming language). In addition, experiments are conducted on
five personal computers (PCs) of Windows 16 GB on which
WM is installed and they simulate the Linux operating sys-
tem (OS) with 8 GB of RAM to run services, one PC with
Windows 32 GB on which WM is installed and it simulates

Linux OS with 16 GB of RAM to launch an attack of vari-
ous scales, and one Windows PC with 32 GB of RAM for an
authorized user. Services (MySQL v8.0.27, Apache v2.4.51,
Vsftpd v3.0.5, and Nginx v1.24.4) and Solana v1.6.7 (i. e.,
the blockchain platform used to form a private blockchain)
are installed on five server hosts. The total number of real
services on different hosts is calculated to illustrate their
average distributions. Three types of attack tests are con-
ducted: sniffer, scan attack, and DDoS attack. Testing the
attack is carried out by continuously sending SYN packets
at different speeds. The size of the SYN packet for the attack
is set to 73695 bytes in Hping3 v3.2.2, indicating that the
packet is divided into certain TCP packets. Network perfor-
mance measurement is carried out using Iperf v3.10.1.

A DDoS attack is an attack model for sending a large
number of requests to the target host. The host receives
a temporary surge in requests and there will be a break-
down. An illegal attack on a host generates many requests
and sends them to host3 using normalState(host3). After
receiving these requests from hostattack, host will wait for
their responses. There will be no response from them, which
indicates the waste of system resources and the subsequent
consumption of host3 resources until it is broken. Such an
attack can be described as follows:

[] ()1 ,attackhost generate request

[] ()2 ,attackhost generate request
…
[] (),attackhost generate requestn

[] (), 1 ,attackhost send c request

[] (), 2 ,attackhost send c request
…
[] (), ,attackhost send c requestn

[] ()3 , 1 ,host receive c request

[] ()3 , 2 ,host receive c request
…
[] ()3 , ,host receive c requestn

[] ()3 , 1 ,host send c reply

[] ()3 1 ,host wait reply

[] ()3 , 2 ,host send c reply

[] ()3 2 ,host wait reply
…
[] ()3 , ,host send c replyn

[] ()3 ,host wait replyn

[] ()3 .attackhost breakdown host

Failure of host3 leads to a single point of failure. To solve
the problem, you should take into account the distributed
scheme. Compared to a conventional centralized host, a dis-
tributed system can handle the problem of a single point of
failure. The distributed system contains h hosts and host≥2.
When hostattack sends n requests, there are two possible situ-
ations for a distributed system:

host j host i

Send data

Generate data

Data acceptance

Data rejection

Fig.	11.	Behavior	during	communication

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/9 (121) 2023

16

DDoS attack on one host. In this case, the host
host3:breakdown(host3) fails. Even if host3 can’t function,
other hosts (i. e., host1, host2, host4, ..., hosth with can still
provide user service and maintain the normal functioning
of the entire system, thus avoiding a single point of failure.

DDoS attack on all hosts. In such a case, n is accepted as
the maximum number of host crash requests, and each host
shares the attack traffic. If hostattack sends n requests, each
host receives n/h requests. h distributed hosts significantly
reduce illegal flow compared to a single
host, indicating that hosts in the system
are not crashing.

If a conventional system encounters a
DDoS attack, then:

.
nDDoS

attackhost h→

If a distributed system encounters a
DDoS attack, then:

/

1,
n hDDoS

attackhost h→

/

2,
n hDDoS

attackhost h→

/

3 ,
n hDDoS

attackhost h→
…

/

.
n hDDoS

attack hhost h→

The prototype system has five distrib-
uted and decentralized hosts to effectively
mitigate a DDoS attack.

Fig. 12, 13 illustrate the effect of attack
speed on network performance on effective
bandwidth and TCP traffic. When the at-
tack speed is 0 (i.e., there is no attacking
packet), both types of hosts reach their max-
imum values of 736 MB/s and 100 Mbps in
TCP bandwidth and TCP traffic, respec-
tively. However, with an increase in the
speed of attack, there is a sharp slowdown
from 0 to 1000 packets per second. Appar-
ently, the angle of incidence in static hosts
is greater compared to the broken line of
dynamic hosts. There is a slow growth in the
range of 1000 packets/s to 3000 packets/s,
and dynamic host values are still greater
than static hosts. Thus, the dynamic honey-
pot system has an advantage over stationary
hosts in terms of network performance.

Trafgen in netsniff-ng v0.6.7 is used to
run the SYN attack test. Unlike the SYN
package mentioned in the network per-
formance assessment, this type of packet
consists of 64 bytes for a SYN flood
attack. Since there are four types of ser-
vices in the developed system, the average
response time of a service becomes an
indispensable indicator of evaluation. The
response time measurement is performed
by Jmeter v5.4.2 for each service.

The database query operator “select *
from school” is used to measure the time
it takes to receive the corresponding data.

As shown in Fig. 14, the static host does not respond at an at-
tack rate of 14 Kbps. However, the response time of dynamic
hosts seems to remain unchanged from 0 to 10 Kbps on the
X axis and reaches an infinite value after 60 Kbps on the X
axis. Comparison with dynamic hosts is impressive, so the
MySQL server of a static host suffers from a DDoS attack.
Since five distributed hosts distribute the load on the attack,
the experimental dynamic host curve demonstrates their
superiority in protecting against DDoS attacks.

 Fig.	12.	TCP	bandwidth	comparison

 Fig.	13.	Comparison	of	average	bandwidth	speed

Fig.	14.	Response	time:	MySQL

17

Information and controlling system

The loading time of the entire Apache web page
is checked. In Fig. 15, dynamic hosts spend more
time loading a web page than a static host. This
is because blockchain mining work depletes some
system resources, which becomes a key factor influ-
encing server response time. The operating times of
static and dynamic hosts are almost the same from
1 Mbps to 10 Mbps, slightly increasing along the X
axis. In this case, both types of hosts are exposed
to a DDoS attack. The static server is unrespon-
sive starting at 8.5 Mbps, and the dynamic server
response time is higher at the same attack speed.
This indicates that a dynamic Apache server can
still respond even if the static server crashes.

The Vsftpd and Nginx curves by response
time are shown in Fig. 16, 17. The response time
of downloading a txt file from a Vsftpd server is
measured during a DDoS attack. In Fig. 15, Vsftpd response
time in a static host is growing rapidly and reaches its infin-
ity at 11 Kbps. Due to blockchain mining, the overall trend
from 0 to 10 Kbit/s has little impact. However, an equal
trend in the dynamic host curve indicates resistance to a
DDoS attack. Since the dynamic host mining operations
deplete system resources, Nginx is exposed.

As shown in Fig. 17, the average response time of Nginx in a
static host outperforms the dynamic one by 1 to 2.5 Mbps along
the X axis. After 2 Mbps, a DDoS attack becomes a major factor
affecting response time. From 2 Mbps to 4 Mbps, the dynamic
host curve is always lower than the other, which means that the
time on a static host is longer than in dynamic hosts.

Nginx creates characters with less memory and high
parallelism, so both curves retain their soft characteristic.
However, the downtime of a static server occurs earlier than
a dynamic one, which indicates the effectiveness of the de-
veloped scheme.

6. Discussion of results and areas of further research

As a result, all experimental findings show that the
proposed dynamic Honeypot system is superior to the con-
ventional fixed system. Since blockchain consumes system
resources, experimental data has little impact on dynamic

hosts. Nevertheless, the developed scheme re-
duces the load in contrast to the conventional
fixed solution. Due to the performance evalu-
ation above, it can be argued that the overall
response time and network performance of the
developed scheme have advantages over the
conventional scheme. This can be clearly seen
in the charts shown in Fig. 10–15. Honeypot’s
architecture was an advanced technology for
its time. This laid the groundwork for a more
proactive approach to cyber defense and al-
lowed attackers to be kept at a safe distance.
However, modern cybercriminals are confi-
dently bypassing conventional IPS, avoiding
decoys. Obviously, companies that want to
defend themselves against advanced and tar-
geted attacks can no longer focus all their
resources on this defense alone. The approach-
es of Honeypots and Deception technologies
differ significantly both from the point of view
of an attacker and from the point of view of an
information security specialist. Honeypots are
static systems installed on the selected subnet.
They act as a kind of sandbox, trying to lure
intruders with confidential data and then con-
trol their activities.

On the other hand, Deception technolo-
gies represent the “realm of curved mirrors.”
False information is everywhere in the way of
intruders who use it at the stage of horizontal
advancement. Attackers are methodical –
they collect data, analyze it, and calculate
their next step, constantly moving around
the network.

 Fig.	15.	Response	time:	Apache

 Fig.	16.	Response	time:	VsFTPd

Fig.	17.	Response	time:	Nginx

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/9 (121) 2023

18

Based on observations of penetration testing of compa-
nies, it can be concluded that even experienced testers often
cannot recognize decoys in the corporate network falling on
set traps. This fact once again confirms the effectiveness of
Deception and the great prospects that open up to this tech-
nology in the future.

However, if we compare the stock Deception system
with a modified system of progam decoys, which uses dy-
namic properties and uses a blockchain platform for this,
the picture changes significantly. Taking away one of the
drawbacks of software decoys, we get a completely new look
at the power of technology, which proves the importance
of modifications and improvements to systems. The system
of software decoys built on the dynamic properties of the
blockchain has a much greater resistance to external attacks.

Unlike [5], where depending on the data of routers,
firewalls, IDS, and honeypot, the honeypot configuration
is dynamically adjusted, dynamic host offsets require less
power. Energy refers to the time to reconfigure the system
and the difficulty of observing the correct configuration
files. As a result, they can be very easily replaced. With the
dnimical replacement of the host, such a joke will not work
because data substitution is validated by the entire block-
chain network (nodes-validators). The offender needs to gain
control over 51 % of the system or convince the system of the
correctness of the replaced configurations or distorted data.

As a result of comparing dynamic decoys with static
ones, we can conclude that dynamic decoys are a reliable pre-
ventive protection system. This means that they make it dif-
ficult for an attacker to access the data and increase the time
for which you can react. However, the dynamic decoy built
on the basis of blockchain further complicates the task for
the attacker, which can be traced from the results obtained.

The limitations of this system are the network infrastruc-
ture in which it can be located and the computing power. It
should be sufficiently extensive and consist of a large number
of links, which will be the key to safety in this case. Weak
systems, or those that consist of a small number of links (for
example, there are only 5 of them in this study), will still be
vulnerable to attacks, although much less than static ones.

The development of this study may be the improvement
of the system of dynamic change of the host and algorithms
for closing and opening ports.

7. Conclusions

1. The main disadvantages of the static decoy system
have been identified, in particular, the possibility of detect-
ing a static decoy system for an inexperienced attacker, the
inability to centrally configure and change the configuration
of the decoy system and its main attributes.

2. The blockchain-based decoy system has been present-
ed and, based on the identified shortcomings, the assump-
tion that the dynamic system is superior to the conventional
fixed decoy system has been confirmed since, by distributing
the load, it reduces it on the infrastructure of the informa-
tion system.

3. The qualitative characteristics of a dynamic decoy
system are determined, namely its effectiveness due to the
ability of the system to respond to requests of various types.
The dynamic system’s response to network loads and system
response time, with different network requests, is deter-
mined. A comparison of a static system with a dynamic one
was performed using the following criteria: data transfer
rate, bandwidth, and response time of software services in
the blockchain system. This led to the conclusion that the
use of solutions with dynamic attributes in the infrastruc-
ture of public and private information systems may be more
appropriate than the use of static decoys.

Conflicts of interest

The authors declare that they have no conflicts of in-
terest in relation to the current study, including financial,
personal, authorship, or any other, that could affect the study
and the results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

The data will be provided upon reasonable request.

References

1. Anirudh, M., Thileeban, S. A., Nallathambi, D. J. (2017). Use of honeypots for mitigating DoS attacks targeted on IoT networks.

2017 International Conference on Computer, Communication and Signal Processing (ICCCSP). doi: https://doi.org/10.1109/

icccsp.2017.7944057

2. Sardana, A., Joshi, R. (2009). An auto-responsive honeypot architecture for dynamic resource allocation and QoS adaptation in

DDoS attacked networks. Computer Communications, 32 (12), 1384–1399. doi: https://doi.org/10.1016/j.comcom.2009.03.005

3. Kuwatly, L., Sraj, M., Al Masri, Z., Artail, H. (2004). A dynamic honeypot design for intrusion detection. The IEEE/ACS

International Conference OnPervasive Services, 2004. ICPS 2004. Proceedings. doi: https://doi.org/10.1109/perser.2004.1356776

4. Artail, H., Safa, H., Sraj, M., Kuwatly, I., Al-Masri, Z. (2006). A hybrid honeypot framework for improving intrusion detection systems

in protecting organizational networks. Computers & Security, 25 (4), 274–288. doi: https://doi.org/10.1016/j.cose.2006.02.009

5. Saeedi, A., Nassiri, M., Khotanlou, H. (2012). A dynamic approach for honeypot management. International Journal of Information,

Security and Systems Management, 1 (2), 104–109.

6. Fan, W., Fernández, D., Du, Z. (2015). Adaptive and Flexible Virtual Honeynet. Mobile, Secure, and Programmable Networking,

1–17. doi: https://doi.org/10.1007/978-3-319-25744-0_1

7. Hecker, C., Hay, B. (2013). Automated Honeynet Deployment for Dynamic Network Environment. 2013 46th Hawaii International

Conference on System Sciences. doi: https://doi.org/10.1109/hicss.2013.110

19

Information and controlling system

8. Fraunholz, D., Zimmermann, M., Schotten, H. D. (2017). An adaptive honeypot configuration, deployment and maintenance

strategy. 2017 19th International Conference on Advanced Communication Technology (ICACT). doi: https://doi.org/10.23919/

icact.2017.7890056

9. Fan, W., Fernández, D., Du, Z. (2017). Versatile virtual honeynet management framework. IET Information Security, 11 (1), 38–45.

doi: https://doi.org/10.1049/iet-ifs.2015.0256

10. Casino, F., Dasaklis, T. K., Patsakis, C. (2019). A systematic literature review of blockchain-based applications: Current status,

classification and open issues. Telematics and Informatics, 36, 55–81. doi: https://doi.org/10.1016/j.tele.2018.11.006

11. Hepp, T., Wortner, P., Schönhals, A., Gipp, B. (2018). Securing Physical Assets on the Blockchain. Proceedings of the 1st Workshop

on Cryptocurrencies and Blockchains for Distributed Systems. doi: https://doi.org/10.1145/3211933.3211944

12. Cruz, J. P., Kaji, Y., Yanai, N. (2018). RBAC-SC: Role-Based Access Control Using Smart Contract. IEEE Access, 6, 12240–12251.

doi: https://doi.org/10.1109/access.2018.2812844

13. Swan, M. (2015). Blockchain Thinking: The Brain as a Decentralized Autonomous Corporation [Commentary]. IEEE Technology

and Society Magazine, 34 (4), 41–52. doi: https://doi.org/10.1109/mts.2015.2494358

14. Schütte, J., Fridgen, G., Prinz, W., Rose, T., Urbach, N., Hoeren, T. et al. (2018). Blockchain and Smart Contracts. Technologies,

Research Issues and Applications. Fraunhofer. Available at: https://www.iuk.fraunhofer.de/content/dam/iuk/en/docs/Fraunhofer-

Paper_Blockchain-and-Smart-Contracts_EN.pdf

15. Susukailo, V., Vasylyshyn, S., Opirskyy, I., Buriachok, V. (2021). Cybercrimes investigation via honeypots in cloud environments.

CEUR Workshop, 2923, 91–96. Available at: https://ceur-ws.org/Vol-2923/paper10.pdf

16. Opirskyy, I., Vasylyshyn, S., Piskozub, A. (2020). Analysis of the use of software baits (honeypots) as a means of ensuring information

security. Cybersecurity: Education, Science, Technique, 2 (10), 88–97. doi: https://doi.org/10.28925/2663-4023.2020.10.8897

17. Dudykevych, V., Prokopyshyn, I., Chekurin, V., Opirskyy, I., Lakh, Y., Kret, T. et al. (2019). A multicriterial analysis of the efficiency

of conservative information security systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (99)), 6–13. doi: https://

doi.org/10.15587/1729-4061.2019.166349

18. Banafa, A. (2016). How to Secure the Internet of Things (IoT) with Blockchain. Datafloq. Available at: https://datafloq.com/read/

securing-internet-of-things-iot-with-blockchain/

19. Pulling fraud out of the shadows. Global Economic Crime and Fraud Survey 2018. PwC. Available at: https://www.pwc.com/gx/

en/news-room/docs/pwc-global-economic-crime-survey-report.pdf

20. McLaughlin, M.-D., Gogan, J. (2018). Challenges and best practices in information security management. MIS Quarterly Executive,

17 (3), 237–262.

21. Joshi, R. C., Sardana, A. (2011). Honeypots. CRC Press, 340. doi: https://doi.org/10.1201/b10738

22. Zhuravchak, D. (2021). Ransomware spread prevention system using python, auditd and linux. Cybersecurity: Education, Science,

Technique, 4 (12), 108–116. doi: https://doi.org/10.28925/2663-4023.2021.12.108116

23. Gandotra, V., Singhal, A., Bedi, P. (2012). Threat-Oriented Security Framework: A Proactive Approach in Threat Management.

Procedia Technology, 4, 487–494. doi: https://doi.org/10.1016/j.protcy.2012.05.078

24. Onaolapo, J., Mariconti, E., Stringhini, G. (2016). What Happens After You Are Pwnd. Proceedings of the 2016 Internet

Measurement Conference. doi: https://doi.org/10.1145/2987443.2987475

25. Bamert, T., Decker, C., Elsen, L., Wattenhofer, R., Welten, S. (2013). Have a snack, pay with Bitcoins. IEEE P2P 2013 Proceedings.

doi: https://doi.org/10.1109/p2p.2013.6688717

26. How blockchain can transform defence assets and give armed forces an advantage on the battlefield (2020). PwC. Available at:

https://www.pwc.com/gx/en/aerospace-defence/pdf/blockchain-defence.pdf

27. Beecroft, N. (2015). Emerging Risk Report – 2015. Bitcoin. Lloyds. Available at: https://assets.lloyds.com/assets/pdf-bitcoin-

bitcoin-final/1/pdf-bitcoin-bitcoin-final.pdf

28. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M. (2014). Paper 2014/452. Proof of Activity: Extending Bitcoin’s Proof of Work via

Proof of Stake. Cryptology ePrint Archive. Available at: https://eprint.iacr.org/2014/452

29. BGP hijacking. Wikipedia. Available at: https://en.wikipedia.org/w/index.php?title=BGP_hijacking&oldid=820773357

30. Bissias, G., Ozisik, A. P., Levine, B. N., Liberatore, M. (2014). Sybil-Resistant Mixing for Bitcoin. Proceedings of the 13th Workshop

on Privacy in the Electronic Society. doi: https://doi.org/10.1145/2665943.2665955

31. Bitcoin Block Reward Halving Countdown. Available at: https://www.bitcoinblockhalf.com/

32. Grafiki blokcheyna. Available at: https://www.blockchain.com/explorer/charts

33. Bitcoin Energy Consumption Index. Available at: https://digiconomist.net/bitcoin-energy-consumption

34. Cryptocurrency statistics. Available at: https://bitinfocharts.com/

35. How much of BIP 62 ("Dealing with malleability") has been implemented? Available at: https://bitcoin.stackexchange.com/

questions/35904/how-much-of-bip-62-dealing-with-malleability-has-been-implemented

36. Blockchain and Distributed Ledger Technology (DLT). Available at: https://www.geeksforgeeks.org/blockchain-and-distributed-

ledger-technology-dlt/

37. Bonneau, J. Why buy when you can rent? Bribery attacks on Bitcoin-style consensus. Available at: https://jbonneau.com/doc/

BFGKN14-bitcoin_bribery.pdf

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/9 (121) 2023

20

38. Bos, J. W., Halderman, J. A., Heninger, N., Moore, J., Naehrig, M., Wustrow, E. (2013). Paper 2013/734. Elliptic Curve Cryptography

in Practice. Cryptology ePrint Archive. Available at: https://eprint.iacr.org/2013/734

39. Boverman, A. (2011). Timejacking & Bitcoin. Culubas. Available at: http://culubas.blogspot.com/2011/05/timejacking-

bitcoin_802.html

40. Bruce, J. D. (2014). The Mini-Blockchain Scheme. Available at: https://www.weusecoins.com/assets/pdf/library/The%20Mini-

Blockchain%20Scheme.pdf

41. Buldas, A., Kroonmaa, A., Laanoja, R. (2013). Paper 2013/834. Keyless Signatures' Infrastructure: How to Build Global Distributed

Hash-Trees. Cryptology ePrint Archive. Available at: https://eprint.iacr.org/2013/834

42. Buterin, V. (2014). A next-generation smart contract and decentralized application platform. White Paper, 3 (37).

43. Blockchain's Once-Feared 51% Attack Is Now Becoming Regular. Available at: https://www.coindesk.com/markets/2018/06/08/

blockchains-once-feared-51-attack-is-now-becoming-regular/

44. Castro, M., Liskov, B. (1999). Practical Byzantine Fault Tolerance. Proceedings of the Third Symposium on Operating Systems

Design and Implementation. New Orleans. Available at: https://pmg.csail.mit.edu/papers/osdi99.pdf

45. Chen, T., Li, X., Luo, X., Zhang, X. (2017). Under-optimized smart contracts devour your money. 2017 IEEE 24th International

Conference on Software Analysis, Evolution and Reengineering (SANER). doi: https://doi.org/10.1109/saner.2017.7884650

