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1. Introduction

Actual automatic control systems are designed and 
operated under conditions of uncertainty. The uncertainty 
can be caused by not knowing the true values of the system 
parameters at the design stage and unpredictable change of 
them during operation. At the same time, the main property 
that characterizes the performance of an automatic control 
system under conditions of uncertainty is stability [1].

In modern automatic control theory, the main direction 
is to solve the problem of analysis and synthesis of control 
systems in conditions of uncertainty. Known methods of 
synthesis of automatic control system that use the state 
vector are based on modal control and do not allow to con-
sider in a complex task of analysis and synthesis of automatic 
control system [2, 3]. Usually, direct, and inverse canonical 
transformations and complex ambiguous calculations of the 
roots of the characteristic equation of the closed system are 
required.

This study proposes and substantiates an approach to the 
analysis and synthesis of an aperiodic robustly stable linear 
automatic control system of desired quality based on the 
gradient-speed Lyapunov vector-function method. Methods 
based on the application of Lyapunov functions [4, 5] are 
universal methods for investigating stability and quality of 
linear and nonlinear automatic control systems under condi-
tions of multidimensional control objects and uncertainties. 

The well-known method of investigating the stability of 
linear control systems by the second Lyapunov method [6] 
involves solving Lyapunov matrix equations, which require 
complex and ambiguous calculations. Currently, Lyapunov 
function methods are mainly only a tool for theoretical re-
search and cannot provide answers to many research ques-
tions of automatic control systems in real conditions. The 
main obstacle in this case is the lack of a universal approach 
to the construction of Lyapunov functions.

From the geometrical interpretation of Lyapunov’s direct 
method theorems [7] one can clearly see that the dynamics 
of changes of phase trajectories in the phase space are ev-

erywhere determined by the velocity vector ,
dx
dt

 and the  

dynamics of changes of necessary Lyapunov functions along 
phase trajectories are everywhere determined by the gradi-

ent 
( )∂

∂
,

V x

x
vector from Lyapunov functions V(x). 

In the region of aperiodic robust stability parameters, 
these dynamical vectors have the same magnitude and 
opposite sign. This fact allows to consider the dynamical 
system as gradient systems and Lyapunov functions as 
potential functions of gradient systems from catastrophe 
theories [8, 9]. It is true for gradient systems: 

( )∂
= − =

∂
, 1, , .i

i

V xdx
i n

dt x
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On this basis the gradient-velocity method of Lyapunov 
vector functions is developed, which allows to solve the 
problem of investigation of aperiodic robust stability of the 
system [10]. The conditions of existence of Lyapunov vector 
functions are set in the form of a system of inequalities on 
uncertain parameters of the control system.

Thus, the solution of the problem to the synthesis of ape-
riodic robust-stable automatic control system based on the 
gradient-speed Lyapunov vector-functions method seems 
very relevant, both for the modern needs of science and its 
applications to practical problems, related to the design and 
simulation of control processes in engineering and, secondly, 
the presence of a large number of unresolved problems di-
rectly related to engineering practice.

2. Literature review and problem statement

In [1] the results of studies of real control systems, which 
are designed and operate under uncertainty, are presented. The 
uncertainty can be caused by the non-determinability of the 
true values of the system parameters at the design stage and 
their changes in the process of operation, which are difficult 
to predict. 

Therefore, there remain unresolved issues related to the 
most pressing problem of creating a control system and such 
a problem, in a sense, provides the best protection from the 
conditions of uncertainty associated with the knowledge of 
the known properties of the control system. The paper [2] 
presents the results of the study of robust stability of the 
system, which is associated with the fact that the constraints 
on the change in the parameters of the control systems in 
the framework of the linear principle of stability are given. It 
should also be noted that instability in control systems arises 
as a result of the output of uncertain parameters of the system 
beyond the robust stability.

A sufficiently large number of works is devoted to the prob-
lem of robust stability of control systems. Such approach was 
used in [1, 2], but here the robust stability of polynomials and 
matrices is investigated mainly only within the linear principle 
of investigation of stability of control systems.

In [3, 4] the authors propose a new gradient-speed 
method of Lyapunov vector-functions. Although in itself 
the method of investigation of Lyapunov’s direct method 
idea is universal. But the wide application of such method in 
practical research is restrained by the absence of a universal 
approach to the construction of Lyapunov functions. 

It should be noted that geometrical interpretation of 
the asymptotic stability theorem makes it possible to find 
the possibility to choose in the equation of state the vector 
of anti-gradient of Lyapunov function equal to the velocity 
vector. This allows to consider the control system as a gra-
dient system, and Lyapunov functions as potential functions 
of gradient systems, from the catastrophe theory [5]. Robust 
stability of the system is investigated by constructing a 
sign-negative function, which is equal to the scalar product 
of the gradient vector on the velocity vector. 

The conditions of existence of Lyapunov vector functions 
are established from the conditions of positive definiteness 
of Lyapunov vector functions in the form of a system of in-
equalities on uncertain parameters of control objects.

In work [6] results of research of simple method of Lya-
punov functions, represented by neural networks are pre-
sented. The obtained neural networks represent Lyapunov 

functions, on the basis of which the asymptotic stability or 
instability of the equilibrium point of a nonlinear system can 
be mathematically proved. 

Let’s note that one of the main advantages of this method 
is that it works for any nonlinear system, even if the num-
ber of state variables is quite large. The peculiarity of this 
method is that several different Lyapunov functions can be 
constructed for each system, including Lyapunov functions 
in quadratic form. This, in turn, makes it possible to choose 
the most appropriate function to solve a given problem.

The paper [7] describes a method to study the robust-
ness of an aircraft landing control system constructed as a 
MIMO system. Here, the gradient-speed Lyapunov function 
method is used as the research apparatus. 

In these studies, it is assumed that the wind gusts are 
zero and the controller is chosen in the form of one-parameter 
structurally stable mappings. As a result, the constructed 
function is investigated for stability in three stationary states.

In [8], asymptotically stable linear systems that are 
subject to unstructured time-varying perturbations are 
considered. Moreover, bounds for admissible perturbations 
are derived in such a way that the perturbed systems remain 
stable. Typically, these bounds are derived iteratively by ad-
justing the sequence of Lyapunov matrices.

Thus, the task of synthesizing control systems accord-
ing to given quality indicators is to select, given a known 
dynamic description of the control object, the structure and 
parameters of the system that provide the required values of 
quality indicators.

3. The aim and objectives of the study

The aim of the study is to synthesize an aperiodic ro-
bustly stable automatic control system based on the gradi-
ent-speed Lyapunov vector function method to provide high 
quality control.

To achieve this aim, the following objectives are accom-
plished:

– investigate the robust stability of linear automatic 
control systems with an m×n control object matrix. To deter-
mine the Lyapunov function based on the gradient velocity 
method of Lyapunov vector functions from the equations of 
state and to determine the existence conditions of Lyapunov 
vector functions. From the coefficients of the Lyapunov vec-
tor function, determine the robust stability radius;

– investigate the system with control object matrices 
reduced to block diagonal form and determine the condition 
of robust stability. Using an example to investigate the sta-
bility and aperiodic transient response of a system, consider 
a fourth-order differential system and conduct simulation 
experiments using the Matlab Simulink software package.

4. Materials and methods

In this paper, using basic statements of Lyapunov theo-
rem, the basic development of a new gradient-speed method 
of Lyapunov vector functions, which allows solving the prob-
lem of aperiodic robust stability of linear control systems 
with m inputs and cn outputs, is presented. The aperiodic 
robust stability of the system is investigated by the gradi-
ent-speed Lyapunov function vector method. This approach 
is presented by a mathematical apparatus based on gradient 
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dynamical system and equivalence of Lyapunov and poten-
tial functions of gradient systems.

Both classical methods of stability theory and methods 
of robust stability theory are consistently applied in this 
work. At the same time, such methods and statements as the 
theory of automatic control, matrix theory, theory of differ-
ential equations, theory of stability, and theory of dynamical 
systems are used. Simulation software using the Simulink 
Matlab software package was used.

5. Results of a study on the aperiodic robust stability of 
linear multi-dimensional systems

5. 1. Outlining approaches to the study of a control 
system with m inputs and with n outputs

This section presents the course of the study of aperiodic 
robust stability of linear automatic control systems with 
a control object matrix of dimension m*n by the gradi-
ent-speed method of Lyapunov vector functions:

, , ,n mx Ax Bu x R u R= + ∈ ∈     (1)

, .y Cx y R= ∈ 

The regulator is described by the equation:

.u Kx= −     (2)

Here

,nxnА R∈  ,nxmB R∈  ,lxnC R∈  ,mxnK R∈

1 1 2 2 ... , 1,2,..., .i i i in nu k x k x k x i m= − − − − =

Equations (1), taking into account the control law (2), 
can be presented in an expanded form:

1 11 1 1 1
1

12 1 2 2 1 1
1 1

2 21 2 1 1
1

22 2 2 2 2 2
1 1

1 1 1
1

2

... ,

... ,

m

k k
k

m m

k k n k kn n
k k

m

k k
k

m m

k k n k kn n
k k

m

n n nk k
k

n nk

x a b k x

a b k x a b k x

x a b k x

a b k x a b k x

x a b k x

a b

=

= =

=

= =

=

 
= − + 
 

   
+ − + + −   
   

 
= − + 
 

   
+ − + + −   
   

 
= − + 
 

+ −

∑

∑ ∑

∑

∑ ∑

∑









2 2
1 1

... .
m m

k nn nk kn n
k k

k x a b k x
= =



















    

+ + −    
   

∑ ∑

  (3)

The Lyapunov function is constructed in the form of a 
vector function, based on the gradient-velocity method of 
Lyapunov vector functions. The components of the gradient 
vector are determined from the equations of state (3):

( )
1

,
m

i
ij ik kj j

kj

V x
a b k x

x =

∂  
= − − ∂  

∑  =1,..., ;i n  1,..., .j n=   (4)

Decomposing the components of the velocity vector by the 
coordinates of the equation of state (3) can be represented as

1

,
j

m
i

ij ik kj j
kx

dx
a b k x

dt =

   = −  
   

∑  =1,..., ;i n   1,..., .j n=  (5)

The total time derivative of the Lyapunov vector 
function V(x)  considering the equations of motion (3), 
is defined as the scalar product of the gradient vector 
from the Lyapunov vector function (4), and the velocity 
vector (5), i.e.:

( ) ( )
1 1

2

2

1 1 1

.

j

n n
i i

i j j x

n n m

ij ik kj j
i j k

dV x V x dx
dt x dt

a b k x

= =

= = =

∂  = = ∂  

   = − −    

∑∑

∑∑ ∑  (6)

It follows from expression (6) that the total time deriva-
tive of the Lyapunov vector function will be a sign-negative 
function. Using the components of the gradient vector, let’s 
construct the vector of the Lyapunov function in scalar 
form:

1 1 2
1 1 2

1
2

1

1
( ) .

2
...

m m

k kj j k kjn
k k

jm
j

j nk kj nj
k

b k a b k

V x x

a b k a

= =

=

=

 
− + − 

 =
 
− + + − 
 

∑ ∑
∑

∑
  (7)

The conditions for the existence of Lyapunov vec-
tor-functions, i.e., the positive definiteness of the Lyapunov 
vector function will be expressed:

1 1
1

2 2
1 1

... 0,

m

k kj j
k

m m

k kj j nk kj nj
k k

b k a

b k a b k a

=

= =

− +

+ − + + − >

∑

∑ ∑  1,..., .j n=  (8)

Let’s find the robust stability radius by the coefficients 
of the Lyapunov vector function. To do this it is possible to 
refer to parametric families of coefficients of components of 
the Lyapunov vector function, such as the interval family 
given in the form (9):

0 , , , 1,2,..., ,ij ij ij ij ijd d m i j n= + ∆ ∆ ≤ γ =    (9)

where the nominal coefficients 
=

 
= − −  ∑0 0 0 0

1

m

ij ij ik kj
k

d a b k  corre-

spond to a positively defined Lyapunov function, i.e.: 

( ) 0 0 0
0

1

min min 0.
m

ij ik kji j
k

D a b k
=

 
σ = − − > 

 
∑

Let’s require that the condition of positivity of coeffi-
cients holds for all functions of the family (10):

=

 
− − + ∆ > = =  ∑0 0 0

1

0, 1,2,..., ; 1,2,..., .
m

ij ik kj ij
k

a b k i n j n  (10)

It is clear that this inequality will be satisfied for all Δij  

admissible if and only if 0 0 0

1

0,
m

ij ik kj ij
k

a b k m
=

 
− − + γ > 
 

∑  1,2,..., ;i n=  

1,2,..., ,j n=  i.e., at: 

=

 
− −  

γ < γ =
∑0 0 0

1* min min .

m

ij ik kj
k

i j
ij

a b k

m
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In particular, if mij=1 (the scales of all coefficients of the 
components of the Lyapunov function term are the same), 
then ( )*

0 .Dγ = σ
Thus, the aperiodic robust stability radius of the interval 

family of positively defined functions is equal to the smallest 
value of the coefficients of the components of the Lyapunov 
vector-functions.

5. 2. Experimental results on aperiodic transients using 
the gradient velocity Lyapunov vector function method

Multidimensional systems in the canonical form of equa-
tions of state. Let the control system be described by the 
equation of state (1). The matrix of the control object A can 
be reduced to the block-diagonal form with the help of the 
nonspecific matrix P, the columns of which are the eigen-
functions of the matrix A:

{ }1
1 1diag , ,..., , ,..., ,m kA P AP J J J J− ′ ′= = Λ  (11)

with diagonal quadratic blocks of the form:

{ }1diag ,..., ;lΛ = λ λ   (12)

1 ... 0 0

0 ... 0 0

,

0 0 ... 1

0 0 ... 0

j

j

j

j

j

J

λ

λ

=
λ

λ

    
 , 1,..., ,j jN N j m× =  (13)

α −β
=′
β α

,
j j

j
j j

J 1,..., ,j k=   (14)

where λ1, …, λl – real simple, λi – real, Nj – multiples, 
λ = α ± βj j jj  – are complexly conjugate eigenvalues of ma-
trix A, and obviously 1 ... 2 .ml N N k n+ + + + =

Let’s show that the adopted structure (11) allows sepa-
rate control and study by canonical representations of the 
object (12)–(14) corresponding to any diagonal block of the 
matrix .A

For this purpose, similarly to (1), write:

1

2

3

0

;

0

B

x Ax Bu J x B u

J B

Λ
= + = +

′



  

    



  (15)

1 2 3 ,T T T Tu k x k k k x= − = −   

     (16)

where 1 ,x P x−=  1 ,A P AP−=  1 ,B P B−=  ,T Tk k P=  and the di-
mensions of the matrices 1,B  2B  and 3B  the control vector U 
correspond to the dimensions of the square matrices Λ, J, J .́

On the basis of (15) it is easy 2 0,B =  3 0B =  to see that it is 
possible to influence the system coordinates corresponding 
to the matrix Λ, keeping unchanged the system coordinates 
determined by matrices J, J΄, respectively by assuming 1 0,B =  

3 0B =  or 1 0,B =  2 0.B =  Thus, the further problem is reduced 
to the sequential study of aperiodic robust stability of linear 
control systems for canonical objects:

1 1 1 ,x x B u= Λ +    (17)

2 2 2 ,x Jx B u= +    (18)

3 3 3 ,x J x B u′= +    (19)

where 

1

2
1 ,

l

x

x
x

x

=











 

1

2
2 ,

l

l

l L

x

x
x

x

+

+

+

=











 

1 ... ,mL N N= + +  

1

2
3 ,

l L

l L

n

x

x
x

x

+ +

+ +=











 

with matrices of the form (12)–(14). Let’s consider in turn 
the problem of aperiodic robust stability (17)–(19) by the 
gradient-speed method of Lyapunov vector-functions.  

Let’s assume, for simplicity and clarity of writing, that: 

1

2 ,

n

b

b
b

b

=


 ,u R∈  ,Tu k x= −  

1

2 .

n

k

k
k

k

=


 

Similarly, to (11) write:

1

2
'

3

0

, ,

0

b

x Ax bu J x b u

J b

Λ
= + = +



 


   



   (20)

= − = −   

  

1 2 3 ,T T T Tu k x k k k x  (21)

where 1 ,x P x−=  1 ,A P A P−=  1 ,b P b−=  ,T Tk k P=  with the di-
mensionality of the column matrixes 1,b  2,b  3b  and ma-
trix-strings 1 ,Tk  2 ,Tk  3

Tk  correspond to the dimensions of square 
matrices Λ, J, J .́ Based on (20), (21), by accepting 2 0,Tk =  

3 0,Tk =  it is not difficult to obtain the characteristic determi-
nant of a closed system:

( )
( ) ( )

( )
1 1 1 2 2 2 3

3 3 ,

T

T T

T

I A bk

I b k I J b k I

J b k

λ − − =

= λ − Λ − ⋅ λ − − λ −

′− − −

 


   

 

from which it is obvious that by changing the coefficients 
of the matrix of the regulator 1

Tk  one can influence the 
eigenvalues of the matrix ( )1 1 1 ,TG b k= Λ −    while keeping 
the matrix eigenvalues unchanged J or J΄ respectively by 
taking 1 0,Tk =  3 0Tk =  or 1 0,Tk =  2 0.Tk =  Thus, the sequential 
consideration of canonical objects similar to (17)–(19) 
becomes possible:

.

1 ,x x b u= Λ +    (22)

.

2 ,x Jx b u= +    (23)

.

3 .x J x b u′= +    (24)

The system (22) is investigated by the gradient-velocity 
method of the Lyapunov function vector [4, 5].
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( )
( )

( )

.

1 1 1 1 1

.

2 2 2 2 2

.

,

,

.l l l l l

x b k x

x b k x

x b k x

 = λ −

 = λ −



 = λ −

 

 

 

 



 


 

  (25)

From (25) for the components of the gradient vector of 
the Lyapunov function vector:

( ) ( ) ( )1 1 1 1,..., ,..., ... ,...,l l l lV x x V x x V x x= + +       

let’s obtain:

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 1 1
1 1 1 1

1 2

2 2

1 2

2
2 2 2 2

1 2

, 0,...,  0,

0,

,...,  0,

...    ...    ...

0, 0,...,  .

l

l

l l l
l l l l

l

V x V x V x
b k x

x x x

V x V x

x x

V x
b k x

x

V x V x V x
b k x

x x x

∂ ∂ ∂
= − λ − = = ∂ ∂ ∂

∂ ∂ = =
 ∂ ∂


∂= − λ − =
∂



∂ ∂ ∂

= = = − λ − ∂ ∂ ∂



  

 



  

 

 



 





  

 



  

 (26)

From (25) the expansion of the velocity vector compo-
nents on the system coordinates will be represented as:

( )

( )

1 2

1 2

1 2

1 1 1
1 1 1 1

2 2

2
2 2 2 2

, 0,..., 0,

0,

,..., 0,

...    ...    ...

0, 0,...,

l

l

x x x

x x

x

l l l

x x

dx dx dx
b k x

dt dt dt

dx dx
dt dt

dx
b k x

dt

dx dx dx
dt dt dt

     = λ − = =     
     

   = =   
   

 = − λ − = 
 

     = =    
     

  

 



 



 



  

( )

   

.

lx

l l l lb k x













 =

= − λ −

 



 (27)

The total time derivative of the Lyapunov function 
vector is calculated as the scalar product of the gradient 
vector (26) by the velocity vector (27):

( ) ( ) ( )2
2

1 1

,
l l

i
i i i i

i ii

dV x V x dx
b k x

dt x dt= =

∂
= = − λ −

∂∑ ∑
 



 





 

and will be a sign-negative function. Let’s obtain the Lya-
punov function in the form:

( ) ( )
( ) ( )

2
1 1 1 1

2 2
2 2 2 2 ... .l l l l

V x b k x

b k x b k x

= − λ − −

− λ − − − λ −

 

 

   

    (28)

The positive definiteness of the Lyapunov function (22) 
is given by the inequalities:

1 1 1 2 2 20, 0, ..., 0.l l lb k b k b kλ − < λ − < λ − <        (29)

Here are λ − = µ =  , 1,...,i i i ib k i l  the eigenvalues of the ma-
trix of the closed system, and let’s obtain the well-known re-
sult of the linear principle of stability 0, 1,..., .i i i ib k i lµ = λ − < = 

The system (23) is investigated by the gradient-velocity 
method of the vector of Lyapunov functions [1, 7]. Let’s pres-
ent the system of equations (23) in an expanded form for a 
single Jordanian block:

1

1 1 2 1 1 1

,

,

,
i i i i i i

i i i i i i i

i i i i i i i

i N i i N i N i N i N i N

x x x b k x

x x x b k x

x x x b k x

+

+ + + + + +

+ + + + + +

 = λ + −

 = λ + −


 = λ + −

 


   

 


   



 


   

 

1,... .i m=  (30)

From (30) the components of the gradient vector from 
the Lyapunov vector function will be equal:

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1
1

1 1
1 1 1 2

1 2

, ,

, ,
   

...    ...    ...

.i

i i i

i

i i
i i i i i

i i

i i
i i i i i

i i

i N
i i N i N i N

i N

V x V x
b k x x

x x

V x V x
b k x x

x x

V x
b k x

x

+
+

+ +
+ + + +

+ +

+
+ + +

+

∂ ∂
= − λ − = − ∂ ∂

∂ ∂ = − λ − = − ∂ ∂


∂

= − λ −
∂

 

 

 

 

 

 

 

 



 





 (31)

Let’s decompose the components of the velocity vector 
by the system coordinates in the form:

( )

( )

( )

1

1 2

1

1 1
1 1 1 2

, ,

, ,
   

...    ...    ...

.

i i

i i

i

i i i

i Ni

i i
i i i i i

x x

i i
i i i i i

x x

i N
i i N i N i N

x

dx dx
b k x x

dt dt

dx dx
b k x x

dt dt

dx
b k x

dt

+

+ +

+

+

+ +
+ + + +

+
+ + +

   = λ − =   
   
    = λ − =      


 

= λ − 
 

 

 



 

 

 

 

 

 



 



 (32)

The full-time derivatives of the Lyapunov vector func-
tion are calculated as the scalar product of the gradient 
vector (31) by the velocity vector (32):

( ) ( )2
2

11
.ii Ni

j j j jj

dV x
b k x

dt
+

+=
 = − λ − −  ∑



 

   (33)

From (33) the full-time derivatives are sign-negative 
functions and satisfy the condition. 

The Lyapunov vector function in scalar form will be 
equal:

( ) ( ) 2 2
11

1
.

2
ii N

j j j j jj
V x b k x x

+

+=
 = − λ − − ∑  

     (34)

From (34) the positive definiteness condition, i.e., the 
existence of the Lyapunov function for system (23) let’s 
obtain in the form:

1 10, 1 0,..., 1 0,
i ii i i i i i i i N i Nb k b k b k+ + + +λ − < λ + − < λ + − <       

1,..., .i m=  (35)
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The system of inequalities (3) also expresses the condi-
tion of negativity of real multiple roots of the characteristic 
equation of the closed system.

The system (24) is investigated by the gradient-speed 
method of Lyapunov vector functions.

Let’s consider the system (24) in expanded form for one 
block:

1

1 1 1 1 1

,

,

i i i i i i i i

i i i i i i i i

x x x b k x

x x x b k x

+

+ + + + +

 = α +β −


= −β +α −

 


   

 


   

 

1,... .i k=    (36)

Let’s construct the Lyapunov function in the form of a 
vector-function with components ( )iV x  and ( )1 ,iV x+   and 
for components of the gradient vector of the Lyapunov func-
tion (36) let’s obtain:

( )

( )
1

1

1

1 1
1 1 1

, ,

, ,

i i

i i

i i
i i i i i i

x x

i i
i i i i i i

x x

dx dx
b k x x

dt dt

dx dx
x b k x

dt dt

+

+

+

+ +
+ + +

   = α − =β   
   

    = −β = α −      

 

 

 

 

 

 

 

 

( ) ( ) ( )

( ) ( ) ( )

1
1

1
1 1 1

1

, ,

, .

i i
i i i i i i

i i

i i
i i i i i i

i i

V x V x
b k x x

x x

V x V x
x b k x

x x

+
+

+
+ + +

+

∂ ∂
= − α − = −β ∂ ∂


∂ ∂ =β = − α − ∂ ∂

 

 

 

 

 

 

 

 

 (37)

From (36) decomposition of the velocity vector compo-
nents by coordinates let’s obtain:

( )

( )
1

1

1

1 1
1 1 1

, ,

, .

i i

i i

i i
i i i i i i

x x

i i
i i i i i i

x x

dx dx
b k x x

dt dt

dx dx
x b k x

dt dt

+

+

+

+ +
+ + +

   = α − =β   
   

    = −β = α −      

 

 

 

 

 

 

 

   (38) 

The full-time derivatives of the Lyapunov function vec-
tor are calculated as the scalar product of the gradient vec-
tor (37) by the velocity vector (38):

( ) ( )
( )

2
2 2 2

1

2
2 2 2

1 1 1 .

i
i i i i i i

i i i i i i

dV x
b k x x

dt

b k x x

+

+ + +

= − α − −β −

− α − −β



 

 

 

      (39)

The function (39) is a guaranteed sign-negative function. 
From the components of the gradient vector (37) let’s con-
struct the vector Lyapunov functions in scalar form (with 

+ +=   

1 1i i i ib k b k  and += 

1i ix x ) let’s obtain:

( ) ( ) 2, 1, , .i i i iV x b k x i k= − α − = 

 

     (40)

The conditions of positive definiteness, i.e., the existence 
of the Lyapunov function are written:

0, 1 .i i ib k i ,...kα − < =    (41)

Condition (41) also expresses the negativity of the real 
part of the eigenvalues µ = α − < =  0, 1,...,i i i ib k i k  of the ma-
trix of the closed system.

Let the dynamics of a stationary linear system be de-
scribed by the equation.

1 1 2 3 4

2 1 2 3 4

3 2 3 4

4 1 2 3 4

11 2 5 2 ,

2 10 5 2 ,  

2 8 2 ,    

4 5 11 .    

x x x x x

x x x x x

x x x x

x x x x x

= − + + −
 = − + −
 = − +
 = − − −









  (42)

It is required to investigate the aperiodic robust stability, 
i.e., the stability of the system with aperiodic transient pro-
cess by the gradient-speed method of Lyapunov vector-func-
tions. From (11) determine the components of the gradient 
vector from the Lyapunov vector-function V(x)=(V1(x), 
V2(x), V3(x), V4(x)).

From (42) the components of the vector of gradients from 
the vector of Lyapunov functions are determined:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

1 1
1 2

1 2

1 1
3 4

3 4

2 2
1 2

1 2

2 2
3 4

3 4

3 3
2 3

2 3

3
4

4

4 4
1 2

1 2

4 4
3 4

3 4

11 , 2 ,

5 , 2 ,

2 , 10 ,

5 , 2 ,

2 , 8 ,

2 ,

, 4 ,

5 , 11 .

V x V x
x x

x x

V x V x
x x

x x

V x V x
x x

x x

V x V x
x x

x x

V x V x
x x

x x

V x
x

x

V x V x
x x

x x

V x V x
x x

x x

∂ ∂
= = − ∂ ∂

∂ ∂ = − =
∂ ∂


∂ ∂ = − = ∂ ∂


∂ ∂

= − =
∂ ∂


∂ ∂

= − =
∂ ∂

∂
= −

∂

∂ ∂
= − =

∂ ∂

∂ ∂
= =

∂ ∂



















  (43)

From (43) let’s determine the expansion of the velocity 
vector components by coordinates (x1, x2, x3, x4):

1 2

3 4

1 2

3 4

1 2

3

1 1
1 2

1 1
3 4

2 2
1 2

2 2
3 4

3 3
2

3

11 , 2 ,

5 , 2 ,

2 , 10 ,

5 , 2 ,

0, 2 ,

8

x x

x x

x x

x x

x x

x

dx dx
x x

dt dt

dx dx
x x

dt dt

dx dx
x x

dt dt

dx dx
x x

dt dt

dx dx
x

dt dt

dx
dt

   = − =   
   

   = = −   
   

   = = −   
   

   = = −   
   

   = =   
   

  = − 
 

4

1 2

3 4

3
3 4

4 4
1 2

4 4
3 4

, 2 ,

, 4 ,

5 , 11 .

x

x x

x x

dx
x x

dt

dx dx
x x

dt dt

dx dx
x x

dt dt


















   =  

 
    = = −      

   = − = −      

 (44)

The full-time derivative of the Lyapunov vector function 
is defined as the scalar product of the gradient vector (43) by 
the velocity vector (44):



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/3 ( 121 ) 2023

12

( ) ( )4 4

1 1

2 2 2 2
1 2 3 4130 124 139 133 .

j

i i

i j j x

dV x V x dx
dt x dt

x x x x

= =

∂  = = ∂  

= − − − −

∑∑

 (45)

The quadratic form (45) is a sign-negative function. From 
(43) let’s calculate the Lyapunov vector function in scalar form:

( ) 2 2 2 2
1 2 3 44 10 1.5 6.5 .V x x x x x= + + +  (46)

The existence conditions, i.e., positive definiteness of the 
Lyapunov function (46) are satisfied:

4>0, 10>0, 1.5>0, 6.5>0. (47)

Thus, the system (40) is aperiodic robust stable. This 
is confirmed by conditions (45) and (47). The theoretical 
positions obtained will be confirmed by the results of 
simulation experiments carried out with the Simulink 
Matlab Software package, the model in Simulink is shown 
in Fig. 1 and the aperiodic robustness of the system is 
confirmed in Fig. 2.

Thus, system (1) is superstable, i.e., an aperiodic tran-
sient.

The conditions of aperiodic robust stability are ob-
tained by us in the form of a system of inequalities on the 
uncertain parameters of the automatic control system, 
which is itself a condition for the existence of the Lyapunov 
vector-function. 

Fig.	1.	Simulation	model	of	the	system	transients

Fig.	2.	Function	graphs	xi(t),	(i=1,…,4)
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Application of the method of gradient-speed Lyapunov 
vector-function to study aperiodic robust stability of multi-
dimensional linear automatic control systems in the canoni-
cal representation and verification of the results of the study 
of linear stability principles shows the consistency of the 
proposed method.

6. Discussion and interpretation of the obtained stability 
conditions

In this paper, using basic statements of Lyapunov theorem, 
the basic development of a new gradient-speed Lyapunov vector 
function method, which allows to solve the problem of investi-
gation of robust stability of linear control systems with m inputs 
and c n outputs is presented. The results of the study of aperi-
odic robust stability of linear automatic control systems with 
control object matrix of dimension m×n, by gradient-speed Lya-
punov vector function of the equation of state of the system (1). 
The Lyapunov function based on the gradient-speed Lyapunov 
vector functions method from the equations of state (1) and the 
condition of existence of positive definiteness of the vector Lya-
punov functions in the form (8) are determined. To determine 
the robust stability radius from the coefficients of the Lyapunov 
vector function, let’s turn to parametric families of coefficients 
of Lyapunov vector function components given in the form (9) 
and the function equal to the smallest value of coefficients of 
Lyapunov vector function components (10). 

Thus the aperiodic robust stability radius of interval fam-
ily of positively definite functions (10) is equal to the smallest 
value of coefficients of Lyapunov vector functions components.

A system with control object matrices reduced to the 
block-diagonal form is investigated (11). The problem is re-
duced to the sequential study of aperiodic robust stability of 
linear control systems for canonical objects (17)–(19). Let’s 
define the robust stability condition, i.e. the existence of the 
Lyapunov function (31). The stability condition of the sys-
tem (42) is obtained from the condition of positive definite-
ness of the Lyapunov function (46), in the form of a system 
of inequalities on the uncertain parameters of the control 
objects and the given parameters of the regulator (47). 
The system (42) is an aperiodically stable system. This is 
confirmed by conditions (46) and (47), and experimental 
results, the model in Simulink are shown in Fig. 1 and the 
graph of aperiodic robust stability of the system in Fig. 2.

The aperiodic robust automatic control system synthe-
sized by the gradient-speed Lyapunov vector-function meth-
od obtains all direct measures of transient quality: shape of 
the transient curve, Fig. 2, absence of transient surge in the 
initial time period, control time, overshoot, transient oscilla-
tion, static control errors, stability and robustness.

Thus, for a broad class of systems, let’s believe the theory is 
sufficiently well developed that work can begin to develop an 
effective approach to assist control engineers in incorporating 
the parametric approach into their analysis and design toolkits. 

The gradient-speed method of vector Lyapunov functions 
considered in this paper allows to analytically synthesize an 
effective, physically realizable multidimensional control sys-
tem under uncertainty in the transient mode. It can be applied 
to create control systems for various technical objects.

The practical relevance of these results should motivate 
new theoretical research into typical application methods, 
the zone of clarification of the robust control-design complex 
automated system.

Finally, these are the main results which theoretically 
represent the most promising direction. These studies are 
particularly important for the design of more efficient auto-
mated control systems.

This method of investigation does not establish the 
boundary of aperiodic stability, but only indicates the fact 
of existence of stability in linear stationary control systems. 
The problems of stability research are not solved by tradi-
tional methods and they are not suitable for investigating 
the stability of a large-dimension system. Therefore, a new 
universal method for investigating the stability of a control 
system based on the second Lyapunov method is proposed.

On this basis the gradient-velocity method of vec-
tor-functions A. M. Lyapunov for the study of control sys-
tems of aperiodic robust stability is proposed.

This method does not establish the boundary of ape-
riodic stability, but points only to the fact of existence of 
stability in linear stationary control systems. The problems 
of stability research are not solved by traditional methods, 
and they are not suitable for investigating the stability of a 
large-dimension system. Therefore, a new universal method 
for investigating the stability of a control system based on 
the second Lyapunov method is proposed.

7. Conclusions

1. In this paper, using basic statements of Lyapunov theo-
rem, the basic development of new gradient-speed Lyapunov 
vector-function method, which allows to solve the problem 
of investigation of robust stability of linear control systems 
with m-inputs and cn-outputs, is presented. And also let’s 
present the control systems – both gradient systems and 
Lyapunov functions, and potential functions of gradient sys-
tems from the catastrophe theory. These functions which are 
derived from the catastrophe theory allow one to construct 
the full time derivative of the Lyapunov vector functions to 
a sign-negative function equal to the scalar product of the 
velocity vector on the gradient vector.  

The conditions of robust stability are obtained as system 
of inequalities on uncertain parameters of the automatic 
control system, which are the condition of existence of Lya-
punov vector-function.

2. The study of aperiodic robust stability of automatic 
control systems was based on the construction of Lyapunov 
vector functions and gradient-speed dynamic control sys-
tems. Therefore, the new gradient-speed Lyapunov vector 
function method solves the problem of investigating the 
robustness of linear control systems with m-inputs and 
c-n-outputs. Aperiodic robust automatic control system 
synthesized by gradient-speed Lyapunov function vector 
method obtains all direct measures of transient quality: 
the shape of transient curve, the absence of spike in tran-
sient process in initial period, control time, overshooting, 
oscillation of transients, static control errors, stability and 
robustness.
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