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1. Introduction

Consider a horizontal core of limited length L (сm) and 
variable cross-section F(x) (сm2). The radius of the core sec-
tion changes linearly along its length r=ax+b (сm), (0≤x≤L), 
where a and b are constants. The cross-sectional area of the 
core changes not linearly along the core length as follows 
F(x)=πr2=π(a2x2+2abx+b2) (сm2), (0≤x≤L).

The physical and mechanical properties of the core 
material are characterized by the heat conductivity coeffi-

cient 
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 Let us assume  

that on the cross-sectional area of the left end of the core,  

the heat flux of constant intensity is brought 
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this time, on the cross-sectional area of the right end of the 

core, the heat flux is brought with intensity 
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side surfaces (0≤x≤L1) and (L2≤x≤L) of the studied core are 
heat-insulated. Through the local side surface (L1≤x≤L2) of 

the core, there is a heat exchange to the environment. At the  

same time, with the heat exchange coefficient 
 
  2

watt
,

cm °K
h  

and ambient temperature Тос (°K), it is necessary to define 
the field of distribution of temperature, three components of 
strain, stress and displacement.

The existing methods of studying the thermomechanical 
state of a rod of variable cross-section take into account the 
influence of individual external factors on the distribution of 
body temperature: either heat insulation, or heat exchange 
with the environment or heat flow and temperature. There-
fore, the problem of developing a mathematical model of the 
thermomechanical state of a rod of variable cross-section, 
which would take into account the simultaneous influence 
of local temperature, thermal insulation and heat exchange 
with the external environment, is relevant.

2. Literature review and problem statement

The definition of the law of temperature distribution 
along the length of the rod elements is relevant, since in the 
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The load-bearing elements of a number of strategic 
equipment are of limited length and variable cross-section. 
Most of them are exposed to certain types of heat sources. 
In order to ensure the reliable operation of this equipment, 
it is necessary to know the temperature field along the 
length of the variable cross-section rod. In this paper, a 
computational algorithm and a method for determining the 
temperature field along the length of a rod with a limited 
length and variable cross-section are proposed. They are 
based on the fundamental laws of conservation of energy.

The nonlinearity of the process is due to nonlinear 
dependencies of the areas of the variable cross-section on 
the coordinate. The radius of the cross-section of the rod 
decreases linearly along the entire length, starting from 
the left end. The side surface of the first and third discrete 
elements of the rod is heat-insulated. Convective heat 
exchange with the environment takes place on the side sur-
face of the second discrete element of the rod.

The cross-sectional area of the left end of the rod is 
under the heat flow with a constant intensity, and a heat 
flow with different intensities is supplied to the right end, 
wherein the heat transfer coefficient is considered con-
stant. For this task, you must first determine the law of 
temperature distribution along the length of the rod. In 
addition, if one end is rigidly fixed and the other end is 
free, the elongation must be calculated depending on the 
available heat sources, the physical and geometric char-
acteristics of the rod, taking into account the presence of 
insulation.

In case of pinching of both ends of the investigated rod, 
the value of axial compressive force is calculated taking 
into account the addition of real factors. The distribution 
of all components of the strain, stress, and displacement 
field is also defined
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bearing components of power plants, internal combustion 
engines and hydrogen engines during operation, a thermal 
stress state is manifested. The work outlines the basics of the 
theory of elasticity, with solutions to practical engineering 
problems [1]. The paper [2] presents calculation methods 
and algorithms for the numerical solution of a class of applied 
mechanics problems.

The main equations of thermo-physics, including the 
laws of conservation of mass, momentum and energy, are giv-
en in [3]. This paper provides kinematic equations as well as 
corresponding relations that close the systems of equations. 
The analysis of the work shows that, first, the existing meth-
ods of studying the thermomechanical state of the bearing 
elements of structures take into account the influence of 
individual external factors on the distribution of body tem-
perature: either heat insulation, or heat exchange with the 
environment or heat flow and temperature.  

Fundamental theoretical issues concerning thermo-phys-
ics are given in [4, 5]. In [6], the contact heat transfer char-
acteristics at the interface of a distributed rotor rod mount 
interface, under different influences and taking into account 
the roughness of different wheel discs, are considered. The 
thermodynamic calculation of the rotor rod mount is investi-
gated. An apparatus for testing the heat transfer characteris-
tics of the rod mount rotor is designed and manufactured. The 
temperature field of the rod-mounted rotor is measured by the 
change in thrust force and roughness of the wheel surface. The 
results show that the heat transfer coefficient of the joint sur-
face increases with increasing pre-tensioning of the rod and 
decreases with increasing roughness of the wheel surface. The 
results of a numerical study of the thermal stress-strain state 
of a rod under the action of laser beams are presented. The 
finite element method was used, presented in [7].

Based on the small parameter method, the paper [8] con-
siders the problem of determining the stress-strain state of a 
rigid plastic pipe in the presence of temperature. The Mises 
contract was used. The work [9] provides an introduction to 
some of the best practices that have evolved in recent years 
in the field of nonlinear finite element modeling. This paper 
presents the instability of a material known as an adiabatic 
shear strip, which often occurs in a plastically deformable 
material when it undergoes rapid shear [10]. The work 
presents the basic principles of nonlinear continuum me-
chanics [11]. In [12], the temperature distribution inside the 
nuclear fuel rod is analyzed. This is necessary to prevent the 
release of dangerous fission products into the environment. 
For this purpose, the maximum fuel temperature must not 
exceed the fuel integrity limit. The fuel temperature distri-
bution is obtained by calculating the heat transfer process 
inside the fuel rod. Multiple heat transfer processes with 
different heat transfer modes are interesting and important 
for nuclear fuel safety. This paper shows the applicability of 
CFD FLUENT and derives an analytical solution for calcu-
lating the temperature distribution inside a nuclear fuel rod.

In [13], the thermal characteristics of the laser are ob-
tained by numerically solving the heat conduction equation. 
The temperature distributions in axial and radial directions 
in cylindrical coordinates are obtained. The thermal tran-
sient time in both directions as well as the thermal focal dis-
tance was calculated. The time behavior of the temperature 
distribution was illustrated in a three-dimensional diagram. 
It is noted in [14] that the microstructure of stainless and 
eutectoid steel changes during friction welding, resulting in 

changes in hardness and strength. In the paper, the non-sta-
tionary temperature distribution in a friction-welded joint 
was investigated. A numerical method based on thermal nets 
was used to estimate the transient temperature distribution. 
Changes in the microstructure of the specimen were also 
investigated. Preliminary predictions were compared with 
actual experimental data from welding carried out under 
identical conditions.

In [15], the basic computational relations of thermal 
force spatial bending with tension, transverse shear and tor-
sion for a rod of rectangular cross-section consisting of dif-
ferent structural materials were obtained. The Timoshenko 
hypothesis was used. The obtained relations make it possible 
to perform approximate formulations and solutions of vari-
ous direct and inverse problems, including determination of 
the stress-strain state of a rod component under the action of 
a thermal load, estimation of the strength and stiffness of a 
rod. This paper does not take into account the dependence of 
the thermal expansion coefficient and elastic modulus on the 
temperature of the rod, provided that it is pinched.

In [16], the thermal behavior of a bar during the hot 
rolling process was investigated using an offline hot rolling 
simulator and numerical simulation. In addition, it was com-
pared with the sheet characteristics during the flat rolling 
process in order to understand the thermal behavior of the 
bar during the hot rolling process in more detail. The bar and 
sheet temperature during the hot rolling process was mea-
sured at several points with thermocouples using the rolling 
simulator, and then the measured temperature of each area of 
the billet was analyzed using numerical simulation.

The finite element method was used, presented in [17]. 
In [18], six types of Terfenol-D rods were developed to 
reduce the heating of the Terfenol-D rod and assess its ef-
ficiency. In doing so, the temperature field of the rods was 
modeled and calculated using the finite element method 
to obtain the temperature distribution. The results showed 
that the untreated rod had the highest temperature, with the 
temperature being higher in the middle and lower at both 
ends as well as on the surface of the outer diameter. The tem-
perature distribution of the sliced rods was relatively more 
uniform. In [19], an unstable temperature distribution field 
in cylindrical rods subjected to laser heat sources was inves-
tigated. In these works, some values of the thermal-physical 
parameters of the rod are used as constants.

All this allows us to assert that it is expedient to conduct 
a study on developing a mathematical model of the thermome-
chanical state of a rod of variable cross-section, which takes 
into account the simultaneous effect of local temperature, 
thermal insulation and heat exchange with the environment.

3. The aim and objectives of the study

The aim of the study is to develop a method of accounting 
for the presence of local thermophysical processes in rods of 
variable cross-section. This will improve the reliability of 
elements of strategic equipment subjected to thermal stress. 

To achieve the aim, the following objectives were set:
‒ to determine the temperature field within the length of 

each discrete element of a variable cross-section rod;
‒ to determine the stress and strain field;
‒ to determine the displacement field along the studied 

rod of variable cross-section.
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4. Materials and methods 

The investigated rod of variable cross-section and limited 
length is discretized by elements of length l=L/n (сm) [1, 2]. 
In this case, n is the number of discrete elements in the rod. 
Here l<<L. Consider the field of temperature distribution 
along the length of one discrete element l (сm), Fig. 1. The 
field of temperature distribution along the length of one 
discrete element is shown in Fig. 2.

In the local coordinate system (0≤x≤l), the cross-sec-
tion with the coordinate x=0 is denoted by i. Similarly, the 
cross-section with the coordinate x=l/2 is denoted by j. 
Finally, the cross-section with the coordinate x=l is denoted 
by k. The temperature values in the nodes i, j, k are denoted 
as Ti, Tj and Tk, respectively. The law of temperature distri-
bution along the length of one discrete element is approxi-
mated by a complete polynomial of the second order, that is:

( )> = + +2
1 2 3,T C C x C x C  ( )≤ ≤0 ,x l    (1)

( )

=
ϕ = =


=

1, 0,
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where C1, C2 and C3 are constants.

With the above designations, the following system can 
be built to determine the values of constants C1, C2 and C3:

( )
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Thus, we find that:
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Further, substituting formula (3) in (1), we get:
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Here we introduce the following designations:
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We call these functions quadratic spline functions in the 
local coordinate system (0≤x≤l). These functions have the 
following properties
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Also, it should be noted that

( ) ( ) ( )φ + φ + φ =1;i j kx x x  
∂φ∂φ ∂φ

+ + =
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0.ji k

x x x
 (7)

These properties of the quadratic spline functions pro-
vide the continuity of required functions upon transition 
from a discrete element to the next.

Using expressions (6), we rewrite (4) as follows:

( ) ( ) ( ) ( )= φ + φ + φ ,i i j j k kT x x T x T x T ( )≤ ≤0 .x l   (8)

The expression of the temperature gradient within the 
length of one discrete element has the following form:
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= + + =

∂ ∂ ∂ ∂
− − −

= + +2 2 2
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Fig.	1.	Calculation	scheme	of	the	task
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Fig.	2.	Field	of	temperature	distribution	along	the	length	of	
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Similarly (8), the field of displacement within the length 
of one discrete element has the following form:

( ) ( ) ( ) ( )= φ + φ + φ ,i i j j k kU x x U x U x U ( )≤ ≤0 ,x l  (10)

where Ui, Uj, Uk ‒ the displacement of sections i, j, k.

5. Analysis of the results of the study of local surface heat 
exchange in rods of variable cross-section

5. 1. Determination of the temperature field in the rod 
of variable cross-section

Let us consider discrete elements of the studied rod of 
variable cross-section on the left to the right. First, we con-
sider the first discrete element, starting from the left end of 
the rod (Fig. 3).

For this element, the functional of total thermal energy 
has the following form:
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J q T s v

x
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For the first discrete element, local values i, j, k corre-
spond to the global values of the nodes 1, 2 and 3.

Then, for the first discrete element of the studied core:

= 1;iT T = 2;jT T = 3.kT T

Here the nodes 2 and 3 are internal. Now, taking into 
account physical laws, we integrate expression (11). For the 
first element of this expression, we have:
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of the first discrete element of the studied core:
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Here it is revealed that the sum of coefficients at 2
1 ,T  2

2 ,T  
2

3 ,T  Т1Т2, Т1Т3, Т2Т3 will be equal to zero.
Now we consider the second discrete element, through 

the side surfaces of which heat exchange with the environ-
ment occurs (Fig. 4).

The functional of total thermal energy for the second 
discrete element is as follows:
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where V2 – the volume of the second discrete element, Sass2 – the 
area of the side surface of the second discrete element.

The integrated type of the functional  J2 has the follow-
ing form:
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The sum of coefficients before nodal temperatures will be 
equal in this expression to zero.

Now we move on to the third discrete element. The side 
surface of this element is heat-insulated. On the cross-sec-

Fig.	3.	The	first	discrete	element	of	the	studied	core
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q

X=Lx=0 
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tional area of the left end, we bring a heat flux of intensi-
ty q2 (Fig. 5).

For the third discrete element, the functional of total 
thermal energy has the following form:

=
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where V3 – the volume of the third discrete element; 
F(x=L) – the cross-sectional area of the right end of the 

core F(x=L)=F(x=3l)=π(al+b)2=π(3al+b)2.
Then the integrated type of the functional J3 has the 

following form:
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Then with the functional of total thermal energy for the 
studied core on nodal temperature values Ti, (i=1‒7), we 
construct a system of linear algebraic equations taking into 
account natural boundary conditions

= + +1 2 3.J J J J     (18)

Further, minimizing this functional on nodal tempera-
ture values Ti, (i=1‒7), we construct a system of linear 
algebraic equations taking into account natural boundary 
conditions [9]:
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Fig.	4.	The	second	discrete	element

h ,Toc 

 

l 

b2 

b2=al+b; 

Fig.	5.	The	third	discrete	element

q2 

l 

X 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/7 ( 123 ) 2023

58

22
2 2

5

22
2 2

3

22
2

2 4

22
5 3

3 5

22
2 3

6

22
3 3

7

11 723
15 3 3

5 3 3

826
4

15 3
5) 0;

7
5 3

4 82
5 3 3

6
5 3 3

xx

ab ba l
T

l

ab ba l
T

l

ba l
ab T

lJ
K

T ba l
ab T

l

ab ba l
T

l

ab ba l
T

l

 
+ + ⋅ + 

 
  + + + ⋅ −   
 

− + + ⋅ + 
∂  = ⇒ π ∂ + + + ⋅ −  


 − + + ⋅ + 
 
 

+ + + ⋅ 
 

2 2
2 2

5 3

2 2
2 2

4

27
2

60 15 30 15
0;

22
15 15 3 3 oc

b l b lal al
T T

h
b l b lal al

T T










 +






 
 
 
 

    
⋅ + ⋅ − + ⋅ +    
    +π =    + + ⋅ − + ⋅        

 (19)

22
3 3

6

22
3 3

5
6

22
3

3 7

16 1632
15 3 3

4 82
6) 0; 0;

5 3 3

826
4

15 3

xx

ab ba l
T

l

ab bJ a l
K T

T l

ba l
ab T

l

  
+ + ⋅ −  

  
  ∂  = ⇒ − + + ⋅ − =  ∂   
  

− + + ⋅  
  

( )

22
3 3

7

22
3 3

5
7

22
3

3 6

2

2

11 723
15 3 3

7) 0;
5 3 3

826
4

15 3

.

xx

ab ba l
T

l

ab bJ a l
K T

T l

ba l
ab T

l

aL b q

  
+ + ⋅ +  

  
  ∂  = ⇒ π + + + ⋅ − =  ∂   
  

− + + ⋅  
  

= −π + ⋅

Solving this system, the nodal temperature values Ti, 
(i=1‒7) are defined. According to them, the law of tem-
perature distribution along the length of the studied core is 
constructed as follows:

‒ for the first site of the core:

( ) ( ) ( ) ( )1 2 3,i j kT x x T x T x T= φ +φ + φ
 
( )≤ ≤0 .x l      (20)

‒ for the second site of the core:

( ) ( ) ( ) ( )3 4 5,i j kT x x T x T x T= φ +φ + φ  ( )≤ ≤0 .x l  (21)
 
Finally, for the third site of the core we have:

( ) ( ) ( ) ( )5 6 7,i j kT x x T x T x T= φ +φ + φ  ( )≤ ≤0 .x l  (22)

Using these formulas, it is possible to obtain a field of 
temperature distribution over the entire length of the rod of 
variable cross-section. 

To illustrate the above method and a computing algo-
rithm, we consider the  problem with the following input data:

30�cm;��L =  10 cm;��
3
L

l = = = −
1

;�
30

a

2 cm;��b = 2

5
cm;��

3
b = 3

4
cm;�

3
b =

W
100 ;��

сm СxxK =
°

( 7) 1
125 10 ;

С
−α = ⋅

°
 

2
6

2

kG
2 10 ;�

cm
E = ⋅

1 2 2

W
500 ;��

сm
q q= = −

2

W
�� 10 ;�

сm С
h =

°
 � 30 C.ocT = °

These input data show that the studied core is sampled 
by three discrete elements of identical length. At the same 
time, lateral areas of the first and third discrete elements 
are completely heat-insulated. In this case, heat exchange 
with the environment occurs through the lateral area of 
the second element. On the cross-sectional area of the 
two ends of the core, heat fluxes of identical intensity are 
brought.

Fig. 6 shows the law of temperature distribution along the 
length of the studied rod of variable cross-section. The tem-
perature value at the left end of the rod is T (x=0)=112.06 °C. 
At the same time, at the right end, T (x=30 cm)=75.69 °C. This 
difference is motivated by the fact that the cross-sectional 
area of the left end F (x=0)=4π cm2, and the area at the right 
end F (x=30 cm)=π cm2. Thus, F (x=0)/F (x=30 cm)=4. This 
means that at the left end, q⋅F (x=0)=‒500⋅4π=‒2,000⋅π (w). 
While q⋅F (x=30 cm)=‒500⋅π (w). Therefore, the tempera-
ture value at the left end exceeds 1.49 times the temperature 
value at the right end of the investigated rod of variable 
cross-section. Due to the heat exchange of the middle part of 
1/3 of the rod with the environment, the temperature value 
in the cross-section with the coordinate x=16.87 cm will be 
minimal, that is, T (x=16.87 cm)=34.238 °C.

5. 2. Definition of the stress and strain field 
If one end of the considered horizontally located rod of 

variable cross-section is rigidly jammed, then it is extended 
due to the temperature field. The value of lengthening is 
defined by the general laws of thermophysics:

( )
0

d ,
L

Tl T x x∆ = α∫    (23)

where α[1/°K] – the coefficient of thermal expansion of 
the core material. T(x) is the law of temperature distribu-
tion along the core length. If we accept that α=const, then 
the value of lengthening for the studied core is defined as 
follows:

Fig.	6.	Temperature	dependency	T
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 ( )0 .x l≤ ≤  (25)

If both ends of the studied core are rigidly jammed, then 
a thermo-intensely strain state occurs in it, and also an axial 
compressive force R (kg).

In case of jamming of two ends of the studied core, it 
is not extended and does not shorten. But there is an axial 
compressive force R (Fig. 7).

To determine the magnitude of the resulting axial 
force R, we find the average cross-sectional area:

( ) ( )2 2 2

0 0

2 2
2

d 2 d

,
3

L L

ср

F x x a x abx b x
F

L L

a L
abL b

+ +
= = =

 
= + + 
 

∫ ∫

 (26)

where Fcp (cm2).
Let us consider the problem of compression of the studied 

core under the influence of the axial force R (Fig. 8).
In this case, the core is shortened by ∆lR. It is defined 

proceeding from the general Hooke’s law:

.�R
ср

RL
l

EF
∆ =   (27)

In case of jamming of two ends of the studied rod of variable 
cross-section, it can be extended and shortened. Then we have:

∆ + ∆ = 0.Т Rl l      (28)

Substituting (25), (27) in (28), we find the magnitude of 
the arising axial force:

( )1 2 3 4 5 6 74 2 4 2 ��4 .
6

ср
Т

ср

EF
R l

L
EF l

T T T T T T T
L

= − ∆ =

α
= − + + + + + +  (29)

Then, in this case, there is a distribution field of the 
thermoelastic stress component along the length of the 
studied core:

( ) ( ) ( )
( )

2 2 2

1 2 3 4 5 6 7

6 2

4 2 4 2 4 ,

cp
T

EF lR
x

F x L a x abx b

T T T T T T T

α
σ = = − ×

π + +

× + + + + + +

≤ ≤(0 ).x l      (30)

The distribution law of the thermoelastic strain compo-
nent ε is also defined by T (x) on the basis of the correspond-
ing Hooke’s law:

( ) ( )

( )
( )

2 2 2

1 2 3 4 5 6 7

6 2

4 2 4 2 4 ,

ср

x
x

E
F l

L a x abx b

T T T T T T T

σ
ε = =

α
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π + +

× + + + + + + ( )0 .x l≤ ≤  (31)

In case of jamming of two ends of the studied rod of 
variable cross-section, there is also a field of distribution 
of the temperature strain component εT (x) along its 
length. It is defined on the basis of fundamental laws of 
thermophysics:
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 (32)

Then also in compliance with the generalized Hooke’s 
law, the distribution law of the temperature stress com-
ponent along the studied rod of variable cross-section is 
defined:
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σ = ε =

 − + + − +
 
 + − + + − +α  = −
 + − + + − 
 + −

+

 

 (33)

The distribution field of the elastic strain component 
εx(x) is defined on the basis of the theory of thermoelasticity:

Fig.	7.	Rod	of	variable	cross-section	under	the	influence	of	an	
axial	compressive	force	R

R R

Fig.	8.	Compression	of	a	rod	of	variable	cross-section	by	the	
axial	force	R

R 
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In compliance with Hooke’s law, from (33) it is possible 
to define the distribution law of the elastic stress compo-
nent (35) along the studied rod of variable cross-section.

Fig. 9 shows distribution laws for the three strain com-
ponents. Here curve 1 is the distribution law of the ther-
mo-elastic strain component. It has a compressive nonlinear 
character along the entire length of the rod. 

Fig. 10 shows the distribution law for the thermo-elas-
tic σ(х) and σТ(х) and elastic σх(х) components along the 
length of the studied rod of variable cross-section.

In addition, this is due to the fact that the radius of the 
cross-section of the rod from the left to the right. If the left 
end of the rod is rigidly clamped, and the right end is free, 
then the investigated rod of variable cross-section is extended. 
The magnitude of elongation with the obtained initial data is

( )
0

d 0.02214�cm.
L

Tl T x x∆ = α =∫
If both ends of the rod are rigidly clamped, then it cannot 

be extended. In this case, due to the thermal expansion of the 
material, an axial compressive force R (kg) arises. With our 
initial data, the value of this force will be R=‒10820.8148 kg. 

5. 3. Determination of the displacement field along 
the studied rod of variable cross-section

We approximate the field of displacement distribution 
along one discrete element in the local coordinate system by 
quadratic spline functions: 

( ) ( ) ( ) ( )
2 2 2 2

2 2 2

2 3 4 4 2
,

i i j j k k

i j k

U U U

x lx l lx x x lx
U U U

l l

U x x x

l

xφ + φ + φ =

− − −
= + +

=

+

( )≤ ≤0 ,x l    (36)

where in the local coordinate system Ui=U(x=0); Ui=U(x=l/2); 
Ui=U(x=l).

Then in this local coordinate system, the distribution 
law of the elastic strain component εx (x) is defined by the 
Cauchy relation:

( ) ∂ − − −
ε = = + +

∂ 2 2 2

4 3 4 8 4
,x i j k

U x l l x x l
x U U U

x l l l

( )≤ ≤0 .x l  (37)

Fig.	9.	Strain	distribution	law:	1	‒	ε(x);	2	‒	εT(x);	3	‒	εx(x)

Fig.	10.	Stress	distribution	law:	1	–	σ(x);	2	–	σT(x);	3	–	σx(x)
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On the other hand, the functional of potential elastic 
strain energy in the local coordinate system for the studied 
rod of variable cross-section has the following form:
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If both ends of the studied core are rigidly jammed, then 
U1=U7=0. Then it will be necessary to define the values of 
U2, U3, U4, U5 and U6. Minimizing the functional of potential 
elastic strain energy on these nodal displacement values, we 
construct a system of simple algebraic equations taking into 
account natural boundary conditions:
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After simplification, we get:

Solving this system, we define the values of nodal displace-
ments. The distribution law of displacement of the core sections 
is determined by them. Along the 1st site of the core, the law of 
displacement distribution is determined by the formula:

( )
2 2

2 32 2

4 4 2
;I lx x x lx

U x U U
l l
− −

= +  ( )≤ ≤0 .x l  (40)

On the second site of the core (l≤x≤2l), the law of dis-
placement distribution is defined as follows:

( )
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32
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4 52 2

2 3

4 4 2
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II x lx l
U x U

l
lx x x lx

U U
l l

+
− +

=

− −
+ +  ( )≤ ≤0 .x l   (41)

The law of displacement distribution on the last third site 
of the core is determined by the formula:

( )
2 2 2

5 62 2

2 3 4 4
;III x lx l lx x

U x U U
l l

− + −
= +  ( )≤ ≤0 .x l (42)

The formulas (40)‒(42) determine the law of displace-
ment along the length of the rod of variable cross-section. 

Fig. 11 shows the displacement field. For this, a system 
of resolving equations was solved with respect to nodal dis-
placement values (39). As a result, Ui (i=1‒7) was obtained. 
Further, using the formula (36), the field of displacement 
along the length of each discrete element is determined.

6. Discussion of the results of the study of local surface 
heat exchange in rods of variable cross-section

Fig. 6 shows the law of temperature distribution along 
the length of the rod in question. First, we determine nodal 
temperature values using the obtained resolving equations 
taking into account natural boundary conditions (19). As 
a result, the nodal temperature values Ti (i=1–7) are ob-
tained. Then, using formula (4), the temperature distribu-
tion field is determined within the length of each discrete 
element.

Fig. 9 shows the distribution fields of three strain com-
ponents: 

1) ε(x) – the distribution field of thermoelastic strain, 
determined by formula (31);

2) εх(x) – the distribution field of the elastic strain com-
ponent, determined by formula (34);

3) εT(x) – the distribution field of the temperature 
strain component, determined by formula (32).

Then, in this case, a steady thermo-stress-strain state 
arises in the rod. 

The value is ε(x=0)=–0.00043, ε(x=30 cm)=–0.001722. 
This means that the value ε(x) at the left end of the rod 
is 4 times less than at the right. This process is due to the 
fact that the cross-sectional area of the left end of the rod is 
4 times larger than the right one. The law of distribution of 
the temperature component εT(x) along the entire length of 
the studied rod of variable cross-section has a compressive 
and non-linear character. Moreover, its maximum value 
εT(x)=–0.0014 is observed at the left end of the rod. There 
is a monotonous reduction of εT(x) to the cross-section 
of the rod, the coordinate of which is x=16.25 cm. Here 
εT(x=16.25)=–0.00042854. This is due to heat exchange 
through the side surface of the middle section of the rod with 
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Fig.	11.	Dependences	of	displacement	along	the	length	of	
the	rod
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the environment. Then again, εT(x) has a slightly increasing 
nature, and εT(x=30 cm)=–0.000964619. In the distribution 
law of εT(x), it is revealed that: 

εT(x=0)/εT(x=L=30 cm)=1.4804.

This is due to the fact that the cross-sectional area of the 
left end of the studied rod is 4 times larger than the right. In 
contrast to other laws, the distribution of the elastic strain com-
ponent along the length of the studied rod of variable cross-sec-
tion has a sign-variable character. In particular εx(x), in the 
area of the 0≤x≤10 cm rod has a tensile character. For the rest 
10≤x≤L=30, see the section of the rod also has a compressive 
character. In general εx(x), it also has a nonlinear form. 

Fig. 10 shows the distribution laws of three stress com-
ponents: 

1) σ (x) is the thermoelastic stress component, defined 
by formula (30);

2) σT (x) is the temperature stress component, defined by 
formula (33);

3) σх (x) is the elastic stress component, determined by 
formula (35).

From Fig. 9, 10, it can be seen that they are proportional 
to the corresponding strain components. In this case, the 
proportionality coefficient is the modulus of elasticity of the 
rod material Е=2⋅106 kG/cm2.

Finally, Fig. 11 shows the distribution field of displace-
ment of sections of the investigated rod of variable cross-sec-
tion. It can be seen from the figure that all sections move 
from left to right in the direction of the Ox axis. This is due 
to the fact that the cross-sectional area of the left end of the 
rod where the heat flux of constant intensity q is applied is 
4 times larger than the right one. The largest displacement 
amplitude corresponds to the cross-section of the rod with 
the coordinate x=11.25 cm. This is due to the occurrence of 
a large temperature T(x=0)=112.059 °C at the left end of the 
investigated rod of variable cross-section.

The Fig. 11 shows that all cross-sections move from left 
to right. This is also due to the large heat flux at the left end 
of the rod. The largest displacement is on the cross-section of 
the rod with the coordinate x=11.25 cm, as the displacement 
on both ends of the rod is equal to 0.

All the solutions obtained satisfy the fundamental laws 
of energy conservation; therefore, they are highly accurate. 
It is assumed that the developed methods, the computational 
algorithm and the software package ASIR 2.0 in Python will 
be useful in the design of power plants, internal combustion 
engines, jet engines. 

The developed method can be used to study the appli-
cability of the hypothesis of flat sections and before the 
appearance of plastic deformations, those within elastic 
deformations. Within these limitations, the results obtained 
will ensure convergence and accuracy.

In terms of the accuracy and convergence of the results 
obtained, this method is highly effective. But when sampling 
the studied rod for a large number of discrete elements, a 
large amount of memory and computation time are required. 

Although computational experiments show that the neces-
sary accuracy is achieved with sufficiently small numbers of 
discrete elements.

7. Сonclusions

1. A method for constructing spline approximating func-
tions within the length of each discrete element of a rod of vari-
able cross-section for determining the temperature field was 
developed, computational results and a graph were obtained.

The peculiarity of the proposed method consists in the 
fact that this method allows taking into account the existing 
natural boundary conditions at the level of the energy con-
servation law, taking into account the nonlinear variability 
of the cross-section. This solution approach makes it possible 
to take into account the piecemeal heterogeneity of the rod 
material. The developed method allows taking into account 
the simultaneous presence of several local heterogeneous heat 
sources and types of thermal insulation, making it possible to 
calculate thermal loads on a variable cross-section rod. 

2. As a result of calculations, graphs of fields of all strain 
and stress components are obtained. The work does not take 
into account the dependence of the modulus of elasticity 
and the coefficient of thermal expansion on temperature. To 
do this, it is necessary to conduct appropriate experiments. 
Further study will address these shortcomings.

3. Using resolving systems of algebraic equations taking 
into account natural boundary conditions, displacement 
fields are calculated, a graph is plotted. 
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