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The load-bearing elements of a number of strategic
equipment are of limited length and variable cross-section.
Most of them are exposed to certain types of heat sources.
In order to ensure the reliable operation of this equipment,
it is necessary to know the temperature field along the
length of the variable cross-section rod. In this paper, a
computational algorithm and a method for determining the
temperature field along the length of a rod with a limited
length and variable cross-section are proposed. They are
based on the fundamental laws of conservation of energy.

The nonlinearity of the process is due to nonlinear
dependencies of the areas of the variable cross-section on
the coordinate. The radius of the cross-section of the rod
decreases linearly along the entire length, starting from
the left end. The side surface of the first and third discrete
elements of the rod is heat-insulated. Convective heat
exchange with the environment takes place on the side sur-
Jace of the second discrete element of the rod.

The cross-sectional area of the left end of the rod is
under the heat flow with a constant intensity, and a heat
Slow with different intensities is supplied to the right end,
wherein the heat transfer coefficient is considered con-
stant. For this task, you must first determine the law of
temperature distribution along the length of the rod. In
addition, if one end is rigidly fixed and the other end is
Jree, the elongation must be calculated depending on the
available heat sources, the physical and geometric char-
acteristics of the rod, taking into account the presence of
insulation.

In case of pinching of both ends of the investigated rod,
the value of axial compressive force is calculated taking
into account the addition of real factors. The distribution
of all components of the strain, stress, and displacement

field is also defined
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1. Introduction

the core, there is a heat exchange to the environment. At the

Consider a horizontal core of limited length L (cm) and
variable cross-section F(x) (cm?). The radius of the core sec-
tion changes linearly along its length r=ax+b (cm), (0<x<L),
where a and b are constants. The cross-sectional area of the
core changes not linearly along the core length as follows

F(x)=nr*=n(a’x*+2abx+b*) (cm?), (0<x<L).

The physical and mechanical properties of the core
material are characterized by the heat conductivity coeffi-

watt

cient KU(
“\cm-

of elasticity of the core material E( 5
cm

that on the cross-sectional area of the left end of the core,

cm’

- . o att
the heat flux of constant intensity is brought g, [W j At
this time, on the cross-sectional area of the right end of the

core, the heat flux is brought with intensity g, [&t;) . Local
cm

side surfaces (0<x<L;) and (Ly<x<L) of the studied core are
heat-insulated. Through the local side surface (Li<x<L,) of

), and thermal expansion Q(LJ module
°K °K

8 ] Let us assume

same time, with the heat exchange coefficient h(c\;&;t;(],
and ambient temperature T, (°K), it is necessary to define
the field of distribution of temperature, three components of
strain, stress and displacement.

The existing methods of studying the thermomechanical
state of a rod of variable cross-section take into account the
influence of individual external factors on the distribution of
body temperature: either heat insulation, or heat exchange
with the environment or heat flow and temperature. There-
fore, the problem of developing a mathematical model of the
thermomechanical state of a rod of variable cross-section,
which would take into account the simultaneous influence
of local temperature, thermal insulation and heat exchange
with the external environment, is relevant.

2. Literature review and problem statement

The definition of the law of temperature distribution
along the length of the rod elements is relevant, since in the
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bearing components of power plants, internal combustion
engines and hydrogen engines during operation, a thermal
stress state is manifested. The work outlines the basics of the
theory of elasticity, with solutions to practical engineering
problems [1]. The paper [2] presents calculation methods
and algorithms for the numerical solution of a class of applied
mechanics problems.

The main equations of thermo-physics, including the
laws of conservation of mass, momentum and energy, are giv-
en in [3]. This paper provides kinematic equations as well as
corresponding relations that close the systems of equations.
The analysis of the work shows that, first, the existing meth-
ods of studying the thermomechanical state of the bearing
elements of structures take into account the influence of
individual external factors on the distribution of body tem-
perature: either heat insulation, or heat exchange with the
environment or heat flow and temperature.

Fundamental theoretical issues concerning thermo-phys-
ics are given in [4, 5]. In [6], the contact heat transfer char-
acteristics at the interface of a distributed rotor rod mount
interface, under different influences and taking into account
the roughness of different wheel discs, are considered. The
thermodynamic calculation of the rotor rod mount is investi-
gated. An apparatus for testing the heat transfer characteris-
tics of the rod mount rotor is designed and manufactured. The
temperature field of the rod-mounted rotor is measured by the
change in thrust force and roughness of the wheel surface. The
results show that the heat transfer coefficient of the joint sur-
face increases with increasing pre-tensioning of the rod and
decreases with increasing roughness of the wheel surface. The
results of a numerical study of the thermal stress-strain state
of a rod under the action of laser beams are presented. The
finite element method was used, presented in [7].

Based on the small parameter method, the paper [8] con-
siders the problem of determining the stress-strain state of a
rigid plastic pipe in the presence of temperature. The Mises
contract was used. The work [9] provides an introduction to
some of the best practices that have evolved in recent years
in the field of nonlinear finite element modeling. This paper
presents the instability of a material known as an adiabatic
shear strip, which often occurs in a plastically deformable
material when it undergoes rapid shear [10]. The work
presents the basic principles of nonlinear continuum me-
chanics [11]. In [12], the temperature distribution inside the
nuclear fuel rod is analyzed. This is necessary to prevent the
release of dangerous fission products into the environment.
For this purpose, the maximum fuel temperature must not
exceed the fuel integrity limit. The fuel temperature distri-
bution is obtained by calculating the heat transfer process
inside the fuel rod. Multiple heat transfer processes with
different heat transfer modes are interesting and important
for nuclear fuel safety. This paper shows the applicability of
CFD FLUENT and derives an analytical solution for calcu-
lating the temperature distribution inside a nuclear fuel rod.

In [13], the thermal characteristics of the laser are ob-
tained by numerically solving the heat conduction equation.
The temperature distributions in axial and radial directions
in cylindrical coordinates are obtained. The thermal tran-
sient time in both directions as well as the thermal focal dis-
tance was calculated. The time behavior of the temperature
distribution was illustrated in a three-dimensional diagram.
It is noted in [14] that the microstructure of stainless and
eutectoid steel changes during friction welding, resulting in

changes in hardness and strength. In the paper, the non-sta-
tionary temperature distribution in a friction-welded joint
was investigated. A numerical method based on thermal nets
was used to estimate the transient temperature distribution.
Changes in the microstructure of the specimen were also
investigated. Preliminary predictions were compared with
actual experimental data from welding carried out under
identical conditions.

In [15], the basic computational relations of thermal
force spatial bending with tension, transverse shear and tor-
sion for a rod of rectangular cross-section consisting of dif-
ferent structural materials were obtained. The Timoshenko
hypothesis was used. The obtained relations make it possible
to perform approximate formulations and solutions of vari-
ous direct and inverse problems, including determination of
the stress-strain state of a rod component under the action of
a thermal load, estimation of the strength and stiffness of a
rod. This paper does not take into account the dependence of
the thermal expansion coefficient and elastic modulus on the
temperature of the rod, provided that it is pinched.

In [16], the thermal behavior of a bar during the hot
rolling process was investigated using an offline hot rolling
simulator and numerical simulation. In addition, it was com-
pared with the sheet characteristics during the flat rolling
process in order to understand the thermal behavior of the
bar during the hot rolling process in more detail. The bar and
sheet temperature during the hot rolling process was mea-
sured at several points with thermocouples using the rolling
simulator, and then the measured temperature of each area of
the billet was analyzed using numerical simulation.

The finite element method was used, presented in [17].
In [18], six types of Terfenol-D rods were developed to
reduce the heating of the Terfenol-D rod and assess its ef-
ficiency. In doing so, the temperature field of the rods was
modeled and calculated using the finite element method
to obtain the temperature distribution. The results showed
that the untreated rod had the highest temperature, with the
temperature being higher in the middle and lower at both
ends as well as on the surface of the outer diameter. The tem-
perature distribution of the sliced rods was relatively more
uniform. In [19], an unstable temperature distribution field
in cylindrical rods subjected to laser heat sources was inves-
tigated. In these works, some values of the thermal-physical
parameters of the rod are used as constants.

All this allows us to assert that it is expedient to conduct
a study on developing a mathematical model of the thermome-
chanical state of a rod of variable cross-section, which takes
into account the simultaneous effect of local temperature,
thermal insulation and heat exchange with the environment.

3. The aim and objectives of the study

The aim of the study is to develop a method of accounting
for the presence of local thermophysical processes in rods of
variable cross-section. This will improve the reliability of
elements of strategic equipment subjected to thermal stress.

To achieve the aim, the following objectives were set:

— to determine the temperature field within the length of
cach discrete element of a variable cross-section rod;

—to determine the stress and strain field;

—to determine the displacement field along the studied
rod of variable cross-section.



4. Materials and methods

The investigated rod of variable cross-section and limited
length is discretized by elements of length 1=L/z (cm) [1, 2].
In this case, 7 is the number of discrete elements in the rod.
Here I<<L. Consider the field of temperature distribution
along the length of one discrete element 1 (cm), Fig. 1. The
field of temperature distribution along the length of one
discrete element is shown in Fig. 2.
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Fig. 1. Calculation scheme of the task

A
T

Ti

(0<x<l)

Fig. 2. Field of temperature distribution along the length of
one discrete element

In the local coordinate system (0<x<l), the cross-sec-
tion with the coordinate x=0 is denoted by i. Similarly, the
cross-section with the coordinate x=1/2 is denoted by j.
Finally, the cross-section with the coordinate x=I is denoted
by k. The temperature values in the nodes i, j, k are denoted
as T;, T; and Ty, respectively. The law of temperature distri-
bution along the length of one discrete element is approxi-
mated by a complete polynomial of the second order, that is:

T(>C)=Cx’+Cyux+C,, (0<x<l), 1)
L_}C:Oy 0,.76:0,
(pA(x): OJc=i (p.(x)z 1x=£
i ) 2a Jj ) 2y
0,x=1[; 0,x=1[;
0,x=0,
[0) (x): Oxzi
& ) 2
Lx=1,

With the above designations, the following system can
be built to determine the values of constants Cy, Cs and Cs:
T(x=0)=C,-0+C,-0+C, =T,

l I )
T x:i :C1-Z+C2-§+C3—T @

=1

T(x=0)=C,-’+C,-1+C,=T,.

Thus, we find that:

4T, -T,-3T, 2
%, C=5(T-21,+T).  (3)

Q:E’Q: B

Further, substituting formula (3) in (1), we get:

2x? 3l +1*
T(x)==—T,
+4b‘124" T].+2”‘l2 B (0<x<). %)

Here we introduce the following designations:

2 2_ 2 4 _4 2
¢i(x):%f“l; ¢j(x):%;
b (x) =25 (0= <1), )

We call these functions quadratic spline functions in the
local coordinate system (0<x<l). These functions have the
following properties

1,atx =0, 0,atx =0,
(pl.(x): O,atx:é, (pj(x): 1,atx:é,
0,atx =1; 0,atx =1;
0,atx =0,
¢, (x)= O,atx:é, (6)
lLatx=1.
Also, it should be noted that
. a¢i 64). 54)
¢i(x)+¢j(x)+¢k(x):1’ E“’TXJ’LT;:O- )

These properties of the quadratic spline functions pro-
vide the continuity of required functions upon transition
from a discrete element to the next.

Using expressions (6), we rewrite (4) as follows:

T(x)=¢,(x)T;+¢,(x)T, +,(x)T,, (0<x<]). ®)

The expression of the temperature gradient within the
length of one discrete element has the following form:

or _ o4i(x) ., 90,(x) ., 90u(x)

i : E:
ox ox ox ox
4x -3l 4] —8x 4x—1
== L= L+ L (0<x<l). (9



Similarly (8), the field of displacement within the length
of one discrete element has the following form:

U(x)=,(x)U;+0,(x)U; + ()

U, (0<x<l), (10

where U;, U;, Uy — the displacement of sections i, j, k.

5. Analysis of the results of the study of local surface heat
exchange in rods of variable cross-section

5. 1. Determination of the temperature field in the rod
of variable cross-section

Let us consider discrete elements of the studied rod of
variable cross-section on the left to the right. First, we con-
sider the first discrete element, starting from the left end of
the rod (Fig. 3).

For this element, the functional of total thermal energy
has the following form:

jq1

For the first discrete element, local values i, j, k corre-
spond to the global values of the nodes 1, 2 and 3.
Then, for the first discrete element of the studied core:

(aij do, (OSxSZ).

an

L=T;T =T, T,=T,

Here the nodes 2 and 3 are internal. Now, taking into
account physical laws, we integrate expression (11). For the
first element of this expression, we have:

J qIds=

F(x=0)

F(x=0)-qT,=nblqT, 12)
where b =7(x=0)=a-0+b=b.

Similarly, we consider the second integral on the volume
of the first discrete element of the studied core:
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Here it is revealed that the sum of coefficients at 77, T,
T?, T\Ts, TiTs, T>T3 will be equal to zero.

Now we consider the second discrete element, through
the side surfaces of which heat exchange with the environ-
ment occurs (Fig. 4).

The functional of total thermal energy for the second
discrete element is as follows:

L h
]225[2(&) do+ Lg(T—Toc)zds, (0<x<l),

where V5 — the volume of the second discrete element, S, — the
area of the side surface of the second discrete element.

The integrated type of the functional J, has the follow-
ing form:

(14)
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The sum of coefficients before nodal temperatures will be
equal in this expression to zero.

x=0

Fig. 3. The first discrete element of the studied core

X=L

Now we move on to the third discrete element. The side
surface of this element is heat-insulated. On the cross-sec-



tional area of the left end, we bring a heat flux of intensi-

Further, minimizing this functional on nodal tempera-
ty go (Fig. 5).

ture values T;, (i=1-7), we construct a system of linear
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Fig. 5. The third discrete element
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where V3 — the volume of the third discrete element; ? T, -
F(x=L) — the cross-sectional area of the right end of the
core F(x=L)=F(x=31)=n(al+b)*=n(3al+b)*. [ 2a 2l 4ab, 8b2 T
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Then with the functional of total thermal energy for the
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Solving this system, the nodal temperature values T;,
(i=1-7) are defined. According to them, the law of tem-
perature distribution along the length of the studied core is
constructed as follows:

— for the first site of the core:

T(x)=0,(x)T, +¢;(x)T,+¢,(x)T;, (0<x<l). (20
— for the second site of the core:
T(x)=¢,(x)T,+¢;(x)T,+¢,(x)T, (0<x<l). (21
Finally, for the third site of the core we have:
T(x)=¢,(x)T;+6,(x) T+ 0, (x)T;, (0<x<). (22)

Using these formulas, it is possible to obtain a field of
temperature distribution over the entire length of the rod of
variable cross-section.

To illustrate the above method and a computing algo-
rithm, we consider the problem with the following input data:

L =30 cm; l:£:10cm; a=—i;
3 30

b=2cm; bzzgcm; b, :gcm

2
szioo—w ; a=125.10<f7>i; E:2.106kG2;
’ cm®°C °C cm
41:512:_500%, h=10l2; T, =30°C.
cm cm”°C

These input data show that the studied core is sampled
by three discrete elements of identical length. At the same
time, lateral areas of the first and third discrete elements
are completely heat-insulated. In this case, heat exchange
with the environment occurs through the lateral area of
the second element. On the cross-sectional area of the
two ends of the core, heat fluxes of identical intensity are
brought.

Fig. 6 shows the law of temperature distribution along the
length of the studied rod of variable cross-section. The tem-
perature value at the left end of the rod is T'(x=0)=112.06 °C.
Atthesametime,attherightend, T (x=30 cm)=75.69 °C. This
difference is motivated by the fact that the cross-sectional
area of the left end F (x=0)=4n cm?, and the area at the right
end F (x=30 cm)=n cm?. Thus, F (x=0)/F (x=30 cm)=4. This
means that at the left end, g-F (x=0)=-500-47=-2,000-7 (w).
While ¢-F (x=30 cm)=-500-n (w). Therefore, the tempera-
ture value at the left end exceeds 1.49 times the temperature
value at the right end of the investigated rod of variable
cross-section. Due to the heat exchange of the middle part of
1/3 of the rod with the environment, the temperature value
in the cross-section with the coordinate x=16.87 cm will be
minimal, that is, T (x=16.87 cm)=34.238 °C.

Temperature
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Fig. 6. Temperature dependency T

3. 2. Definition of the stress and strain field

If one end of the considered horizontally located rod of
variable cross-section is rigidly jammed, then it is extended
due to the temperature field. The value of lengthening is
defined by the general laws of thermophysics:

Al = jgaT(x)dx,

where o[1/°K] — the coefficient of thermal expansion of
the core material. T(x) is the law of temperature distribu-
tion along the core length. If we accept that a=const, then
the value of lengthening for the studied core is defined as
follows:

(23)
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:%1[7"1+4T2+2T3+4T4+27;+4]};+T7]; (24)
e () = ol (x) =37
(20" =3lw+1* )T, +(4be — 42 )T, +
(42" —4le+ )T, +(4be— 42 )T, +
X , , ,(0=x<l).  (25)
(42" —Ale+ )T+ (4be - 42 ) T, +

(24" - Ix)T,

If both ends of the studied core are rigidly jammed, then
a thermo-intensely strain state occurs in it, and also an axial
compressive force R (kg).

In case of jamming of two ends of the studied core, it
is not extended and does not shorten. But there is an axial
compressive force R (Fig. 7).

To determine the magnitude of the resulting axial
force R, we find the average cross-sectional area:

. I;F(x)dx ~ I:(azyﬁ +2abx+b2)dx ~

e’ L L
2712
:(aSL +abL+b2}

(26)

where F,, (cm?).

Let us consider the problem of compression of the studied
core under the influence of the axial force R (Fig. 8).

In this case, the core is shortened by Alg. It is defined
proceeding from the general Hooke’s law:

_RL

Al =—-.
R EE-p

27

Fig. 7. Rod of variable cross-section under the influence of an
axial compressive force R

Fig. 8. Compression of a rod of variable cross-section by the
axial force R

In case of jamming of two ends of the studied rod of variable
cross-section, it can be extended and shortened. Then we have:

Al +Al,=0. (28)
Substituting (25), (27) in (28), we find the magnitude of
the arising axial force:

EF.
R=—"Al =
i
EF,
:—OLGT“’(ﬂ AT, + 2T, + 4T, + 2T, + 4T, +T,).

(29)

Then, in this case, there is a distribution field of the
thermoelastic stress component along the length of the
studied core:

( ) R OLEFCpl
o, (x)= = X
T F(x) 6Ln(a2x2 +2abx +b2)

(T, + 4T, + 2T, + 4T, + 2T, + 4T + Ty,

(0<x<l). (30)

The distribution law of the thermoelastic strain compo-
nent ¢ is also defined by T (x) on the basis of the correspond-
ing Hooke’s law:

af,/
X
6Ln(02x2 +2abx+b2)
(T, + 4T, + 2T, + 4T, + 2T, + AT, +T;), (0<x <I).

(€20

In case of jamming of two ends of the studied rod of
variable cross-section, there is also a field of distribution
of the temperature strain component gy (x) along its
length. It is defined on the basis of fundamental laws of
thermophysics:

e (x)=-al(x)=

(20 =3bc+I° )T, + (4lx - 42° )T, +
=_% +(4x2—4lx+12)T3+ . 32)
P+ (4be =42 )T, + (40" —4le +1°) T, +

+(4he—40® )Ty + (207 - ) T,

Then also in compliance with the generalized Hooke’s
law, the distribution law of the temperature stress com-
ponent along the studied rod of variable cross-section is

defined:
o1 ()= Bey (x)=
(2x2—3lx+12)T1+(4bc—4x2)T2+
o | +(4x° —Ale + )T+ (4be - 42 )T, +
TP (A Al )T (Al — )T | @9
+(2x* - )T,

The distribution field of the elastic strain component
£,(x) is defined on the basis of the theory of thermoelasticity:



T, +4T, +
af, [
6Ln(a” 2+/2 bx +b° wlrdlir
n(ax abx )L+2T5+4T6+T7

(23(2 73bc+12)T1 +(4lx74x2)T2 +
+(4x° —Ale +1* )T, + (4be - 42 )T, +

o
r + (4~ Ale + 1P )T, + (Al = 4% ) Ty + | S
+(22° - )T,
oFF. [
(2x* =3Lc+1*)T, + 1
+(4be - 4x* )T, +
LOE Ax® Al + )T, + (35)

Abe— 42 )T, + (42" — Al + 1) T, +
+(4be - 42T + (22 - I )T,

(
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(

L+

In compliance with Hooke’s law, from (33) it is possible
to define the distribution law of the elastic stress compo-
nent (35) along the studied rod of variable cross-section.

Fig. 9 shows distribution laws for the three strain com-
ponents. Here curve 1 is the distribution law of the ther-
mo-elastic strain component. It has a compressive nonlinear
character along the entire length of the rod.

Fig. 10 shows the distribution law for the thermo-elas-
tic o(x) and o7(x) and elastic o,(x) components along the
length of the studied rod of variable cross-section.

In addition, this is due to the fact that the radius of the
cross-section of the rod from the left to the right. If the left
end of the rod is rigidly clamped, and the right end is free,
then the investigated rod of variable cross-section is extended.
The magnitude of elongation with the obtained initial data is

Al = [ aT (x)dx=0.02214 cm,

If both ends of the rod are rigidly clamped, then it cannot
be extended. In this case, due to the thermal expansion of the
material, an axial compressive force R (kg) arises. With our
initial data, the value of this force will be R=—10820.8148 kg.

5. 3. Determination of the displacement field along
the studied rod of variable cross-section

We approximate the field of displacement distribution
along one discrete element in the local coordinate system by
quadratic spline functions:

U(x)=¢,(x)U,+¢;(x)U; +¢,(x)U, =

2x% =3l +1? 4l — 42 2x% —Ix
= L U+ 2 Uj+ 2 U,
(0<x<l), (36)

where in the local coordinate system U;=U(x=0); U=U(x=1/2),
Ui:U(X:D.

Then in this local coordinate system, the distribution
law of the elastic strain component ¢, (x) is defined by the
Cauchy relation:
oU 4x-3l 4] -8x 4o -1
sx(x)zaz 7 U+ e U, + 7 U,

(0<x<). (37)
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On the other hand, the functional of potential elastic
strain energy in the local coordinate system for the studied
rod of variable cross-section has the following form:

Ee, e, dV-[ aFT(x)e,dV =
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If both ends of the studied core are rigidly jammed, then
U;=U7=0. Then it will be necessary to define the values of
Us, Us, Uy, Us and Ug. Minimizing the functional of potential
elastic strain energy on these nodal displacement values, we
construct a system of simple algebraic equations taking into
account natural boundary conditions:
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After simplification, we get:
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Solving this system, we define the values of nodal displace-
ments. The distribution law of displacement of the core sections
is determined by them. Along the 1st site of the core, the law of
displacement distribution is determined by the formula:

2
U, (x): 4lxl—24x U2

22 —Ix
+

7 Uy (0<x<l).

(40)

On the second site of the core (I<x<2[), the law of dis-
placement distribution is defined as follows:

2 2
U (x)= 2x —132bc+l

4lx —4x° 2x% Iy
+ IE U,+ 2

U,+

Us; (0<x<l). (41)

(39)

The law of displacement distribution on the last third site
of the core is determined by the formula:

2" -3+’

4Ly —4x?
P "

UIH (x) 12

Uy (0<x<l).(42)

U;

The formulas (40)—(42) determine the law of displace-
ment along the length of the rod of variable cross-section.

Fig. 11 shows the displacement field. For this, a system
of resolving equations was solved with respect to nodal dis-
placement values (39). As a result, U; (i=1-7) was obtained.
Further, using the formula (36), the field of displacement
along the length of each discrete element is determined.

Displacement
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Fig. 11. Dependences of displacement along the length of
the rod

6. Discussion of the results of the study of local surface
heat exchange in rods of variable cross-section

Fig. 6 shows the law of temperature distribution along
the length of the rod in question. First, we determine nodal
temperature values using the obtained resolving equations
taking into account natural boundary conditions (19). As
a result, the nodal temperature values T; (i=1-7) are ob-
tained. Then, using formula (4), the temperature distribu-
tion field is determined within the length of each discrete
element.

Fig. 9 shows the distribution fields of three strain com-
ponents:

1) e(x) — the distribution field of thermoelastic strain,
determined by formula (31);

2) &.(x) — the distribution field of the elastic strain com-
ponent, determined by formula (34);

3) er(x) — the distribution field of the temperature
strain component, determined by formula (32).

Then, in this case, a steady thermo-stress-strain state
arises in the rod.

The value is e(x=0)=-0.00043, £(x=30 cm)=-0.001722.
This means that the value e(x) at the left end of the rod
is 4 times less than at the right. This process is due to the
fact that the cross-sectional area of the left end of the rod is
4 times larger than the right one. The law of distribution of
the temperature component £7(x) along the entire length of
the studied rod of variable cross-section has a compressive
and non-linear character. Moreover, its maximum value
e7(x)=-0.0014 is observed at the left end of the rod. There
is a monotonous reduction of er(x) to the cross-section
of the rod, the coordinate of which is x=16.25 cm. Here
er(x=16.25)=—-0.00042854. This is due to heat exchange
through the side surface of the middle section of the rod with



the environment. Then again, er(x) has a slightly increasing
nature, and e7(x=30 ¢cm)=-0.000964619. In the distribution
law of &7(x), it is revealed that:

er(x=0)/er(x=L=30 cm)=1.4804.

This is due to the fact that the cross-sectional area of the
left end of the studied rod is 4 times larger than the right. In
contrast to other laws, the distribution of the elastic strain com-
ponent along the length of the studied rod of variable cross-sec-
tion has a sign-variable character. In particular ,(x), in the
area of the 0<x<10 cm rod has a tensile character. For the rest
10<x<L=30, see the section of the rod also has a compressive
character. In general ¢,(x), it also has a nonlinear form.

Fig. 10 shows the distribution laws of three stress com-
ponents:

1) 6 (x) is the thermoelastic stress component, defined
by formula (30);

2) o7 (x) is the temperature stress component, defined by
formula (33);

3) 6, (x) is the elastic stress component, determined by
formula (35).

From Fig. 9, 10, it can be seen that they are proportional
to the corresponding strain components. In this case, the
proportionality coefficient is the modulus of elasticity of the
rod material £=2-10 kG/cm?.

Finally, Fig. 11 shows the distribution field of displace-
ment of sections of the investigated rod of variable cross-sec-
tion. It can be seen from the figure that all sections move
from left to right in the direction of the Ox axis. This is due
to the fact that the cross-sectional area of the left end of the
rod where the heat flux of constant intensity ¢ is applied is
4 times larger than the right one. The largest displacement
amplitude corresponds to the cross-section of the rod with
the coordinate x=11.25 cm. This is due to the occurrence of
a large temperature T(x=0)=112.059 °C at the left end of the
investigated rod of variable cross-section.

The Fig. 11 shows that all cross-sections move from left
to right. This is also due to the large heat flux at the left end
of the rod. The largest displacement is on the cross-section of
the rod with the coordinate x=11.25 cm, as the displacement
on both ends of the rod is equal to 0.

All the solutions obtained satisfy the fundamental laws
of energy conservation; therefore, they are highly accurate.
It is assumed that the developed methods, the computational
algorithm and the software package ASIR 2.0 in Python will
be useful in the design of power plants, internal combustion
engines, jet engines.

The developed method can be used to study the appli-
cability of the hypothesis of flat sections and before the
appearance of plastic deformations, those within elastic
deformations. Within these limitations, the results obtained
will ensure convergence and accuracy.

In terms of the accuracy and convergence of the results
obtained, this method is highly effective. But when sampling
the studied rod for a large number of discrete elements, a
large amount of memory and computation time are required.

Although computational experiments show that the neces-
sary accuracy is achieved with sufficiently small numbers of
discrete elements.

7. Conclusions

1. A method for constructing spline approximating func-
tions within the length of each discrete element of a rod of vari-
able cross-section for determining the temperature field was
developed, computational results and a graph were obtained.

The peculiarity of the proposed method consists in the
fact that this method allows taking into account the existing
natural boundary conditions at the level of the energy con-
servation law, taking into account the nonlinear variability
of the cross-section. This solution approach makes it possible
to take into account the piecemeal heterogeneity of the rod
material. The developed method allows taking into account
the simultaneous presence of several local heterogeneous heat
sources and types of thermal insulation, making it possible to
calculate thermal loads on a variable cross-section rod.

2. As aresult of calculations, graphs of fields of all strain
and stress components are obtained. The work does not take
into account the dependence of the modulus of elasticity
and the coefficient of thermal expansion on temperature. To
do this, it is necessary to conduct appropriate experiments.
Further study will address these shortcomings.

3. Using resolving systems of algebraic equations taking
into account natural boundary conditions, displacement
fields are calculated, a graph is plotted.
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