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1. Introduction 

Azimuthal thrusters (ATs) reflect a growing trend in the 
modern market of sea-based vehicles (SBVs). AT is a propel-
ler mounted in a nacelle under the body of SBV. This nacelle 
is able to rotate around its axis, which makes it possible to 
change the direction of the force acting on SBVs [1–3].

Unlike SBVs with ATs, most modern vessels are driv-
en by a mechanical system with an internal combustion 
engine (ICE) or a propeller electric motor (PEM), which 
rotates the propeller through the shaft line system. The di-
rection of rotation of the propeller is usually fixed relative to 
the hull of the vessel, and the control is carried out mainly 
by the steering pen in the aft. Some vessels also have tunnel 
thrusters (TTs) installed in the bow or aft parts that provide 
a lateral thrust to improve maneuverability capabilities, such 
as mooring. Another method of movement and maneuvering 
that is currently being used is ATs.

With greater maneuvering capabilities, there are more al-
gorithms to control Ats located in the aft part, which require 
greater operator qualification, or a more complex control 
system. The controller uses estimates of linear and angular ve-
locities obtained using the Global Positioning System (GPS) 
and inertial measuring units (IMU) to control SBVs.

Therefore, research on the development of algorithms 
for controlling large-scale models of SBVs, based on the lin-
ear-quadratic principle of controlling thrusters, is relevant.

2. Literature review and problem statement

This research investigates how adequately it is possible 
to control a smaller vessel with ATs using a linear-quadratic 
regulator (LQR). This will require mathematical modeling 
of both the behavior of SBVs and the thrust pattern of pro-
pellers. Since LQR requires linear models for design, some 
simplifications and linearization will be needed. Thus, a 
linearized model will also be implemented to describe the 
movement of this type of SBV. The scale model of the SBV 
to be controlled is shown in Fig. 1.

In the AT model (Fig. 2), PEM is placed in a nacelle, 
which is installed under the body in such a way that it can 
rotate around a vertical axis. The propeller is driven by a me-
chanical transmission that connects it to the engine inside 
the vessel or to the PEM installed inside the nacelle itself. 
This structure eliminates the need for steering and provides 
better maneuverability of the vessel under compressed sail-
ing conditions [4].
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spatial vectors of energy processes in SPP and hy-
drodynamic in the CPC remained unresolved.

The announced method provides for a simple 
model the approximation of Coriolis terms and the 
damping matrix by a linear function. This system 
of equations of motion is based on [7] where the 
applied models require that the dynamics of the 
vessel and the ATs be known with a certain accu-
racy to use the linear-quadratic theory of optimal 
control. However, in this case, the identification of 
the mathematical model of the vessel in a dynamic 
positioning mode (DP) is problematic since the 
excitation of the vessel under the action of DP is 
non-deterministic.

Different descriptions of excitation forces are 
based on [8] where models with four degrees of 
freedom are studied (where roll is an additional 
degree of freedom), and not with three, as in the 

case of [9] when the low-weight component is neglected. 
As for the three degrees of freedom, the equations are rep-
resented in the form of [10] where they are talking about 
controlling an autonomous underwater vehicle (AUV ) with 
a linear-quadratic Gaussian controller and a combination of 
different algorithms. But the reported simulation results did 
not allow us to conclude that the fixed and variable speeds 
match. In [11], the problem of maneuvering is solved by pa-
rameterizing the input data on the basis of ensuring the de-
sired dynamic behavior of the model. A technique of adaptive 
recursive design for a parametrically indefinite nonlinear 
object describing the dynamics of the vessel has been devel-
oped. First, the geometric part of the problem is solved. Then 
the law of renewal is built, which combines geometric design 
with a dynamic task. But the design procedure is carried out 
and tested by several experiments for the vessel model in the 
maritime control laboratory, which is not always possible.

On a classic marine vessel, drive forces originate from the 
rudder, fixed propellers, and thrusters (Ts). However, since 
the type of vessel in question is set in motion by the ATs, 
the reaction from the application of forces will be different. 
The ATs is an engine that can rotate 360 degrees around its 
vertical axis. This makes it possible to apply forces in the 
x- and y-directions depending on the position of the ATs 
and the torque applied to the vessel. Subsequent model cal-
culations, which use input data from the speed of rotation, 
and azimuthal angle, were mainly obtained from model cal-
culations [12]. The article analyzes parameter estimates for 
nonlinear regression models, where regressors are functions 
of a second-order module. The focus is on finding sequential 
estimates, and the instrumental variable method is used to 
this end. The problem of determining the accuracy of the 
appraiser remains unresolved if the input signal has a static 
displacement of sufficient amplitude, and the instruments 
are forced to have a non-zero average value of the time do-
main. These approaches were improved in [13] where more 
attention was paid to azimuthal forces as input data rather 
than rotational speeds. In [14] it is shown that this two-
step procedure gives consistent estimates for second-order 
module models in cases where the standard applied method 
for finding sequential estimates does not work, in particular 
when measurement uncertainty is taken into account. In ad-
dition, it is shown that the possibility of obtaining consistent 
parameter estimates for models of this type depends on how 
the perturbations of the process enter the system, and on 

Fig.	2.	General	view	of	the	physical	model	of	azimuthal	
thrusters	located	in	the	aft	part	of	the	physical	model	of	a	

multifunctional	propulsion	complex	with	a	variable	structure

To determine the SBV position, orientation, and speed 
of movement, appropriate movable and fixed coordinate 
systems are required. The most common representation 
for a fixed coordinate system is based on hull symmetry 
around the XbZb-plane, approximate symmetry around the 
YbZb-plane, and projection onto the Zb-axis relative to the 
surface of the water. The inertial (fixed) coordinate system 
is used to describe the position and orientation of the vessel 
in global coordinates and Euler angles as [x y z]Tand [ϕ θ ψ]T, 
respectively. The moving coordinate system describes forces, 
torques, linear velocities, and angular velocities [X Y Z]T,  
[K M N]T

, [u v w]T
, [x y z], and [p q r]T, respectively. The move-

ment of the vessel can be described by six degrees of free-
dom, which are divided into two categories. Translational 
motion in three directions: longitudinal movement (surge), 
transverse movement (sway), and vertical movement (rise), 
as well as rotational movement around three axes: onboard 
swing (roll), keel swing (pitch), and yaw. These are the stan-
dard designations used in the modeling of ships [5, 6]. In [5], 
the results of research as part of the improvement of the deci-
sion support system (DSS) were to formalize these designa-
tions in the design of ship power plants (SPP) for combined 
propulsion complexes (CPC). And in [6], the implemented 
DSS built by using system analysis, optimization, and mod-
eling technologies aimed to implement this approach on the 
basis of DMI-models of ships. The issues of improving DSS 
by the method of mutual implementation of characteristic 
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Fig.	1.	General	view	of	the	physical	model	of	a	multifunctional	
propulsion	complex	with	a	variable	structure:	1	–	thruster	of	the	
Contra-rotating propeller	system;	2	–	main	electric	motor	of	the	

Contra-rotating propeller system;	3	–	aft	thruster;	4	–	bow	thruster	
with	two	degrees	of	freedom;	5	–	bow	tunnel	thruster
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the volume of preliminary data on perturbation probability 
distributions that are available. In the cases where first-or-
der moments are known, the aforementioned approach gives 
consistent estimates, even when perturbations enter the 
system before nonlinearity. To obtain consistent estimates in 
the cases where the moments of the first order are unknown, 
a structure is proposed to evaluate the moments of the first 
and second order along with the parameters of the model. 
This moment imposes additional requirements for the accu-
racy of measurement of these parameters. 

To predict the states of the controller, it is necessary to 
use a monitoring system using sensors used in marine navi-
gation. The main monitoring systems used in the control of 
the vessel are the inertial measurement unit (IMU) and the 
Global Positioning System (GPS).

IMU uses a combination of accelerometers, gyroscopes, 
and magnetometers to measure angular velocities, accelera-
tions, and magnetic fields. It is an important device for con-
trolling vessels as they can move and rotate in all 6 degrees 
of freedom. Measurements from the gyroscope and acceler-
ometer include some shifts that create a systematic measure-
ment error. If the angular velocities and accelerations are 
integrated, then as a result of linear velocity errors, they will 
increase linearly over time, and the orientation error – qua-
dratically. Therefore, it will be difficult to rely only on IMU 
for this purpose over a longer period of time [15].

GPS is a system that uses satellite communication and 
data exchange with the receiver and providing information 
about location and time in areas with unhindered direct 
visibility. The most common GPS has For autonomous ve-
hicles, the development and implementation of a high-integ-
rity navigation system is based on the combined use of GPS 
and IMU. Improving the integrity of the navigation cycle 
will be carried out by identifying possible malfunctions both 
before and during the synthesis process. The implementation 
of this fault detection methodology takes into account both 
low-speed failures in IMU caused by displacement in sensor 
readings and device offset, as well as high-speed failures in 
the GPS receiver caused by multi-beam propagation errors.

The main purpose of the task of adequate vessel control 
is to minimize the design criterion, that is, to balance it 
between the magnitude of the tracking error e=y–r and the 
value of the input signal. Sometimes such a paradigm can be 
considered as an optimization problem when a system is de-
scribed using a linear differential equation, and integration 
relationships are described using quadratic functions.

To achieve the desired design behavior of the system, 
an iterative modeling and adjustment process is necessary 
in accordance with the behavior of the observed regulator 
in order to find the optimal value of constant coefficients. 
The controller defined above resets the state of the system to 
zero but, in this case, the controller must follow the specified 
reference signal.

A common problem that arises when modeling the yaw 
velocity is the unrealistic reaction of the model during the 
linearization of the input signal. When compared with a 
possible real reaction, almost any angle of α that is not close 
to the working value will differ significantly from the actual 
one. A possible solution for this problem is to use predictive 
amplification.

Predictive amplification is an approach to controlling 
a nonlinear system using multiple linear controllers. Thus, 
having several linearization species regarding the approxi-
mation of the trigonometric function at different operating 

points, LQR can be applied to these segments independently. 
A similar application of predictive LQR amplification, but in 
the field of risk management, was performed in [16], except 
for the problems of switching between linearization spe-
cies [17]. If we neglect this aspect, then an unstable state or 
instability in the system may occur. 

By using the Kalman filter to combine the information 
provided by the two sensors, it is possible to reduce the 
negative effects. The IMU offset can be adjusted, and when 
the GPS sensor is not in line of sight, the controller will rely 
more on IMU until the GPS reaches the line of sight again. 
However, since most maritime routes pass through areas 
with open skies, the GPS signal will always be present and 
therefore the focus will be on fixing the elimination of IMU. 
This type of integration of sensors for driving vehicles 
outdoors is implemented in [18] where ground transport 
is used instead of SBVs. In [19], the Kalman amplification 
coefficient is found using MATLAB/Simulink. First, an 
inertial system is developed to obtain information about the 
orientation and position of the control object. To determine 
the position and course, an algorithm for combining sensors 
using a standard Kalman filter is proposed. LQR meth-
ods and Kalman filtration are discussed in detail in [20]. 
Combined use of Kalman filtration and LQR is called lin-
ear-quadratic-gaussian control (LQG). Similar approaches 
to using such methods to solve such problems are considered 
in [21, 22]. In [21], a combination of equations describing 
the movement of a load by the mechanism for lifting the 
frame of the pallet holder into a system of differential equa-
tions with coefficients dependent on ship oscillations is 
proposed. In [22], the same approach is applied to the design 
of a linear-quadratic Gaussian regulator for a submarine. In 
both the first and second cases, the eigenvalues of a linear 
time-constant system can be optimally placed by modifying 
the performance criterion in the optimal controller design. 
The results are compared with the linear-quadratic Gauss 
controller, developed by standard methods of forming a cycle 
in the state assessment system and using a linear-quadratic 
regulator to restore cyclic transfer. The only thing that re-
mains undefined is the method of assigning the eigenvalues 
of the optimal state feedback system.

Physical modeling begins with determining the SBVs 
coordinate system and how certain forces act on the SBVs in 
the aquatic environment. After that, it is explained how the 
thrusts and rotational moments of ATs affect SBVs depend-
ing on the angle and speed of rotation. These mathematical 
models are then combined to form a spatial vector of states 
in which the regulator will be applied. It then describes how 
LQR works and how to find the optimal controller using the 
Riccati model and equation [23]. It also explains how the 
following actions of the controller are activated, depending 
on possible changes in operating conditions. The results of 
a simulation research with the setting of the controller and 
controller of the reference input signals are analyzed in ac-
cordance with the achievement of the desired results. Also, 
during the simulation, the advantages of choosing different 
operating points for linearization of the model for different 
controller settings are investigated.

To take into account the existing restrictions, it will be 
necessary to adopt a number of simplifications. Some de-
grees of freedom (DOF) that have little effect on the system 
will be excluded. In modeling, we shall use only 3 degrees 
of freedom (DOF) out of 6 (pitching, roll, and yaw). Some 
parts of the resulting mathematical model will be nonlinear, 
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so linearization will be necessary for the model to 
work with LQR. If it is impossible to obtain data 
from a real vessel, the modeling and design of the 
controller will be carried out using only nominal 
values.

3. The aim and objectives of the s research 

The development of an optimal-parameter 
LCR for controlling SBVs with ATs in the aft 
part is reduced to a comparison, according to 
the results of modeling, of its work with actual 
conditions. This makes it possible to improve the 
control algorithms for scale models of SBVs based 
on the linear-quadratic principle of controlling 
thrusters.

To accomplish the aim, the following tasks have 
been set:

– to carry out physical modeling of SBVs with 
ATs in the aft part;

– to check the behavior of the model in combination with 
studies of the design features of vessels of this class;

– on the basis of the defined space of states and lineariza-
tion of the AT control system, to simulate the yaw velocity 
to track the effect of disturbing forces on the characteristics 
of the controller;

– to determine the principles of linearization with inde-
pendent control over the speed and angle of rotation of ATs;

– to define the limiting characteristics of azimuthal an-
gles to adapt the controller to actual conditions. 

4. Materials and research methods

4. 1. Methodology of iterative linearization of control 
system states

The position, orientation, and velocity of SBVs in accor-
dance with the coordinate systems (Fig. 3) are based on hull 
symmetry around the XbZb-plane, approximate symmetry 
around the YbZb-plane, and projection onto the Zb-axis 
relative to the surface of the water. With this in mind, the 
position orientation vector and the linear-angular velocity 
vector can be defined as: 

[ ] ,
T

x yε ϕ  [ ] .
T

v u v r   (1)

The usual simplification of the model is to neglect verti-
cal movements (lifting/submerging) and longitudinal pitch-
ing (“pitching”). To simplify the model, the roll angle is also 
assumed to be small.

These generalized positions and velocities have a geomet-
ric relationship that can be described as:

( ) ,J vε = ε   (2)

and the equations of motion of the vessel in the inertial 
(fixed) coordinate system take the form:

( ) ( ) ,MR MR actG v C v v D v v+ + = τ   (3)

where GMR is the inertia matrix of a solid, CMR(v)v represents 
centripetal and Coriolis terms, D(ν) is the damping matrix, 
τact is a vector with generalized external forces. 

For three degrees of freedom, the equations are repre-
sented as follows: 

( )
cos sin 0

sin cos 0 ,

0 0 1

J

ϕ − ϕ 
 ε = ϕ ϕ 
  

  (4)

0

0 ,
G

MR G

G G Z

m y

G m mx

my mx I

− 
 =  
 − 

  (5)

( )
0

0 ,

0

G

MR G

G G

mr mx r

C v mr my r

mx r my r

− − 
 = − 
  

  (6)

( )
0 0

0 0 ,

0 0

u

v

r

X

D v Y

N

 
 =  
  

  (7)

where the total mass of the vessel is assumed to be equal to m 
and is found as rg=rG=[xG, yG], as well as the Iz-inertia moment 
relative to the z-axis, expressed in the b-system. Xu, Yv and Nr 
are large-scale damping coefficients.

Then the goal at this stage will be to find the law of con-
trol u=−Lx, where:

,u Lx= −

( ) ( ) ( ) ( )( )1 2
0

arg min d ,T T

L
z t Q z t u t Q u t t

∞

= +∫L  (8)

where Q1 and Q2 are weight matrices that can be used as de-
sign variables for the resulting controller. The solution of the 
optimization problem is carried out by determining:

1
2 ,T NL Q B S−=   (9)

where SN is a positively defined matrix that solves the Ricca-
ti algebra equation:

2 1
1 2 0.T N N N T NA S S A M Q M S BQ B S−+ + − =   (10)

 
  

Fig.	3.	Standard	designations	for	describing	the	movement	of	a	vessel		
in	accordance	with	(1)
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The solution to this equation can be derived using MAT-
LAB Simulink software. To do this, you need to integrate 
the reference signal ref in the equations:

( ) ( ) ( ),refu t Lx t L ref t= − +   (11)

where Lref is selected so that the static gain corresponds to a giv-
en value. A similar method of using LQR was applied in [24]. The 
system developed according to this principle is shown in Fig. 4.

Each system is characterized by uncertainties. Typical-
ly, these uncertainties are modeled as a random stochastic 
process (“white noise”), which is a random signal with a 
constant spectrum. Given the uncertainty, the model can be 
written as:

1,x Ax Bu Nv= + +  = +
.

2,Ny C x v  ,MRz G x=  (12)

where v1 and v2 are white “Gaussian” noise with normal dis-
tribution in the time region with zero mean value of the time 
region. In order to filter out these signals, a state observer can 
be implemented that uses the estimate in the following form:

( )
( )
= = + − =

= − + +

ˆ ˆ ˆ

ˆ .

N

N

x Ax Bu K y C x

A KC x Bu Ky  (13)

This problem can be solved by describing it as 
an optimization problem by analogy with the defi-
nition of LQR with minimizing the variance of the 
valuation error. If the system error is designated as 

,ˆe x x= −  then the variance will be equal to Ee(t)e(t). 
If v1 and v2 are independent and have a normal distri-
bution in the time domain with a zero mean value of 
the time domain, we can assume that:

1 1 1,T
eE v v V= 2 2 2,T

eE v v V=

1 2 0.T
eE v v =

 
 (14)

Then the state observer can be described as:

1
2cov ,NK PC V −=   (15)

where covP is the covariation matrix of the optimal 
estimate that solves the Riccati equation:

1

1
2

cov cov

cov cov 0.

T T

NT

A P PA N V N

PC V C Pα

α α

−

+ + −

− =  (16)

(16) is called a Kalman filter, where V1 and V2 
are variables that can be configured to filter process 
perturbation and measurement. 

Suppose that the force Nα of ATs is applied to the hull of 
the vessel. Let the thruster be the AT that rotates at the speed 
of rotation of the propeller ωi (r/s), and the angle of the applied 
resulting force αі (rad). Then the forces in the xb-direction from 
the azimuthal motor i can be designated as (Fig. 5):

( ), ,, , ,x i x i i iF g uα= ω α  (17)

where uα,i is the velocity of water 
passing through ATs in the negative 
direction xb. This is necessary be-
cause at higher speeds, and when uα,i 
and ωi cos(αi) are equal to the same 
sign, there will be a loss of efficiency. 
The assumption in the model is a lin-
ear relationship between gx and ωi as:

( )
( )

( )

α

α

ω α =

= µ ω α −

− ω α′

,

,

, ,

cos

cos ,

x i i i

i i i

i i i i

g u

k u  (18)

where µi and ki are positive constants defined by a full-scale 
experiment, and uα,i can be described as:

( ), 1 .i i ru w uα = −   (19)

Here, wi is the coefficient of the passing flow, which deter-
mines the ratio of the speed of water flowing through the propel-
ler to the speed of the vessel ur – the relative speed between the 
vessel and the surrounding water. By combining the coefficient 
of passing flow, we can simplify the second term in (18) using:

( )1 ,i i ik w k′= −   (20)

and substituting this in (18), we get:

( ) ( ) ( ), , cos cos .x i i r i i i i i r ig u k uω α = µ ω α − ω α  (21)

 

 
  

Fig.	4.	Designation	of	the	reference	signal	and	system	feedback

 

 
  

Fig.	5.	Location	and	angle	of	rotation	of	the	i-th	AT
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Thus, we have a generalized model of forces from ATs. 
However, the true function gx(·) is more complex due to 
water dynamics but the approximate function would be ade-
quate for the purposes of this research.

Similarly, the force in the Yb-direction:

( ) ( ) ( )
( ) ( )

, ,, , sin sin

sin sin ,

y i y i i r i i i i i a i i

i i i i i r i

F g v k v

k u

′= ω α = µ ω α − ω α =

= µ ω α − ω α  (22)

can be found with the same assumptions as for the x-direc-
tion. The azimuthal engine i will also generate torque relative 
to the vessel depending on where it is installed relative to the 
center of rotation of the vessel. Torque can be described as:

, , , , .i x i y i y i x iM F F= ∆ − ∆   (23)

The generalized torque vector contains forces and mo-
ments from all azimuthal motors put together:

( ) ( )

( ) ( )

( ) ( )( )
( ) ( )( )

1

1

, ,

1 , ,

cos cos

sin sin ,

sin cos
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N

i i i i i r i
i

N

act i i i i i r i
i

N
i x i i y i i

i
i i x i r i y i r i

k u

k u

k v u

α

α

α

=

=

=

 
 

µ ω α − ω α 
 
 
 τ = µ ω α − ω α
 
  µ ∆ α − ∆ α −  ω  − ∆ α − ∆ α   

∑

∑

∑

. (24)

To make the model even easier, we neglect the losses at 
high speed in the yb direction since the speeds in this direc-
tion are much lower than in the xb direction.

Also, for simplicity, it is assumed that each engine is 
equally efficient and therefore:

, 1,..., ,i j i j Nαµ = µ µ∀ = , 1,..., .i jk k k i j Nα= − ∀ = , (25)

which yields:
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α

α
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µω α + ω α 

 
 

τ = µω α 
 
 
 µω ∆ α − ∆ α −
  

∑

∑

∑

 (26)

Since τact depends on ur, which, in turn, depends on the 
rate of increase in motion resistance, the model becomes 
nonlinear. For simplicity, we neglect these terms and the des-
ignation of a generalized torque vector can be simplified to:

( )
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( ) ( )( )
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1

, ,
1

cos

sin .

sin cos

N

i i
i

x N
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 (27)

Since CMR(ν) depends on ν, the term CMR(ν)ν becomes 
nonlinear. However, the use of LQR requires a linear model. 
Thus, linearization is needed to simplify the model further. 
Linearization is described by the function:

( ) ( ) ( )( ),L x f a f a x a′= + −   (28)

where L(x) is called a linearized function, f(α) is a function 
to be linearized in α , f ‘(α) is a derivative of f(x) over x, 
estimated in (α), in this case the Jacobian of function f(x). 
Finally, x – linearization variable (in this case, ν), α is the 
selected operating point (angle of rotation of AT relative 
to the body of SBV. In this case, the linearizing terms are 
equal to:

( ) ( )
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which contains Jacobian:

( )
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 (30)

The operating point depends on what state the system 
should be. Since the system will operate at a constant for-
ward speed and with minor changes in the speed of rotation 
of AT, the corresponding operating point is defined as:

0

0

0

1

0 .

0

u

a v

r

   
   = =   
      

  (31)

Using this working point and linearizing CRB(ν)ν, we 
find the following:

( )
0 0 0

0 0 .

0 0
MRG

u

L v m v

mx r

   
   =    
     

  (32)

The matrix of states (32) will then replace CMR(ν)ν in 
the equation of the space of states.

4. 2. Linearization of the assigned input signal
To control a vessel using an AT, it is necessary to process 

drive signals as input signals, so the complete equation (26) 
must be combined into a controller with a dependence on 
ω and α. Due to the trigonometric functions of cos and sin, 
which are present in (27), linearization with the LQR frame-
work is necessary to match it.

Linearization of the general case is as follows. Since 
there are several operating points that can be selected in 
the simulation, a general case of linearization is necessary. 
In addition, two different linearization species are needed 
through two ways to control the vessel. One with synchro-
nous control, that is, the same input signals for both ATs, 
and one with differential (asynchronous) control, where the 
Ats are controlled independently. Starting with synchronous 
control, we use the following variables:
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cov .i
s

i

P
ω 

=  α 
  (33)

Then (28) integrates to (27) with the previously men-
tioned variable and the generalized working point as αs:
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which gives the following equation, which includes a con-
stant term:

This means that the stable state of ATs must be at this oper-
ating point and the controller will control deviations from this 
state. In other words, τact can be divided into two parts as follows:

,act act actτ = τ + τ  (37)

 where τ act  is constant, and:
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, , , ,

cos sin

sin cos ,

sin cos sin cos

act

N

i
x i y i x i y i

α

=

τ =

 α −ω α
ω  = α ω α    α  ∆ α − ∆ α ∆ α + ∆ α 

∑



 
(38)

depends on the time that will be determined by the LQ con-
troller. This linearization will force the ATs to use the same 
rotational speed and propeller flow angle for both ATs.

For differential (asynchronous) control, the control 
variable will contain a separate definition of the control 
signal:

[ ]1 2 1 2 .
T

dp = ω ω α α ,  (39)

where the speed of rotation of the propeller and the angle of 
the applied resulting force, respectively: ω1, α1 – port side, 
ω2, α2 – starboard.

As before, equation (28) is applied and a new Jacobi matrix 
is displayed and a working point is used. However, for f(pd) 
is still chosen (34) since these equations must also undergo a 
linearization procedure. The reworked equations are as follows:
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These transformations give complete linearization:
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and differential (asynchronous) control signal:
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With the help of such linearization, it is possible to de-
scribe the functions of an independent change in the speed of 
rotation and the angles of location of AT engines.
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4. 3. Determination of a coherent position with linear-
ization function

For a simplified model, some position points give the best 
results depending on the expected maneuver of the vehicle. The 
simplified trigonometric orientation function of the AT motor 
is an important aspect when a position determination point 
is selected because they are periodic. After linearization, the 
trigonometric function loses its characteristic behavior, and a 
higher value always leads to an increase in torque. Therefore, 
the obtained simulation results must correspond to the point of 
determining the position i in order to have the result closest to 
reality. For the rotating scenario of the model, a nonzero value of 
α for the selected algorithm would be reasonable, and for a sharp 
change in the trajectory, a higher value of ω and a zero value of α. 
These two different approaches will be used for linearization 
and they are described as follows, starting with an algorithm for 
abruptly changing the ship’s trajectory (an increasing algorithm):

20
.

0
 

α =  
 

  (43)

Using this point of determining the position, which is 
determined by the optimal angle of α, and substituting the 
values ∆хi and ∆уi for both ATs in (38), we get:

4 0

0 52 .

0 22
act

 
ω  τ =    α  − 



  (44)

For the ship’s turning algorithm, the position determina-
tion point is determined as follows:

10
,

/ 6
 

α =  −π 
  (45)

adjusted to match the nonzero angle of AT pro-
pellers. The turning speed also decreased. By 
inserting these value ∆x,i and ∆y,i in (38), we get:

3 10

1 10 3 .

0.6 4 3
act

 
  ω 

τ = −   α   
−  



  (46)

These will be two different linearization 
species that will be used in the simulation. The-
oretically, the latter should give better results 
when modeling with an increased yaw velocity. 
We get two points for determining the position:

[ ]26 26 0 0 ,
T

da =

[ ]12 12 / 6 / 6 ,
T

da = −π −π  (47)

which will also be used for differential lin-
earization and have equivalent values. These 
points of position determination define the 
following equations:
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(48)

Such linearization can increase the maneuverability of 
the vessel and create different approaches to solving the 
control problem.

4. 4. Definition of the space of states
To use LQR, the model must be defined in the form of a 

space of states:

,x x u= + A B

,Ny x u= +C D   (49)

where x – controlled states, u – input signals, y – output sig-
nals, A – state matrix, B – input matrix, CN – output matrix, 
and D – direct bond matrix. So the inverse matrix GMR (3) 
must be written as:

( ) ( )( )1 .MR actv G L v D v v−= − − + τ  (50)

Using this equation and substituting parameters and 
variables from (5), (7), and (32), it is possible to simplify the 
equation for τact. τact will be replaced by ~ ,actτ  which is one of 
the linearized parameters. The equation can be simplified as 
follows:
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Assuming that the value 
MRGr  is significantly small, it 

can be brought closer to 0. Then the equation for ν can be 
simplified even more:
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  (52)

The resulting form can be considered as a representation 
of the space of states, where:
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The sensors used to determine the speed and position of 
the vessel are in a moving coordinate system, which leads to 
the following definitions:
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D
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B will vary depending on the linearization of the input 
signal used, for example if (44) and (46) are used. From (2) 
and (4) these values can be transferred to the ω-system, 
where it is assumed that ψ=0.

5. The results of researching the method of linear-
quadratic control over the physical model of ta vessel 

with azimuthal thrusters

5. 1. Physical modeling of elements for a sea-based 
vehicle 

The physical scale model of SBVs is based on a controller 
that uses input data from GPS and IMU to determine the 
position, course, and speed of the vessel. Based on these data, 
the controller will control the actuators, an electronically 
commutated motor (ECM), and a servo drive for each AT. 
ECM is connected to the AT propeller through gear trans-

missions (Fig. 6). The gear ratio between the servo drive and 
the AT compound is quite large. The main characteristics 
of the formalized physical model of AT are shown in Fig. 7.

Fig.	6.	Gear	transmission	connecting	the	electronically	
commutated	motor	with	the	propeller	of	the	azimuthal	thruster	

To regulate the rotational speed and torque of ECM, the 
motor currents are measured and the throughput is calculat-
ed with high accuracy (Fig. 6). Torque control is an integral 
part of the design of most applied speed control circuits of AT 
electric drive systems. Theoretically, the time of increase in 
the torque in the frequency converter (FC) with pulsed width 
modulation (PWM) is limited by the inductance of the motor 
in dependent current inverters with a DC link [25]. However, 
in practice, the controller limits the rate of change in torque to 
prevent damage to the mechanical part of the electric drive.

Fig.	7.	Physical	model	of	the	thruster	with	two	degrees	of	
freedom:	1	–	electronically	commutated	motor	supply	cable	and	

a	drive	cable	for	changing	the	angle	of	inclination;		
2	–	drive	gear	of	the	baller’s	turn	drive;	3	–	baller;	4	–	bearing	
shield;	5	–	feedback	spring	of	the	drive	for	changing	the	angle	

of	inclination;	6	–	supply	cable;	7	–	support	bearing;		
8	–	oil	seal	inputs;	9	–	rope	of	the	drive	for	changing	the	

angle	of	inclination;	10	–	stabilization	wings;	11	–	fixed	pitch	
propeller;	12	–	fluorescent	mark	for	remote	measurement	of	the	
rotational	speed	of	the	fixed	pitch	propeller;	13	–	the	place	of	

connection	of	the	baller	with	the	body	of	the	azimuthal	thruster;	
14	–	body	of	an	azimuthal	thruster	with	an	electronically	

commutated	motor	located	inside
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Fig.	8.	Block	diagram	of	a	closed	system	for	controlling	
the	torque	of	an	electronically	commutated	motor	of	the	
azimuthal	thruster:	Ψp	and	Ψcalc	–	values	of	the	assigned	
and	calculated	flows,	Isa,	Isb	–	measured	values	of	stator	

currents;	PWM	–	pulse-width	modulation;		
IM	–	induction	motor;	FC	–	frequency	convertor

Fig.	9.	Block	diagram	of	the	speed	controller	in	an	
electronically	commutated	motor	

Thus, the transfer function of the controller can be de-
scribed by dependence:

( ) ( )
FC

1
,

1p dF s M s
t

=
−

 (55)

where tFC=20…200 ms.

5. 2. Checking the behavior of SBV model when mod-
eling surge 

To check the behavior of the model and determine 
whether the controller can control the system, a simulation 
research is carried out to check certain properties of the 
system. Each simulation is performed with simultaneous and 
differential control of ATs [26‒34].

For GFC, the interaction between the torque of the 
propeller Мp, which is determined by the push force Fp, 
the thrust Tp and the power Pp of the propeller, is found 
on the basis of the diagram of free water and the dynamics 
equations regarding the shaft speed and the diameter of the 
propeller [35]: 

= ρ⋅ ⋅ ⋅ω ⋅ ω
= ρ⋅ ⋅ ⋅ω ⋅ ω 
= π⋅ω⋅ 
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;

2 ,

p p T

p p F

p p

T D K

M D K

P M

  (56)

where ω – propeller speed, r/s; ρ – density of water, kg/m3; 
Dp – propeller diameter, m; KT – propeller thrust factor;  
KF is the coefficient of momentum. 

The relative pitch of the propeller λ (Hp)=υa/(ωDp), 
where υa is the speed of water inflow to the propeller. The 
efficiency of using the propeller in open water is defined as 
the ratio of the work performed by the propeller to obtain 
the thrust force to work necessary to overcome the torque 
on the shaft:

υ ⋅ λ
η = = ⋅

ω π
.

2 2
a p T

p
p F

M K
T K

  (57)

As an initial test, a simple speed jump was made. This is 
done both for synchronous steering, when the input signals 
for both ATs are the same, and for differential (asynchro-
nous), when the ATs can be controlled independently. Both 
simulations are performed using the linearization of the 
drive, where α is zero (46).

5. 2. 1. Synchronous control over aft azimuthal 
thrusters

The purpose of setting was to get a relatively fast 
transient characteristic with minimal overshooting, so the 
emphasis was on minimizing tracking errors. This is mainly 
done in order to see the relationship between the speed of 
rotation of the propellers and the characteristics of the load 
surge, as well as how the angle of the propeller, close to zero, 
behaves. Weight matrices and reference gain will be deter-
mined as follows:

1

120 0 0

0 1 0 ,

0 0 1

Q
 
 =  
    

2

1 0
,

0 1
Q

 
=  

 
 

3

10 0 0
,

0 0 0
Q

 
=  

 
  (58)

giving the results shown in Fig. 10–12.

Fig.	10.	Response	to	the	jump	in	setting

Fig. 12 demonstrates a jump in the speed of rotation (a), 
which stabilizes with a constant zero angle, which leads to a 
quick response to the jump and no overshooting. As expect-
ed, the reference zero angle does not lead to sway or yaw, as 
shown in Fig. 11.

 

 
  

 

 
  

 

 
  



Industry control systems

59

5. 2. 2. Differential (asynchronous) control over azi-
muthal thrusters

For differential control, the goal was the same as for mod-
eling synchronous control over ATs in order to get a quick 

response in response to perturbations. Thus, the setting was 
similar, with the exception of the bottom two elements in the 
left column of the reference amplification. They correspond 
to setting and must have different signs so that the controller 
can use them to stabilize the system. They can also be zero 
but then this simulation will be no different from a synchro-
nous control simulation. In fact, this is not a problem, but it 
does not reveal the possibility of differential asynchronous 
control.

The simulation results are shown in Fig. 13–15. Some 
similar behaviors of the control system can be seen in 
Fig. 13, 14 compared to the previous modeling. This indi-
cates that the simulation is working properly. 

Fig.	13.	Differential	(asynchronous)	response	to	the	jump	in	
setting

It can also be the result of linearization where the 
quadratic rotational speed function is more influential 
than the AT angle function. This may also be due to the 
fact that the elements of the matrix Lr (3, 1) and (4, 1) are 
not zero (59):
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2
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,
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,
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r pL

 
 
 =
 −
 
 

 (59)

Fig. 15 demonstrates some differences. Both engines 
have a small angle of location relative to the diametrical 
plane of the vessel. This leads to the fact that both AT en-
gines need a lower rotational speed to ensure the assigned 
water flow rate.

 

 

a

b 

Fig.	11.	Speed	setting:	a	–	sway	speed;	b	–	yaw	speed

 

 

a

b  

Fig.	12.	Input	signals:	a	–	setting	the	speed	jump;	b	–	angle	α
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a 

b 

Fig.	15.	Differential	input	signals:	a	–	speed	jump	setting;	
b –	setting	angle	α

5. 3. Yaw speed modeling based on a defined space of 
states

To investigate the behavior of the physical scale model of 
the vessel when turning, a step is taken to set the reference 
yaw speed. To test the possibilities and realistic implementa-

tion in practice, two different simulations are performed. One, 
in which there is some “mitigation” of the installation time 
and there is a re-adjustment (peak test), and another in which 
the controller tries to adhere to the reference task as “rigidly” 
as possible (smooth test). The peak test has been adjusted so 
that all simulations, including it, have the same installation 
time about 10 seconds after the start of the task. Since linear-
ization and simplification of the model have been carried out, 
this test can give unrealistic results, but is still considered to 
correspond to the capabilities of the control system.

5. 3. 1. Zero-angle linearization with synchronous 
control 

For subsequent simulations, the same rotational speed 
and angle of the propeller are selected for both ATs.

In this simulation, the controller uses matrices obtained 
by linearization around the operating point with translation-
al motion of input signals (44), which are designed to work 
with the angle of the propeller close to zero. For the control-
ler, two different settings are used, which are performed for 
two tasks: first, for the state when the input signals are equal 
to 1, and the reference gain is adjusted to achieve the target 
value. Another setting fixes a tracking error to increase ro-
tational speed, providing the closest speed to the reference 
value while keeping the input level for a lower pitching speed 
value. In this regard, finding the limit of establishment takes 
more time, which gives information about the ability of the 
system by comparing a uniformly and more aggressively 
tuned system. Matrices of reference coefficients and trans-
mission coefficients, where p and s denote peak and smooth-
ing indices take the following forms, respectively:
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Fig.	16.	Transitional	characteristic	of	zero	angle	linearization

 

 

 

b  

Fig.	14.	Setting	differential	velocities:	a	–	sway;	b –	yaw	

a
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 b  

Fig.	17.	Input	signals	of	linearization	of	the	zero	angle:		
a	–	speed	of	rotation;	b –	angle	α

According to Fig. 17, b, the final value of α is 
αp=αs=0.065 rad.

Fig. 16 shows the main results of the work of two dif-
ferent controllers. The maximum value setting controller 
provides an overshooting that is 7 times higher than the ref-
erence value but stabilizes after 10 s. Most likely, this is the 
result of a change in the angle of location of AT, as shown in 
Fig. 17, at which α reaches a very high negative value, close 
to –20 rad, which is far from a realistic scenario for a real AT. 
This fact gives reason to overestimate the need for a sharper 
change in the rate of yaw over the slow one to counteract the 
state when the overshoot reaches such a high value. How-
ever, reducing α is advisable from a physical point of view 
because a small negative angle will provide positive torque 
around the z axis and a positive yaw speed. Although it can 
be a debatable point if such a small angle can have such an 
impact if the zero angle gives similar results for this control-
ler mode. Another interesting aspect is how separated the 
rotational speed and speed throws are, since the controller 
shows the same behavior for both simulations, which for a 
real AT can significantly affect the results. 

In a controller with a smooth setting, the output val-
ue seems to “follow” the reference value but differs from 
another controller. Reducing and restoring α to the final 
stabilized value occurs in less than a second, which is 
not possible for a real AT due to its dynamic properties. 
Fig. 18 shows that the oscillation rate is set much slower. 
This means that there is some unrelated behavior since 

the input signal for the system is the same time interval of 
20 seconds, but the oscillation rate at this time is different. 
Some unrealistic behavior of ATs may be associated with 
the linearization of α and its trigonometric dependence. 
The trigonometric function, which is periodic and only 
distributes the forces created by the number of revolutions 
between xb and the yb axis, cannot exceed 1. When applying 
linearization, the controller “believes” that the higher value 
of α corresponds to the higher value of the resulting force, 
which in practice is not true.

5. 3. 2. Linearization with nonzero angle in synchro-
nous control

The model is configured based on the linearization meth-
od (45) where the angle of the propellers α has a small negative 
value, which is considered close to the resulting final value 
for a given simulation of the yaw speed. This is done in order 
to see if this setting will give better results than zero-angle 
linearization. The goals of designing settings are similar to pre-
vious simulations. One of the main differences is that the third 
element in the first line for the assigned gain value also needed 
to be adjusted. Otherwise, the speed jump tends to take a nega-
tive value, which requires a different behavior of the model and 
makes it difficult to compare the two simulations. The weight 
matrices and gain values for this simulation are as follows:

1,

1 0 0

0 1 0 ,

0 0 1
pQ

 
 =  
  

 1,

1 0 0

0 0.0015 0 ,

0 0 225
sQ

 
 =  
  

 

 

 

a

 

 

a

b  

Fig.	18.	Linearization	at	zero	angle:		
a	–	speed	of	movement;	b	–	sway	speed
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2,

1 0
,

0 1pQ
 

=  
 

 2,

1 0
,

0 1sQ
 

=  
 

,

0 0 10
,

0 0 21.6r pL
 

=  − 
 

,

0 0 3.63
,

0 0 14.09r sL
 

=  − 
  (61)

which give the results shown in Fig. 19–21.
According to Fig. 20, the final value of α is αp=αs=0.0168 rad.
These results are similar to those obtained in the pre-

vious simulation but with some difference in the behavior 
of the model. The peak setting gives slightly better results 
since its overshoot only reaches a 6x reference value. The 
main difference lies in the higher speed of rotation of the 
propellers, which is almost ten times more influential on the 
speed of longitudinal advancement. That is, the non-minimal 
phase response coincides with the fastest response when the 
maximum setting peak speed is reached. A smooth setting 
makes the controller’s response slower than during the “peak 
setting” according to Q1,s (61).

The most interesting thing in this simulation compared 
to the previous one is the charts of input signals in Fig. 20. 
The speed of rotation (Fig. 20, a) has a much greater value, 
in contrast to the angle α (Fig. 20, b), the resulting transi-
tional characteristic of which has not changed much. First, 
it can be the result of linearization, in which the controller 

mainly responds to setting the angle α with the support ω at 
the same level if there is no need to increase the rotational 
speeds. Secondly, input signals show which setpoint values 
for α are positive, close to zero, but positive. Theoretically, 
for the modeling process, this should not be the case.

 

 

a

 

b 

  

 a b 

Fig.	21.	Dependence	of	speeds	with	a	non-zero	angle	α:	a	–	speed	of	surge;	b –	sway	speed

Fig.	20.	Input	signals	with	a	non-zero	angle	α:	a	–	propeller	speed;	b	–	angle	α

 

 
  

Fig.	19.	Transitional	characteristic	with	nonzero	angle	α
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5. 4. Principles of linearization with independent con-
trol over rotational speed and angle of AT

5. 4. 1. Linearization with zero angle in asynchronous 
control

In the following simulation, differential control is ap-
plied, in other words, the possibility of independent control 
over the speed and angle of rotation of both ATs.

First, linearization with a zero angle α is used for dif-
ferential (asynchronous) control over aft ATs. Modeling 
is carried out according to the same algorithm for the re-
search of two configuration schemes for different purposes. 
Using differential (asynchronous) control, it is possible 
to observe a slightly different, potentially more improved 
behavior of the controller, which is confirmed by the fol-
lowing results:

1,

1 0 0

0 1 0 ,

0 0 1
pQ

 
 =  
  

 1,

1 0 0

0 0.015 0 ,

0 0 270
sQ

 
 =  
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1 0 0 0

0 1 0 0
,

0 0 1 0

0 0 0 1

pQ

 
 
 =
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1 0 0 0

0 1 0 0
,

0 0 1 0

0 0 0 1

sQ
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,

0 0 1

0 0 1
,

0 0 20

0 0 20

r pL

 
 
 =
 −
 

− 

 
,

0 0 1

0 0 1
.

0 0 12.32

0 0 12.32

r sL

 
 
 =
 −
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The final values of αp and αs (Fig. 25) are: αp=–0.084 rad, 
αs=–0.41 rad.

Fig.	22.	Differential	transition	characteristic	for	the	zero	
angle	α

Transient characteristics for surge, sway, and yaw 
speeds (Fig. 22, 23) show the operation of ATs similar to the 
simulation of synchronous control in chapter 5. 3. 2. Here, 
the emission of the step characteristic is lower, and the speed 
of surge reaches a higher final value. However, some inter-
esting things can be observed in the input signals. The angle 

α is the same for both engines with two different settings, 
despite the ATs having a differential degree of freedom. 
This may be the result of linearization, making it the only 
adequate solution. The great depression is shown in Fig. 25, 
while the simulation is smaller, indicating steps in the right 
direction. The final α value for the peak setting is almost 
similar to synchronous control but the smooth setting is 
closer to the actual π/6 value, which is also a good indicator 
for this controller.

It is possible to observe completely different values 
of ω (Fig. 24), which indicates less impact on the system 
of this input signal. For both settings, one of the pro-
pellers rotates at a lower speed, which in practice is an 
advantage. When one propulsion provides more thrust, 
it creates the appropriate torque by turning the ship. 
Using this difference in rotational speed, the controller 
can more efficiently adjust the speed of rotation of the  
vessel.

The problem that can be seen in this simulation is that 
any configuration of the values of the speed of rotation 
of ATs moves the ship “incorrectly”. Since propulsion 1 is 
located to the left of the xb axis, and propulsion 2 is on the 
right, this development will provide a negative rotation 
speed. This is another sign that the controller is coun-
teracting itself, which confirms the consequence of the 
linearization of the input signal.

 

 
  

 

 

a

 

b  

Fig.	23.	Differential	velocities	at	zero	angle	α:		
a	–	surge;	b	–	sway
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5. 4. 2. Linearization with a nonzero angle in asyn-
chronous control

The following settings are based on a nonzero differ-
ential angle linearization model (45) and have the same 
adjustment aspects as in the previous simulation with 
the same problem where the controller required negative 
speed spikes. Therefore, this has also been fixed with the 
controller setup. Weight matrices and reference gain are 
as follows:
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0 0 1
pQ
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.
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r sL
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The simulation results are shown in Fig. 26‒29.

The final values of αp and αs (Fig. 29) are equal to: 

αp,1=3.64 rad, αs,1=2.68 rad, 

αp,2=−4.81 rad, αs,2=−3.52 rad.

 

 
  

Fig.	24.	Differential	speeds	of	rotation	of	the	azimuthal	
thruster	at	zero	angle	α

 

 
  

Fig.	25.	Differential	input	signals	at	the	assigned		
zero	angle	α

 

 
  

 

 
a 

 

b  

Fig.	27.	Differential	velocities	at	a	nonzero	angle	α:		
a	–	surge;	b	–	sway	

Fig.	26.	Differential	transition	characteristic	with	a	nonzero	
angle	α
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Fig.	28.	Differential	rotational	speeds	with	a	nonzero	angle

Fig.	29.	Differential	input	signals	at	the	assigned	nonzero	
angle	α

The simulation results are unique from all yaw velocity 
simulations. The peak step shows that the emission is signifi-
cantly lower than in any of the previous calculations. This 
excess reaches only double the value in relation to the refer-
ence. Charts of transients in Fig. 29 demonstrate results sim-
ilar to previous simulations but with different final values. 
They can be configured through the application of reference 
amplification, which is not necessary because the purpose of 
the simulation is to find out how the behavior of ATs affects 
the system, and not what are the final values of the angles α.

However, in practice, input signals “behave” realisti-
cally. Both the jump settings and the smooth setup lead 
to similar transient characteristics but with different final 
values. These values have been interpreted and illustrated in 
Fig. 30, which shows that both ATs engines, as in previous 
simulations, are counteracting each other but now in a con-
trolled way. The left AT has a greater angle α value compared 
to the right, which provides more torque around the z axis 
and, therefore, an increase in rotational speed. Although the 
right motor has a higher rotational speed, creating negative 
torque around the z axis and thus canceling the forces from 
the left motor. This makes it possible to achieve a constant 

turning speed. However, the method creates many unneces-
sary opposing forces in the direction yb. Angle values are still 
far from the operating point, making linearization accuracy 
low. However, our results show trends in the right direction.

5. 5. Determining the limiting characteristics of the 
controller

To ensure more efficient and reliable control, it is neces-
sary to ensure adequate real-time distribution of ATs thrust 
and the generation of optimal control input data, namely 
rotational speed and azimuthal angles. To do this, LQR 
must use a sparse matrix structure using the variable direc-
tion method of the multipliers to obtain a reliable optimal 
solution.

To partially solve this problem and further improve the 
system, an algorithm was developed to establish limits of 
azimuthal angles instead of strictly observing the reference 
step of the yaw velocity. This simulation was performed with 
differential nonzero angular linearization. The matrices of 
weight and reference gain for this simulation are as follows:

1

0.01 0 0

0 0.01 0 ,

0 0 1

Q
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 2

1 0
,

0 1
Q

 
=  

 
 

0 0 6

0 0 6
.

0 0 1.31

0 0 1.31

rL

 
 
 =
 −
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   (64) 

The simulation results are shown in Fig. 31‒34.
The final values of α1 and α2 (Fig. 34) are: α1=0.63 rad, 

α2=−0.28 rad.
The result of this simulation gives the lowest jump in 

setting the angle α of all previous simulations but instead 
has a much longer establishment time, reaching almost a 
minute. The acceleration speed of surge is also significantly 
greater than in any previous simulation. This simulation as-
sumes that the appropriate configuration of the controller for 
the model will be longer, which indicates a non-significant 
decrease in the versatility of the controller by increasing its 
prospects.

 

 
  

 

 
  

 

 
  

Fig.	30.	Illustration	of	differential	modeling	results	with	the	
angle α	different	from	zero
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When compared with a possible real reaction, almost 
any angle α that is not close to the working value will differ 
significantly from the actual one. A possible solution for this 
problem is to use predictive amplification.

Predictive amplification is an approach to con-
trolling a nonlinear system using multiple linear 
controllers. Thus, having several linearization spe-
cies with respect to the approximation of the trig-
onometric function at different operating points, 
LQR can be applied to these segments indepen- 
dently. 

The use of predictive LQR gain can help eliminate 
the problem of switching between linearization spe-
cies. If we neglect this aspect, then an unstable state 
or instability in the system may occur.

Table 1 gives the calculated data and parameters 
of the physical model of SBVs (Fig. 1–5) for re-
al-time modeling of the model’s behavior in dynamic 
positioning mode with adequate distribution of ATs 
thrust and the generation of optimal control input 
data.

The SBV model with ATs moved forward with 
a constant thrust force Fx, and changed course 
by turning the moment, changing in time lasting 
450 s. Random “noise” was added to the desired 
generalized force (Fig. 35, c) to check the reliabili-
ty and constancy of the assigned method of thrust  
distribution. 

It is shown that the real value of the generalized 
force is well consistent with the assigned general-
ized force, except for the duration of the time from 
0 to 25 s where a rapid increase in Fx leads to a de-
viation of Fy.

 

 
  

Fig.	31.	Setting	a	step-by-step	characterization	limit 
 

 

 

a 

b		

Fig.	32.	Restriction	settings:	a	–	acceleration	of	surge;		
b	–	acceleration	of	sway

 

 
  

Fig.	33.	Setting	the	rotational	speed	limit

 

 
  

Fig.	34.	Setting	an	angle	α	limitation
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a 
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c  

Fig.	35.	Real-time	simulation	results:	a	–	propeller	thrust	characteristic	Fx;	b	–	characteristic	of	the	thrust	of	the	propeller;		
c	– Fy,	characteristic	of	turning	moment
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Table	1

Parameters	of	the	SBV	model	and	thrusters

Name Designation Unit of measure Value 

Port side AT

∆y1 m –1.22
∆x1 m –0.23
Fmax N 894
Fmin N 0.264

ω r/s 7.96
α1max rad 3.925
α1min rad –0.785
∆α rad 0.088

Мp (56) N/(r/s)2 6.6e-4

Starboard AT
∆x2 m 0.23

α2max rad –0.175
α2min rad –3.054

6. Discussion of the results of researching the method 
of linear-quadratic control over the physical model of a 

vessel with azimuthal thrusters

Based on the simulation results, we can conclude that the 
functional ability of the controller relative to the real situa-
tion depends primarily on the configuration of the values of 
the speed of rotation of ATs. The problems that arise with 
the controller and model, and possible potential solutions to 
improve the system as a whole, rely on the LQR predictive 
gain method, which in turn will help eliminate the problem 
of switching between linearization species.

When modeling the acceleration of surge, the results 
show adequate operation of the controller, which quickly 
works out the task without a significant difference between 
synchronous and asynchronous (differential) control of 
aft ATs. The relationship between the speed of rotation of 
the propeller and the actual speed of the model is linear, 
which can be considered an excessive simplification. Per-
forming additional physical tests of the model in terms of de-
termining the true nature of such a dependence, it was found 
that the resulting model can improve the characteristics of 
the controller when modeling the yaw speed. Another inter-
esting thing that could be tested is the work of the controller 
under the influence of non-deterministic environmental dis-
turbances, such as wind, waves, or currents. This can be done 
in research pools with the appropriate equipment.

When modeling the yaw speed, the results showed the 
true capabilities of the model and controller since they in-
cluded all states and input signals. The two settings, one of 
which “hard” tracked the set speed and the other was some-
what “softer” in the time of reaching the setpoint, had most-
ly the same dependence of the output signal (Fig. 17, 20). 
Some interesting results regarding the ratios of the max-
imum and final values of the angle α can be observed 
for the dependences of input signals and the velocities of  
surge/sway (Fig. 23, 27). For all simulations and settings, 
the azimuthal angle reached a relatively large negative value 
before reaching a steady one.

In practice, this will force the AT engines to rotate 
around the axis of the baller, increasing the yaw speed, 
which, from the point of view of the characteristics of the 
controller, occurs due to the linearization of the model, or 
rather by controlling the angle α and linearization of the in-
put signal. Excessive dependence on the angle α means that 
it is effectively possible to control only the angle of α, and for 

the overall control over the movement of the vessel, more del-
icate adjustments are required. Excessive dependence on the 
angle α is observed on the dependences of surge and sway. 
Here, the speed of surge is much lower than the sway speed, 
which means that the vessel is moving mainly by lag, which 
in practice under this mode would create resistance and stop. 
To continue moving, it is necessary to change the orientation 
of the vessel. When simulating pitching, the risk of overturn-
ing the vessel also increases. This indicates that something 
is amiss with the model and is most likely the result of the 
simplifications made during the creation of the model.

Most of the elements in the matrix of states A (53) are 
zero, which in practice would have a great impact on a real 
vessel during physical tests. These elements show how much 
some states depend on others and to what extent. “Zero” 
elements indicate that there is no relationship between these 
states – centripetal forces and Coriolis forces. However, 
it is the linearization of the input signal that leads to the 
reaction of the controller, which is not fully adequate with 
respect to the actual change in the angle α of ATs. Thus, to 
resolve the specified discrepancy between the input signals 
and the output forces of ATs, additional research is needed, 
in particular in the area of changing the differential settings 
of the controller.

The speed of rotation of the propellers is different for 
two ATs, which makes it possible to change the direction 
of movement of the vessel without changing the angles α of 
ATs. During the simulation, the controller sets the speed of 
rotation of the propellers in such a way that a negative yaw 
velocity is created, so that it counteracts the change in the 
input angle. This can also be the result of excessive depen-
dence on the angle α, so the speed of rotation of ATs propel-
lers is used only to obtain the exact result corresponding to 
the task. However, the last simulation, which is a differential 
(asynchronous) control with linearization of a nonzero angle, 
is the most physically probable scenario (Fig. 30). The right 
AT pushes the ship forward and right, and the left AT, if 
continued to turn in said direction, will also create a greater 
emphasis for the vessel to turn right. This shows that the 
applied principle of control creates many opposing forces 
directed in different directions, which physically indicates 
the adequacy of the solution and the potential feasibility of 
using this control method.

Modeling a mode under which the speeds of surge, sway, 
and yaw are less dependent on each other also creates sev-
eral problems with the control of the vessel, for which it is 
necessary to improve the theoretical part of the simulation 
in order. For example, centripetal and Coriolis terms, CRB(ν) 
must be linearized using different stationary points. The 
damping matrix D(ν) here is approximated by a diagonal 
matrix but could potentially be expanded, which as a re-
sult could be the cause of an unrelated vessel reaction in a 
particular state. The values of the parameters can affect the 
negative simulation result. Therefore, operational tests with 
monitoring of the parameters of certain measured resistanc-
es and azimuthal characteristics can help improve modeling 
performance.

ATs are characterized by extremely high force intensity 
of the elements of their design. Mechanical loads can reach 
the permissible limit of strength. First of all, this applies to 
the elements of Ats subjected to the most intense influence of 
operational loads and the corresponding destructive process-
es. Exaggeration of loads beyond nominal causes destruction 
of the installation elements. In combination with the absence 
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of reserved parts and assemblies in ATs, the destruction of any 
main element leads to a loss of operability of the installation 
at all. Information about the load in the elements of ATs can 
be used as an additional one in the implementation of the 
installation control processes. The conclusion is based on the 
assumption that a change in geometry or a decrease in the 
damping of vibrations by the supports of ATs elements should 
be reflected in the total load transmitted by the propeller and 
PEM to the hull of the vessel in the support placement brack-
ets. Therefore, it is advisable to use as additional information 
the results of incliniometry of PEM supports [36, 37].

The limitation of our studies concerns primarily achieving 
the consistency of additional measurements of perturbations in 
the cases where the moments of the first order are unknown. In 
this case, a structure is proposed for estimating the moments 
of the first and second order along with the parameters of the 
model. Secondly, theoretically, the time of increase in torque in 
FC with PWM is limited by the inductance of the motor in de-
pendent current inverters with a DC link. This aspect requires 
experiments on parameterization, which is not always possible. 

The disadvantages of this research include the fact that 
in order to take into account these restrictions, a number of 
simplifications were adopted: 

‒ we excluded degrees of freedom (DOF), which have 
little effect on the system; 

‒ only 3 degrees of freedom (DOF) out of 6 (pitching, 
roll, and yaw) were used in the simulation;

‒ some parts of the resulting mathematical model were 
linearized to make the model work with LQR.

To solve these problems and limitations in terms of obtain-
ing more adequate results, instead of using the LQR infra-
structure, which requires linearization, it is necessary to apply 
a method based on a model predictive controller (MPC), which 
eliminates the need for linearization. Since MPC is also based 
on the theoretical models discussed in this research, they can 
be reused. Another option for controlling the vessel may be to 
use Fuzzy LQR, which can handle nonlinear systems [38‒42].

The practical significance of our results is the fact that 
the quadratic optimization model is a very effective and reli-
able technique in the process of designing sea-based vehicles 
of various configurations of thrusters for optimal control.

Owing to its low computing complexity and hardware 
requirements, control distribution algorithms can work on 
embedded platforms. In addition, it is possible to apply aver-
aged values to the control commands for ATs engines, which 
leads to a decrease in the wear of structural elements.

7. Conclusions 

1. For the physical scale model of SBVs, the physical mod-
el of ATs in the aft part can be implemented on the basis of 
actuators, an electronically commutated motor, and a servo 
drive for each AT. Electronically commutated motor is con-
nected to the propeller of AT through gear transmissions. In 
practice, the controller uses input data from GPS and IMU 
to determine the position, course, and speed of the vessel. To 
adjust the speed and torque of the electric motor, it is neces-
sary to measure the currents of the motor and calculate the 
throughput of converters with high accuracy. In practice, it is 
necessary to provide for limiting the rate of change of torque 
to prevent damage to the mechanical part of the electric drive.

2. Checking the behavior of the model showed that in 
order to obtain a relatively fast transient characteristic with 

minimal overshooting, it is necessary to minimize the track-
ing error. Studies of the design features of vessels of this class 
confirm that jumps in the speed of rotation of ATs, which 
stabilize with a constant zero angle, lead to a quick response 
to the jump and the absence of overshooting. The small 
angles of location of ATs relative to the diametrical plane of 
the vessel lead to the fact that both AT engines need a lower 
rotational speed to ensure the assigned water flow rate.

3. The determination of the space of states and the linear-
ization of ATs control system allows for adequate modeling 
of the yaw velocity to track the effect of disturbing forces on 
the characteristics of the controller. Moreover, it was found 
that small negative angles provide positive torque around 
the z axis and a positive yaw speed. To take into account the 
dynamic properties of real ATs, it is necessary to be able to 
adjust the reduction and restoration of angle α to the final 
stabilized value. It can also be concluded that when applying 
linearization, the higher value of α corresponds to the higher 
value of the resulting force, which in practice is not true.

4. Independent control over the speed and angle of ATs 
with linearization with zero or non-zero angle of ATs proved 
its greater adjustable ability than synchronous. To reduce the 
counteraction of ATs engines, it is necessary to apply a coordi-
nated change in the magnitude of angle α with the speed of ro-
tation. And to cancel the corresponding forces, it is necessary to 
adjust the speed of rotation, creating a negative torque around 
the z axis. Increasing the accuracy of linearization is possible 
by eliminating unnecessary opposite forces in the yb direction. 

5. The use of the predictive amplification method in the fu-
ture makes it possible, albeit by reducing the versatility of the 
controller, to increase its realism. To improve the functioning 
of the models, the controller was configured for more realistic 
output and input parameters. The change in the principles of 
linearization of the input signal led to it acting more as a trig-
onometric function of predictive amplification. The result has 
made it possible to find out the influence of the orientation of 
ATs on the position of the vessel, and the linearity of the model 
affects the functionality of the controller.
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