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Deep learning algorithms are able to automat-
ically handle point clouds over a broad range of 
3D imaging implementations. They have applica-
tions in advanced driver assistance systems, per-
ception and robot navigation, scene classification, 
surveillance, stereo vision, and depth estimation. 
According to prior studies, the detection of objects 
from point clouds of a 3D dataset with acceptable 
accuracy is still a challenging task. The Point-
Pillars technique is used in this work to detect a 
3D object employing 2D convolutional neural net-
work (CNN) layers. Point-Pillars architecture 
includes a learnable encoder to use Point-Nets for 
learning a demonstration of point clouds struc-
tured with vertical columns (pillars). The Point-
Pillars architecture operates a 2D CNN to decode 
the predictions, create network estimations, and 
create 3D envelop boxes for various object labels 
like pedestrians, trucks, and cars. This study aims 
to detect objects from point clouds of a 3D data-
set by Point-Pillars neural network architecture 
that makes it possible to detect a 3D object by 
means of 2D convolutional neural network (CNN) 
layers. The method includes producing a sparse 
pseudo-image from a point cloud using a feature 
encoder, using a 2D convolution backbone to pro-
cess the pseudo-image into high-level, and using 
detection heads to regress and detect 3D bound-
ing boxes. This work utilizes an augmentation 
for ground truth data as well as additional aug-
mentations of global data methods to include fur-
ther diversity in the data training and associating 
packs. The obtained results demonstrated that the 
average orientation similarity (AOS) and average 
precision (AP) were 0.60989, 0.61157 for trucks, 
and 0.74377, 0.75569 for cars
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1. Introduction

Due to its numerous applications in fields like computer 
vision, autonomous driving, and robotics, point cloud learning 
has recently drawn more and more attention. Deep learning, a 
dominant AI technology, has been effectively applied to address 
a variety of 2D vision issues. Due to the particular difficulties 
in processing point clouds with deep neural networks, deep 
learning on point clouds is still in its infancy. Particularly in the 
past five years, deep learning on point clouds has been increas-
ingly popular. Several widely accessible datasets are also free, 
such as the KITTI Vision Benchmark Suite, “ApolloCar3D”, 
“Semantic3D”, “ScanNet”, “S3DIS”, “PartNet”, “ShapeNet, 
“ScanObjectNN”, and “ModelNet” [1–6]. These datasets have 
further accelerated the study of deep learning on 3D point 
clouds, and an increasing number of approaches are being put 
forth to handle a range of issues relating to point cloud process-

ing, such as 3D reconstruction, 6-DOF pose estimation [7], 3D 
point cloud segmentation [4], 3D point cloud registration, 3D 
object detection, and tracking, and 3D shape classification [8].

Urban deployment of autonomous vehicles (AVs) presents a 
difficult technological barrier. Among other things, AVs must 
be able to recognize and follow moving items like bicycles, 
cars, and pedestrians in real time. Autonomous vehicles rely 
on a variety of sensors to accomplish this, with the Lidar being 
arguably the most crucial. A lidar creates a sparse point cloud 
representation by using a laser scanner to measure the distance 
to the environment. Such point clouds are often interpreted as 
object detections by a Lidar robotics pipeline using a bottom-up 
channel that involves background subtraction, followed by spa-
tiotemporal clustering and classification [9].

The Point-Pillars technique is used to detect a 3D object 
employing 2D convolutional neural network (CNN) layers. 
Point-Pillars architecture includes a learnable encoder to 
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use Point-Nets for learning a demonstration of point clouds 
structured with vertical columns (pillars). The Point-Pillars 
architecture operates a 2D CNN to decode the predictions, 
create network estimations, and create 3D envelop boxes for 
various object labels like pedestrians, trucks, and cars.

A substantial body of literature has examined how far 
deep learning techniques for computer vision can be used 
for object detection from lidar point clouds [10–12]. This is 
a result of the enormous advancements in these techniques. 
The point cloud is a sparse representation, whereas an image 
is dense, and the point cloud is 3D, whilst the picture is 2D, 
even though there are many other parallels between the 
modalities. Consequently, traditional image convolutional 
algorithms do not easily lend themselves to object detection 
from point clouds.

Due to its numerous applications in fields like robot-
ics, autonomous driving, and computer vision, point cloud 
learning has recently drawn more and more attention. Deep 
learning, a dominant artificial intelligent technology, has 
been effectively applied to address a variety of 2D vision 
issues. Due to the particular difficulties in processing point 
clouds with deep neural networks, deep learning on point 
clouds is still in its infancy. Therefore, it is necessary to use 
deep learning of Point-Pillars, to obtain high accuracy in 
the results and thus generalize interest and contribute to the 
development of human needs.

2. Literature review and problem statement

Point-Pillars is an encoder software suggested by the re-
search [13] that learns to represent point clouds structured in 
vertical columns using Point-Nets, achieving a speed advantage 
of 2‒4 times. Point-Pillars is a suitable codec for finding objects 
in point clouds, however, its priority is speed rather than good 
accuracy. Another traditional method for detecting 3D objects 
is called Point-Pillars-RCNN (PP-RCNN), which was used 
by researchers in the study [41]. To generate 3D proposals, 
the study used in the first stage a pillar network to encode 
the point cloud. Then, in the second stage, it used RoI net-
work feature abstraction to lighten the proposals. But since 
their experiments on the KITTI standard and their style 
method lack the use of modern and high-resolution content, 
their work is not in line with the required speed and accu-
racy to some extent. The performance, development, and 
assessment of the Unmanned Aircraft (Lidar) system were 
the main topics of the study [51]. In their studies on woods, 
they emphasized the system’s inexpensive cost and usage 
of a DJI Livox MID40 laser scanner. The following field 
measurements were obtained after extensive surveying of 
the pine site (coniferous site: R=0.96, broadleaf site: R=0.70, 
RMSE=1.63 m; root mean square error/RMSE=0.59 m). 
But, they were unable to achieve high-performance stan-
dards for their system despite their experimental methods. 
Using camera and Lidar fusion, the study [16] proposed a 
multi-adaptive technique for completing depth and con-
verting the two-dimensional sparse depth map (Lidar) into 
a dense depth map. The KITTI array was utilized to align 
the two data plane sensors. Although they demonstrated 
the value and approach of multi-sensor fusion, the results 
lacked precision. The paper [17] used a Gaussian process in 
implementing its proposed algorithm to segment objects in 
time based on 3D point drag. They also applied two types of 

Gaussian operations models, to work on the limit of fragmen-
tation that contributes to the separation of the body into sev-
eral parts. Although their results showed an 11.4 % increase 
in tracking accuracy over segmentation accuracy, they did 
not address the use of deep learning for point columns and 
therefore their work does not match recent developments. 
The research [18] is concerned with forecasting 3D lengths 
and modeling road centerlines using a Lidar point cloud and 
flat road centerline data. By using a 3D vector model based 
on Linear Reference Systems (LRS) techniques to describe 
and forecast the centerlines of a road in three dimensions. 
Although this study indicated that the proposed 3D tech-
nique employing Lidar data was effective in collecting 3D 
road lengths, their plan was sluggish and out of date. The 
researchers in [19] discussed the utility of 3D object tracking 
in panoramic video and Lidar for radioactive source object 
attribution and improved source detection by implement-
ing this analysis pipeline on a specially developed system 
consisting of a 2”4” 16-inch static NaI (Tl) detector with 
64-beam Lidar and four monocular cameras. Although their 
results demonstrated the potential to track pedestrians and 
cars at the same time, their experiments were unable to pro-
vide satisfactory results in some situations, such as fog.

All this allows asserting that it is expedient to conduct 
a study mitigating the particular difficulties in processing 
point clouds with deep neural networks by using deep learn-
ing algorithms on point clouds.

3. The aim and objectives of the study

The aim of the study is to detect objects from point 
clouds of a 3D dataset by Point-Pillars neural architecture. 
This will make it possible to detect a 3D object employing 
2D convolutional neural network (CNN) layers.

To achieve this aim, the following objectives are accom-
plished:

− to produce a point cloud with full-vision including the 
semantic label, cuboid label, and point clouds information, 
as well as the ground truth box labels and the cropping point 
cloud;

− to use data augmentation techniques to increase the 
detection accuracy while assisting in avoiding over-fitting 
problems during training;

− to train the point-pillars object detector using a deep 
learning network to regress and detect 3D bounding boxes.

4. Method and materials

4. 1. Research object and hypothesis
There are three main stages in Point-Pillars architecture:
1) producing a sparse pseudo-image from a point cloud 

using a feature encoder;
2) using a 2D convolution backbone to process the pseu-

do-image into high-level representations;
3) using detection heads to regress and detect 3D bound-

ing boxes.
The Point-Pillars networks require two inputs; pillar fea-

tures as a P-by-N-by-K and pillar indices as a P-by-2 matrix, 
where P represents the network pillars number, N denotes 
the number of points/pillar, while K represents the dimen-
sion feature as shown in Fig. 1.
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The dataset is downloaded from Panda-Set [20] 
of 5.2 GB size, which prepared 2560 point cloud 
data. All the point clouds cover 360o viewing and are 
assigned 64-by-1856 dimensions. Each point cloud is 
accumulated with PCD format, while its associating 
ground truth information is stored with (file.mat). 
This file includes three classes and 3D bound pack 
data, which are pedestrian, truck, and car.

4. 2. Methodology steps
In this work, we pick the point clouds of the full-vision of 

the Panda-Set dataset and convert them into point clouds with 
front-view by means of standard factors that determine the net-
work size for the pass input [21]. We choose a smaller range point 
cloud for the XYZ-axis to distinguish objects nearer to the source. 
This will decrease the whole network learning time. Table 1 
shows the considered parameters with their symbols and values.

Fig. 3 shows the adopted steps followed to apply the pro-
posed object detection from point clouds of a 3D dataset by 
Point-Pillars architecture.

The data preprocessing 
stage includes:

1) сalculating the pseu-
do-image dimensions;

2) defining the parame-
ters of the point cloud;

3) сropping the front 
vision point cloud from the 
input full-vision;

4) selecting the pack 
classes located inside the 
ROI area.

The creation of training 
data-store objects contains:

1) splitting the data-
set into test or evaluation 
(30 %) and training (70 %) 
datasets for the network;

2) saving the training 
data as PCD folders;

3) creating a data-store file for loading the PCD data;
4) creating a box class data store to load the 3D bound 

box classes;
5) combining the 3D bounding box classes with point 

clouds to a single training data store.

Table 1

Parameters with their symbols and values

Parameter Symbol and value

Down-sampling factor dsFactor=2.0

Resolution along Y-axis yStep=0.16

Resolution along X-axis xStep=0.16

Maximum Z-axis value zMax=5.0

Maximum Y-axis value yMax=39.68

Maximum X-axis value xMax=69.12

Minimum Z-axis value zMin=‒5.0

Minimum Y-axis value yMin=‒39.68

Minimum X-axis value xMin=0.0

We apply the function (sample_Lidar_Data) for sam-
pling the 3D bound packs of the training dataset and their 
associated point clouds and apply the function (pc_Bbox_

The network starts by running the feature encoder to 
simplify the Point-Net and includes a number of serially 
connected convolution layers, ReLu, and batch-normalize 
layers ending with a max-pool layer. Using the pillar indices, 
a scatter layer at the conclusion transforms the collected 
features into a 2D space.

After that, the architecture contains a 2D backbone 
CNN, which includes decoder-encoder blocks. Every encoder 
includes ReLu, batch-norm, and convolution layers for ex-
tracting features at various spatial resolutions. Every decoder 
contains ReLu, batch-norm, and transpose convolution layers. 
The layers of the Point-Pillars network are shown in Fig. 2.

The architecture after that concatenates the output 
characteristics at each decoder end to pass these character-
istics using six heads detection combined by sigmoid and 
convolutional layers to calculate class, heading, angle, size, 
location, and occupancy.

This work trains Point-Pillars architecture to detect an ob-
ject in a 3D environment point cloud. Data from the Lidar-based 
point cloud are collected using various Lidar sensors including 
Ouster, Pandar, and Velodyne® sensors. This can capture 3D 
location information regarding an object of a specific scene. 
Although this is helpful for many applications for augmented 
reality and self-directed driving, training point cloud-based 
data of strong detections is a challenging task due to the sensor 
noise, object occlusions, and sparsity of data per object. Deep 
CNN algorithms have been considered to solve such difficulties 
by training the representations of the robust features straightly 
using the data of point clouds. One deep CNN method to detect 
a 3D object is by considering Point-Pillars [13]. According to 
a similar network to Point-Net, the Point-Pillars architecture 
can extract dense, which are strong features from point clouds 
sparsely identified as pillars. Then the method employs a 2D 
deep CNN architecture through a customized detection of SSD 
object architecture to predict class predictions, orientations, 
and joint 3D bounding boxes.

Fig. 1. The mechanism of Point-Pillars architecture

Fig. 2. The layers of the Point-Pillars network
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Oversample) for arbitrarily adding a constant amount of 
truck and car label objects for all point clouds. Additionally, 
we use the function (transform) for applying the custom data 
and ground truth augmentations to the training dataset. The 
application of the above augmentation techniques for the 
training data for all point clouds includes:

‒ random translation for the x-, y-, and z-axis with (0.2, 
0.22, and 0.1) meters respectively;

‒ z-axis random rotation in the range [‒pi/4, pi/4];
‒ random scaling by 5 percent;
‒ random flipping along the x-axis.

The training of the Point-Pillars object detector is 
conducted using a deep learning network with the training 
options listed in Table 2.

We apply a function called (train_Point_Pillars_Object_
Detector) for training the Point-Pillars object detector. For 
creating detection objects, we use the trained architecture 
for the test data by:

1) reading a test data point cloud;

2) running the detection network on the tested point 
cloud data to obtain the estimated confidence scores and 
bound packs.

Table 2

The training options for the deep learning network

Description Value

Max. Epochs 60

Min. Batch Size 3

Gradient Decay Factor 0.9

Squared Gradient Decay Factor 0.999

Learning Rate Schedule piecewise

Initial Learning Rate 0.0002

Learning Rate Drop Period 15

Learning Rate Drop Factor 0.8

Execution Environment Execution Environment

Dispatch In Background Dispatch In Background

Batch Normalization Statistics moving

Reset Input Normalization false

Checkpoint Path Temp dir

5. Results of the object detection from point clouds of 
a 3D dataset

5. 1. The point cloud full�vision
The point cloud full-vision is shown in Fig. 4, while Fig. 5 

shows the ground truth box labels and the cropping point 
cloud according to a MATLAB-based helper function.

Fig. 3. The methodology steps of the proposed object detection 

from point clouds of a 3D dataset by Point-Pillars architecture

Fig. 4. Point cloud full-vision

Fig. 5. Ground truth box classes and the cropping point cloud
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The downloaded file includes folders with semantic La-
bels, Cuboids, and Lidar that have the semantic label, cuboid 
label, and point clouds information, respectively.

5. 2. Applying data augmentation technique
Fig. 6 reads and displays a prior augmentation point cloud.
This technique increases the detection accuracy while 

assisting in avoiding over-fitting problems during training. 
Fig. 7 shows the ground truth augmented boxes with the 
augmented point clouds.

The application of the function of the 
Point-Pillars object detector necessitates 
specifying the number of inputs to param-
eterize the Point-Pillars architecture:

− amount of points/pillar (N=100);
− prominent pillars number is 

(P=12.000);
− voxel size;
− point cloud range;
− anchor boxes;
− class names.

5. 3. Training Point�Pillars object detector
The regress and detect 3D bounding boxes and point cloud, 

on 0.5 assurance threshold of the detections, is shown in Fig. 8.
The evaluation of the trained object point cloud detection 

applying the test dataset is implemented on a large set to mea-
sure the performance. This is done by generating rotating rect-
angles in the cuboid classes and setting the threshold quantities 
by 0.5 for the number of PositiveIoUThreshold and 0.25 for 
the confidence threshold. Then, we convert the bound packs to 
rotating rectangles format and compute the assessment metrics 

including the average orientation 
similarity (AOS) and average pre-
cision (AP), which is a common 
metric in assessing the accuracy 
of object detections. Furthermore, 
AOS was used to evaluate the per-
formance of mutual object detec-
tion to estimate its 3D orientation 
and it has been defined in [1] by:

( )
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Pascal detection, which indicates 
that it is correct detection if the 
detecting 2D bounding box over-
laps with 50 % minimum with 
ground truth bound boxes. TP is 
the true positive, TN is negative, 
and FN is the false negative. AP 
can be defined by:
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We can assume the last terms 
are zero when AP becomes very 
small. i. e., until the recall rate 
hits 100 %, we may not necessari-
ly make predictions. Therefore, by 
comparing with two related stud-
ies, the AOS and AP metrics for the 
detection are listed in Table 3.

Fig. 6. A prior augmentation point cloud

Fig. 7. The ground truth augmented boxes with the augmented point cloud

Table 3

The average orientation similarity (AOS) and average precision (AP) metrics for 

the car and truck objects

Reference Dataset Object type AOS AP

Proposed Panda-Set
Truck 0.60989    0.61157

Car 0.74377    0.75569

[22] ScanNet[5] and SUN RGB-D [22] Furniture pieces 0.4628 0.4701

[21] KITTI [23]
Truck 0.528 0.544

Car 0.7212 0.7256
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The results showed that the average orientation similar-
ity (AOS) and average precision (AP) for trucks and autos, 
respectively, were 0.60989 and 0.61157.

6. Discussion of the object detection from point clouds 
of a 3D dataset

This work utilizes an augmentation for ground truth data 
as well as additional augmentations of global data methods 
to include further diversity in the data training and associat-
ing packs. Data augmentation techniques increase detection 

accuracy while assisting in avoiding over-fitting problems 
during training. The application of the data augmentation 
technique increases the detection accuracy while assisting 

in avoiding over-fitting problems 
during training as shown in the 
results of Fig. 6. After data aug-
mentation, the ground truth aug-
mented boxes with the augment-
ed point cloud are clear in Fig. 7. 
The training of point-pillars ob-
ject detector results in regression 
and detection of 3D bounding 
boxes and point cloud with (0.5) 
thresholding assurance as shown 
in Fig. 9. Such study can contrib-
ute to advanced driver assistance 
systems, perception and robot 
navigation, scene classification, 
surveillance, stereo vision, and 
depth estimation.

To evaluate how well the 
proposed approach performs on 
3D point pillar data, multiple 
benchmark models, including 
the dataset (ScanNet and SUN 
RGB-D) by the study [24], and 
KITTI dataset by [21] are com-
pared in this study. The compar-
ison showed that the developed 
approach performs substantial-
ly better than other models, 
achieving average orientation 
similarity (AOS) and average 
precision (AP) for tracking the 
car and truck objects than other 
algorithms as shown in Table 3.

The limitation of this work 
is that the simulations have been 
applied on 2.560 point cloud data, 
covering 360o viewing, and are 
assigned 64-by-1.856 dimensions 
with PCD format. Future work 
may expand the applications of 
this approach to include various 
types of datasets.

7. Conclusions

This study developed an ap-
proach to detect objects from 
point clouds of a 3D dataset 
by Point-Pillars neural architec-
ture, which makes it possible to 
detect a 3D object employing 2D 
convolutional neural network 
(CNN) layers:

1. Point cloud with full-vision including the semantic 
label, cuboid label, and point clouds information has been 
produced with the ground truth box labels and the cropping 
point cloud.

2. Data augmentation has been used to increase the 
detection accuracy while assisting in avoiding over-fitting 
problems during training to parameterize the point-pillars 

a

b                                                                           c

d                                                                           e

Fig. 8. The predictions on the point cloud: a ‒ bounding boxes prediction; b ‒ first image 

of the front camera; c ‒ car detections on the point cloud; 

d ‒ 399th image from front view camera feed; e ‒ lidar feed with the track
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architecture with N=100 points/pillar and P=12.000 prom-
inent pillars.

3. The presented work trains the point-pillars object 
detector using a deep learning network to regress and detect 
3D bounding boxes. The obtained results demonstrated that 
the average orientation similarity (AOS) and average pre-
cision (AP) were 0.60989, 0.61157 for trucks, and 0.74377, 
0.75569 for cars.
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